Lecture Notes

Selected Topics in Data Structures

(Ausgewahlte Kapitel aus
Datenstrukturen)

Michiel Smid

Maz-Planck-Institut fur Informatik
D-66123 Saarbricken, Germany
E-mail: michiel@mpi-sb.mpg.de

Preface

This text contains the lecture notes for the course Ausgewdhlte Kapitel
aus Datenstrukturen, which was given by the author at the Universitat
des Saarlandes during the winter semester 1993/94. The course was
intended for 3rd/4th year students having some basic knowledge in the
field of algorithm design. The course was accompanied by Ubungen.
The Ubungsaufgaben are given in Chapter 5. The author thanks Stefan
Denne for typing the manuscript and for producing the figures.

ii

Contents

1 Skip Lists: a randomized dictionary 1
1.1 Skip Lists 2
1.2 Why Skip Lists are efficient: the intuition 7
1.3 Some notions from probability theory 9
1.4 Why Skip Lists are efficient: the proofs 14
1.5 Tail estimates: Chernoff bounds 19
1.6 Tail estimates for skip lists 22
1.7 Furtherreading 26

2 The Union-Find Problem 27
2.1 An optimal amortized solution 27
2.2 Ackermann’s function and its inverse 30
2.3 Analysis of the Union-Find algorithm 33

2.3.1 Therankofanode 33
232 Theanalysis. 37
2.4 The single-operation complexity 40
2.5 Furtherreading 45

3 Range Trees and the Post-Office Problem 47
3.1 From the exact L,,-problem to the approximate Lo-problem 49
3.2 Rangetrees 52
3.3 Solving the L.,-post-office problem 58

331 Stage2. 59
332 Staged. 62
3.4 Improving the query time: layering 64
3.5 Supporting insertions and deletions: partial rebuilding . 69
3.5.1 An alternative proof: the potential method 74

il

v

Contents

3.5.2 Range trees and partial rebuilding 7

3.6 Furtherreading 78

4 Mantaining order in a list 81
4.1 An O(logn) amortized time solution 82
4.2 Theanalysiso 88
4.3 An O(1) amortized solution 92
4.4 Convex functions and inequalities 95
4.5 Furtherreading 98

5 Ubungsaufgaben 99
Bibliography 105

Chapter 1

Skip Lists: a randomized
dictionary

We consider the dictionary problem: Given a set S of real numbers
store them in a data structure such that the following three operations
can be performed efficiently:

Search(z): Given a real number z, report the maximal element of
SU{ — oo} that is at most equal to z. (By introducing —oo, this
operation is always well-defined.)

Insert(z): Given a real number z, insert it into the data structure.
(Hence, we set S := SU {z}.)

Delete(z): Given a real number z, delete it from the data structure.
(Hence, we set S := S\ {z}.)

The standard data structure for this problem is a balanced binary
search tree. It solves the dictionary problem with O(logn) worst-case
time for each of the three operations and it uses O(n) space. (Here, n
denotes the size of the current set S.) Well known classes of balanced bi-
nary search trees are AVL-trees, BB[a]-trees and red-black-trees. Since
these trees solve the dictionary problem optimally, we may think that
the story ends here. However, anyone who has implemented a specific
class of balanced trees will have noticed that especially the update al-
gorithms are not trivial to code at all. Usually, the tree is rebalanced

1

2 1. Skip Lists: a randomized dictionary

by means of rotations and double rotations. Moreover, each of these
two types of rotations has a “left” and a “right” version. That is, we
have to distinguish between different cases and, therefore, have to be
careful.

This leads to the question whether there is an optimal data structure
for the dictionary problem that is easy to implement and that is also
fast in practice. In this chapter, we will introduce such a data structure:
the Skip List. These were invented by William Pugh. Skip lists use
randomization, i.e., they use the outcomes of random coin flips. As we
will see, we (the programmer) do not have to worry about balancing:
the coin flips take care that the data structure is balanced, at least with
very high probability.

The rest of this chapter is organized as follows. We first define skip
lists and give the algorithms that work on them. Then we give the
intuition why skip lists are efficient. Finally, we give complete proofs
of the complexity. Our proofs will use various notions from probability
theory. These notions are recalled in Section 1.3.

1.1 Skip Lists

Throughout this chapter, we assume that we can generate random inde-
pendent bits. Each bit can be generated in unit time. Put it differently,
we have a fair coin. If we flip it, then we obtain a one (heads) with
probability 1/2 and a zero (tails) with probability 1/2. The outcome
of a coin flip is independent of previous outcomes. By flipping the coin
repeatedly, we obtain a sequence of independent bits.

Let S be a set of n real numbers. We construct a sequence Si, Ss, ...,
of sets, as follows:

1. §1=5.
2. Let 7 > 1 and assume that S; has been constructed already. Flip
the coin independently for each element of S;. Then S;,; is the

set of all elements of S; for which the coin flip produced a one.

3. The construction stops as soon as a set .S; is empty.

1.1. Skip Lists 3

Let h be the number of sets that are constructed. Then
0=5,CS5_1C...CSCS =5
The Skip List for S consists of the following:

1. For each 1 < i < h, the elements of S; U { — oo} are stored in
sorted order in a linked list L;.

2. For each 1 < 7 < h, and each element x in L;, there is a pointer
from z to its occurrence in L;_ ;.

Here is an example. Suppose S ={1,2,5,7,8,9,11,12,14,17,19, 20}.
Flipping coins might lead to the sets S; = S, So = {1, 2,5,8,11,17, 20},
S3 ={2,5,11,20}, Sy = {11} and S5 = (). The corresponding skip list
is shown in Figure 1.1.

17

O—©
-GG

-

—®

7Y
i
OO

Figure 1.1: A skip list.

Observation 1.1.1 The construction of the sets S;, © > 1, defines a
probability distribution on skip lists. In our example, the probability
that the skip list of Figure 1.1 is obtained is exactly the probability
that the coin flipping process gives the sets So = {1,2,5,8,11,17,20},
Sy ={2,5,11,20}, Sy = {11} and S5 = 0.

4 1. Skip Lists: a randomized dictionary

We can search in a skip list as follows. Let x € IR. Recall that
we want to find the maximal element of S U { — oo} that is at most
equal to x. The search algorithm successively locates = in the lists
Lh, Lh—l; P L12

1. Let y, be the only element of L.
2. Fori=h,h—1,...,2:

(a) Follow the pointer from y; in L; to its occurrence in L; ;.

(b) Starting in y;, walk to the right along L; ;, until an element
is encountered that is larger than z or the end of L; ; is
reached. Let y;_; be the last encountered element in L;
that is at most equal to .

3. Output y;.

See Figure 1.2 for an example. There, we search for the number 9. The
search path consists of the dashed arrows. The y-variables have values

y5:_007y4:_oovy3:57y2:87y1:9-

20

- -

A 2

e @@@@@@@g‘

mOROR0

Figure 1.2: Searching for 9.

Exercise 1.1.1 Convince yourself that the search algorithm is correct.

1.1. Skip Lists)

Before we turn to the insert and delete algorithms, we give an al-
ternative construction of the sets S;:

1. For each element x in S, flip the coin until a zero comes up.

2. For ¢ > 1, S; is the set of all elements in S for which we flipped
the coin at least 7 times.

Note that the sets S;, © > 1, completely determine the skip list. The
alternative construction also defines a probability distribution on skip
lists.

Exercise 1.1.2 Convince yourself that the two given constructions of
the sets S; define the same probability distribution on skip lists. (Hint:
In both constructions, the coin flips are independent.)

The alternative construction immediately suggests the following in-
sert algorithm. Let x € IR be the element to be inserted.

1. Run the search algorithm on z. Let yn,yn_1,...,y1 be the ele-
ments of Ly, L,_1, ..., Ly, respectively, that are computed by this
algorithm. If x = y;, then x € S and nothing has to be done. So
assume that = # y;.

2. Flip the coin until a zero comes up. Let [be the number of coin

flips.

3. For each i, 1 < i < min((, h), add z to the list L;, immediately
after y;.

4. If I > h, then create new lists Lyy1, Lpyo, ..., Ly storing the
sets Spi1 U { — 00}, Spi2 U { — o0}, ..., Sip1 U{ — oo}, where
Sh—l—l = Sh_|_2 =...= Sl = {33} and Sl_|_1 = (D

5. For each 1 < ¢ < [, give x in L; a pointer to its occurrence in
Li—l-

6. If [> h, then for each h+1 <i <[+ 1, give —cc in L; a pointer
to its occurrence in L;_;.

7. Set h := max(h,l 4+ 1).

6 1. Skip Lists: a randomized dictionary

a0

11

mORORO

€3
IGO0
O~~~ D)~~~

Figure 1.3: Inserting 10. The first flip gives a one, the second a zero.
Hence, 10 is added to the first two levels.

In Figure 1.3, the skip list that arises by inserting 10 into the skip
list of Figure 1.1 is depicted. The dashed pointers are the new ones.

The delete algorithm is similar. Suppose we want to delete element
x.

1. Run the search element on x. Let y,, yn_1,...,¥y1 be the elements
of Ly, Lp_1, ..., Ly, respectively, that are computed by this algo-
rithm. If x # y;, then x ¢ S and nothing has to be done. So
assume that x = y;.

2. For each 1 < i < h such that x = y;, delete y; from the list L;.

3. Fori=~h, h—1,...: if L;_; only stores —oo, delete the list L;
and set h:=h — 1.

Exercise 1.1.3 Delete 11 from the skip list of Figure 1.3.

This concludes the description of the algorithms for searching and
updating a skip list. Note that the word “balance” does not occur
anywhere: as mentioned already, our coin takes care of this; we do not
have to worry about it.

In the next sections, we will analyze the complexity of the skip list.
Of course, we have to say what we mean by that. First consider the

1.2. Why Skip Lists are efficient: the intuition 7

size of the data structure. It is clear that this size depends on the
results of the coin flips that are made during the construction of the
skip list. There is no worst-case upper bound on the size. Given a set
S of real numbers, the size of a skip list for S is a random variable. We
are interested in the expected value of this variable.

The running time of the search algorithm is also a random variable.
The expected search time is the expected value of this variable. The
expectation is computed by averaging over all possible outcomes of the
coin flips.

Exercise 1.1.4 Suppose an adversary generates search and update op-
erations. He wants to construct a sequence of operations that take
much time to process. Assume the adversary knows the outcomes of
our coin flips. Show that he can generate a sequence of update opera-
tions, followed by one search operation, such that this final operation
takes linear time.

As a final remark, we have given two constructions of the sets S;,
1 > 1. Both constructions define the same probability distribution on
skip lists. Therefore, if we analyze the skip list, we can use properties
of both constructions. As we will see, depending on what we want to
prove, the properties of one construction may be more appropriate than
those of the other one.

1.2 Why Skip Lists are efficient: the in-
tuition

We start with considering the number of sets 5;, i.e., the value of h.
According to the first construction, we get the set S;,; by taking all
elements of S; for which the coin flip produced a one. Hence, we expect
that the size of S;;1 is about half the size of S;. From this, we expect
that the value of A is O(logn).

Let x be any element of S. How many sets S; contain 7 According
to the second construction, we flip a coin until a zero comes up. We
expect that this happens after a few flips. Hence, we expect that z is
contained in only few sets S;. That is, each element of S is expected

8 1. Skip Lists: a randomized dictionary

to be stored in only few lists and, therefore, the size of the skip list
is O(n). This also follows from the fact that |S;;1| &~ |S;|/2 (at least,
we expect this), because this implies that the size of the skip list is
proportional to ¥, |S;| = ¥, n/2¢ = O(n).

Next let us consider the cost of searching for a real number z. Let
C; be the number of elements in the list L; that are inspected by the
algorithm. Then the search cost is proportional to E?Zl C;. Consider
a fixed 7. What value of C; do we expect? Recall that y; and y;11
are the largest elements of L; and L;,; that are at most equal to z,
respectively. Let ;. be the successor of ;11 in L. (We assume for
simplicity that y;+1 is not the maximal element of L;;;.) Note that
Yir1 > . Moreover, C; is equal to the number of elements in L; that
are to the right of y;.; and to the left of the successor of y; (including
this successor). See Figure 1.4. The dashed arrows form a part of the
search path.

Figure 1.4: The search algorithm at level .

Assume that C; is large, say 100. Our first construction algorithm
implies that all coin flips for the 99 elements of L; that are to the right
of y;+1 and to the left of y; (including y;) produced a zero. Moreover,
the coin flip for y; 1 produced a one. But this is extremely unlikely to
happen: the probability is (1/2)'%. Hence, we expect C; to be small.
That is, the search cost in the list L; is small. Since we expect to have
O(logn) such lists, the entire search algorithm should take O(logn)
time. (Here, we multiply two expectations, which is in general not
allowed. But remember that this section only gives intuition, not real

1.3. Some notions from probability theory 9

proofs.)

The costs of the insert and delete algorithms are proportional to the
number of lists L; plus the cost of the search algorithm. Therefore, we
also expect these costs to be O(logn).

Note that in this section, we only gave the intuition why skip lists
are expected to be efficient. In Section 1.4, we will give rigorous proofs.
First, in the next section, we recall and develop some notions from
probability theory.

1.3 Some notions from probability theory

We assume that the reader has some elementary knowledge about prob-
ability theory. We recall the basic notions.

Let U be a sample space. The elements of U are called elementary
events. They can be viewed as possible outcomes of an experiment.
An event is a subset of U. Two events A and B are called mutually
exclusive if AN B = 0.

A probability distribution Pr on U is a function that maps events to
real numbers such that

1. Pr(A) > 0 for any event A,
2. Pr(U) =1,

3. for any finite or countably infinite sequence A;, A,, ... of events
that are pairwise mutually exclusive, Pr(U;A4;) = 3, Pr(4;).

The real number Pr(A) is the probability of event A. Two events A
and B are called independent if Pr(AN B) = Pr(A) - Pr(B).

Exercise 1.3.1 Prove the following statements:

(1) The empty event () has probability Pr(@)) = 0.

(2) If A and B are events such that A C B, then Pr(A) < Pr(B).

(3) For any event A, Pr(U \ A) =1 — Pr(A).

(4) Forevents A and B, Pr(AUB) = Pr(A)+Pr(B)—Pr(ANB) <
Pr(A) + Pr(B).

10 1. Skip Lists: a randomized dictionary

If A and B are events such that Pr(B) > 0, then the conditional
probability of event A given that event B occurs is defined as

Pr(AN B)
Pr(A|B) .= ———
Lemma 1.3.1 Let By, B,, ... be a finite or countably infinite sequence

of events that are pairwise mutually exclusive such that Pr(B;) > 0 for
alli and y-; Pr(B;) = 1. Let A be any event. Then,

Pr(A4) = ZPI“(A | B;) - Pr(B;).

Proof: Let B := U;B; and B* := U\B. Since A = (ANB)U(ANDB*), we
have Pr(A) = Pr(ANB)+Pr(AnB*). It follows from our assumptions
that Pr(B) = 1 and, hence, Pr(B*) = 0. But then, since Pr(AN B*) <
Pr(B*), we also have Pr(A N B*) = 0. Therefore,

Pr(A) = Pr(AnB)
= Pr(U;(AN B)))
= ZPr(AﬂBi)

[|
Why did we define the notion of conditional probability? One reason
is the following: In some applications, it is difficult to compute Pr(A)
directly. In such cases, we define events B;, ¢ > 1, such that the
conditions of Lemma 1.3.1 are satisfied, and Pr(A | B;) is easy to
compute. Using Lemma 1.3.1, this allows us to compute Pr(A).
Let U be a finite or countably infinite sample space. A random
vartable X is a function from U to IR. If z is a real number, then the
event “X = z” is defined as {u € U : X(u) = x}. This implies that

Pr(X=z)= > Pr({u}).

uelU:X(u)=x

Similarly, if X and Y are random variables, then for any z,y € IR,

Pr(X=2AY =y)= > Pr({u}).

weU:X (u)=zAY (u)=y

1.3. Some notions from probability theory 11

Exercise 1.3.2 Convince yourself that

Pr(X>z)= > Pr({u}).

wel: X (u)>z

Exercise 1.3.3 Prove that Pr(X = z) = ¥, Pr(X = 2 AY = y).
(Hint: Use Lemma 1.3.1. Convince yourself that the summation has a
finite or countably infinite number of terms.)

The random variables X and Y are called independent if
PriX=2AY =y)=Pr(X =2) -Pr(Y =y)

for all z and y.
A sequence (X;);>1 of random variables is called pairwise indepen-
dent if for all 1 <17 < j and all x and vy,

Pr(X; =2 A X; =) = Pr(X; = 2) - Pr(X; = y).

The sequence is called mutually independent, if for alln > 2, 1 <4 <
19 < ... <1y, and x1,To, ..., Ty,

Pr(

.
==

(%, =2) = [TPeX, =)

See also ﬁbungsaufgabe 5.3.

Given random variables X and Y, we can define new ones, such as
X+Y, X Y, eX, in the obvious way.

The ezpected value of a random variable X is defined as

E(X):=> z-Pr(X =x),

provided the series converges absolutely.

Exercise 1.3.4 Let X and Y be random variables and let a be a real
number.

(1) Prove that E(X +Y) = E(X) + E(Y).

(2) Prove that F(a-X) =a- E(X).

12 1. Skip Lists: a randomized dictionary

(3) Assume that X and Y are independent. Prove that E(X -
Y)=FE(X)-E(Y).

Exercise 1.3.5 In this exercise, we introduce and analyze the geomet-
ric distribution. Let 0 < p < 1 be a real number. We have a coin that
comes up zero with probability p and one with probability 1—p. We flip
this coin independently until a zero comes up. Let X be the random
variable whose value is the number of times we flip the coin.
(1) Prove that Pr(X = k) = p(1 — p)*! for any k > 1. Any
probability distribution that satisfies this equation is called
a geometric distribution.
(2) Prove that E(X) =1/p.

The following indentity turns out to be useful.

Lemma 1.3.2 Let X be a random variable that takes values in {0, 1,2, ...

Then,

E(X) = i Pr(X > k).

Proof: Since Pr(X = k) + Pr(X > k+1) =Pr(X > k), we get

E(X) = 3 k-(Pr(X > k) — Pr(X > k+ 1))

k=0

= Y k-Pr(X>k)—> (k—1)-Pr(X > k)
k=1 k=1

= > Pr(X >k)
k=1

If we want to compute the expected value of X according to the
definition, then we have to know the probability that X has value k.
In many applications, it is much easier to compute the probability that
X is at least equal to k. In such situations, Lemma 1.3.2 should be
applied.

Exercise 1.3.6 Let X and Y be random variables such that X (u) <
Y (u) for all u € U.

}.

1.3. Some notions from probability theory 13

(1) Prove that Pr(X >t) < Pr(Y >t) for any ¢t € IR.
(2) Assume that X and Y take values in {0,1,2,...}. Prove that
E(X) < E(Y).

Lemma 1.3.3 Let X be a random variable and let f be any function.
Then

E(f(X))=)_f(z) Pr(X = z).

Proof: Assume that X takes on the values zq,%5,23,... Let
Y1, Y2, Y3, - - - be the elements of the set {f(z;) : ¢+ > 1}. Hence, the
y;'s are distinct. Then, by definition,

E(f(z)) = iy Pr(f(X) =).

Since

Since U {k : f(zx) = v} = {1,2,3,...} and the set on the left-hand

side is a union of pairwise disjoint sets, we get
E(f(X)) =>_ f(z;) - Pr(X =).
j=1

This proves the lemma. |
Let X and Y be random variables. The conditional expected value
of X given that Y = y, is defined as

EX|Y=y):=>z-Pr(X=2|Y =y).

Lemma 1.3.4

E(X)=) E(X|Y =y)-Pr(Y =y).

14 1. Skip Lists: a randomized dictionary

Proof: We know from Lemma 1.3.1 that

Pr(X=2)=) Pr(X =2|Y =y)-Pr(Y =y).

Therefore,
E(X) = Y z-Pr(X =1)
= éxZPr(X:aHY:y)-PT(Y:y)
- ;Pr?Y:y);x-Pr(X=x|Y=y)

= Y Pr(Y=y)- E(X|Y =y).

1.4 Why Skip Lists are efficient: the proofs

After our excursion to probability theory we are ready to analyze skip
lists rigorously. The size of a skip list and the running times of the
search and update algorithms are random variables. We will prove that
their expected values are bounded by O(n) and O(logn), respectively.

Recall that h denotes the number of sets S;, 7 > 1, that result from
our probabilistic construction. (Note that S, = (}). We give an upper
bound on the expected value of h.

Let = be an element of S and let h(z) be the number of sets S; that
contain z. Our second construction implies that h(z) is distributed
according to a geometric distribution with p = 1/2. (See Exercise
1.3.5.) Therefore, Pr(h(z) = k) = (1/2)* and E(h(z)) = 2. That is,
element x is expected to be contained only in S; and Ss.

Clearly, h = 1 + max {h(z) : z € S}. From E(h(z)) = 2 for any
x € S, however, we cannot conclude that the expected value of A is
three. (See also Ubungsaufgabe 5.2.)

We estimate F(h) as follows. Again, consider a fixed element z of
S. Tt follows from the second construction that for any & > 1, h(x) > k
if and only if the first £ — 1 coin flips for produced a one. That is,

1.4. Why Skip Lists are efficient: the proofs 15

Pr(h(z) > k) = (1/2)* L. It is clear that h > k + 1 if and only if there
is an z € S such that h(z) > k. Therefore (see Exercise 1.3.1)

n

Pr(h>k+1) <n-Pr(h(z) > k)= T

This estimate does not make sense for £ < 1 + logn. For these
values of k, we can use the trivial upper bound Pr(h > k + 1) < 1.
Applying Lemma 1.3.2, we get

00 [log] 0o
E(h) =Y Pr(h>k+1)= > Pr(h>k+1)+ > Pr(h>k+1).
k=0 k=0 k=1+[logn]

The first summation on the right hand side is at most equal to 1 +
[logn]. The second summation is bounded from above by
ad n

> gy = (/) < (1) <o,

k=1+[logn]
Hence we have proved that E(h) < 3+ [logn].
The expected size of a skip list can easily be computed: Let M

denote the total size of the sets Sy, So, ..., Sp. Then M =Y, .5 h(z)
and, by the linearity of expectation (see Exercise 1.3.4),

EM) =Y E(h(z))=>_2=2n.
z€S T€S
If M'" denotes the total number of nodes in the skip list, then M’ is
equal to M (= the number of nodes in the lists L; \ { —oc},1 < i < h)
plus h (= the number of occurrences of —o0).
Hence,

E(M'"Y=E(M+h)=E(M)+ E(h) <2n+3+ [logn].

Since each node of the skip list contains a constant amount of informa-
tion (an element of S U { — oo} and at most two pointers), this proves
that its expected size is bounded by O(n).

Next, we estimate the expected search cost. Let x be a real number.
As in Section 1.2, let C; denote the number of elements in the list L;

16 1. Skip Lists: a randomized dictionary

that are inspected by the algorithm when searching for z. (We do not
count the element of L; in which the algorithm starts walking to the
right. Hence, C; counts comparisons between x and elements of S.
Moreover, C, = 0.) The search cost is proportional to %, (1 + C;).

We have to be careful: It is not clear that the expected value of
this summation is equal to Zf:(? B (14 C;). The reason is that A itself
is a random variable: The linearity of expectation was only proved
for the summation of a fized number of random variables. (See also
Ubungsaufgaben 5.3 and 5.4.)

The trick is to take a fixed integer A and analyze the search costs
up to level A and above level A separately. (Later, we choose A such
that we get a good upper bound.)

So let A be a positive integer. We first estimate the expected search
cost above level A, i.e., the total cost in the lists L1, Layo, ..., Lp.
Since this cost is at most equal to the total size of these lists, its ex-
pected value is at most equal to the expected value of M4 := Z?: A | Ll
(See Exercise 1.3.6.)

How do we estimate the expected value of M47 We first note that
the lists L;;, A4+ 1 < ¢ < h, form a skip list for the set S4y1. That
is, these lists have the same properties as a skip list that is built only
for S441. Here, the notion of conditional expected value comes in.
According to Lemma 1.3.4, we have

E(My) = 3 B(My | [Sasa| = k) - Pr(|Sas| = k).
k=0
Note that E(Ma | [Say1]| = k) is the expected size of a skip list for
a set of k£ elements. We have seen already that this expected value is
O(k).
So it remains to compute Pr(|Say 1| = k). Since |Say1| = k if and
only if out of the n elements of S exactly k£ “reach” level A+ 1, we have

Prisaal =0 = (1) 072 (1= /2"

Setting p = (1/2)%, we infer that the expected value of M, is propor-
tional to

e L ()

1.4. Why Skip Lists are efficient: the proofs 17

= n- pz (n - 1) —p)» Tk

n-p(p+(1—p)) o

= n-p.

Putting everything together, we have proved that the expected
search cost above level A is bounded by O(n/24).

Next we estimate the expected search cost in the lists Ly, Lo, ..., L.
Recall that C; is the number of elements of L; that are inspected when
searching for z. How do we compute E(C;)? Again, we use conditional
expectations: Let [;(z) be the number of elements in L; that are at
most equal to . Then

i (Ci | li(x) = k) - Pr(li(z) = k).

Assume that [;(x) = k. Also, assume that there is an element in L; that
is larger than x. Then, C; = j if and only if the largest 7 — 1 elements
of L; that are at most equal to x do not appear in L;;, but the element
that immediately precedes these j — 1 elements does appear in L; ;.
(Note that the latter element may be —oo, which always appears in
L;.1.) Hence,

Pr(Ci=j|Li(x)=k) < (1/2/ ", 0<j <k

This inequality also holds if z is at least equal to the maximal element
of L;. From this we obtain
k

E(C; | li(x) =k) = Z] Pr(C; =j | li(z) = k)

k

> /2

IN

VAN
W

This, in turn, implies that

< i4 -Pr(l;(x) = k) = 4.

18 1. Skip Lists: a randomized dictionary

It follows that the expected search cost up to level A is proportional to

A A

EDQ_(1+Cy))=>_(1+ E(C;)) <5HA.

i=1 i=1

Summarizing, we have proved that the expected time to search for
element z is bounded by (again, we use the linearity of expectation)

O(n/2% + A).

This upper bound holds for any A. We take A = [logn] and infer that
the expected search time in a skip list is O(logn). (In Section 1.6, we
give an alternative proof of this. See Remark 1.6.1.)

Finally, we consider the expected update cost. It is easy to see
that the expected time to insert or delete an element x in a skip list
is proportional to the expected cost of searching for z. Hence, the
expected update time is O(logn).

There is an important remark to be made here: An insertion (resp.
deletion) of an element x results in a skip list that has the same prob-
ability distribution as a skip list for S U {z} (resp. S\ {z}) that is
built by one of our constructions. Hence, after a sequence of updates
has been performed, the data structure still “behaves” as if it were just
built. We analyzed skip lists under the assumption that they were built
by one of our constructions. As a result, the space and time bounds we
derived also hold for skip lists that have been changed by a sequence
of updates.

The next theorem summarizes the results of this section.

Theorem 1.4.1 Let S be a set of n real numbers and let SL be a skip
list for S.

1. The expected number of levels in SL is O(logn).
2. The expected size of SL is O(n).

3. For any x € IR, it takes O(logn) expected time to search for x in
SL.

4. We can insert and delete an element in SL in O(logn) expected
time.

1.5. Tail estimates: Chernoff bounds 19

1.5 Tail estimates: Chernoff bounds

In the previous section, we proved bounds for the expected size, search
time and update time of a skip list. In this section, we consider so-
called tail esttmates. That is, we estimate the probability that e.g. the
actual search time deviates significantly from its expected value. We
saw that the expected search time is bounded by O(logn). Assume for
simplicity that the constant in this bound is equal to one. Then we
want to estimate the probability that the actual search time is at least
t - logn. This probability can be bounded by Markov’s inequality:

Lemma 1.5.1 Let X be a random variable that takes non-negative val-
ues, and let i be the expected value of X. Then for anyt > 0,

Pr(X > tp) <1/t
Proof: Let s = tu. Then

p o= > z-Pr(X =uz)

> > z-Pr(X =x)
T>$

> Y s-Pr(X =)
]

= s-Pr(X >s).

|

Hence, the probability that the actual search time is at least ¢-logn is
less than or equal to 1/¢. This is not very impressive: The probability
that the search time is more than 100 times its expected value is at
most 1/100. If this upper bound were tight, then among 100 searches
we would expect that one takes 100 times as long as an average search.
In this section, we prove so-called Chernoff bounds, which will be
used in Section 1.6 to give much better tail estimates. By using more
properties of the random variables that determine the search time, we
will prove that the probability that it exceeds t - logn is less than or
equal to n~%/%0 for t > 50. (For ¢ < 50, the bound is slightly worse.)
Hence, in a skip list for 1000 elements, the probability that the search

20 1. Skip Lists: a randomized dictionary

time is more than 100 times its expected value is at most 107, In
practice, this means that this event will never occur.

Markov’s inequality holds for any non-negative random variable.
The Chernoff technique applies to random variables X that can be
written as a sum > ; X; of mutually independent random variables
X;. In such cases, much better bounds can be obtained for Pr(X > tu).

So let X1, Xy, ..., X,, be a sequence of n mutually independent
random variables and let X = >, X;. For any real number A, the
random variables e’ ez eAn o are also mutually independent.
Therefore,

E(e)\X) — E(e,\(XH—...—i—Xn)) — H E(eAXi).
=1

Now let s > 0 and A > 0. Since X > s if and only if e > €%, we
have Pr(X > s) = Pr(e’ > e**). By applying Markov’s inequality to
the non-negative random variable e*X, we get

Pr(X > s) = Pr(e™ > ™) < e™ - B(eM).

This yields

n
Pr(X > s) < e ™[] E(e*) for s > 0 and A > 0. (1.1)
i=1
This is the basic inequality. To estimate Pr(X > s), we need bounds
on E(e*i). Of course, these bounds depend on the probability distri-
bution of X;.

We illustrate the technique with the geometric distribution. (See
Exercise 1.3.5.) We are given a coin that comes up with zero or one,
each with probability 1/2. We flip this coin independently until a one
comes up. Let T be the number of flips. Then 7' is distributed according
to a geometric distribution, Pr(T = k) = (1/2)* for k > 1, and E(T) =
2.

Now assume that we flip the coin until we have obtained a one
exactly n times. We denote the number of flips by 7,,. (Hence, T'=T3.)
This random variable T, is distributed according to a negative binomial
distribution. Our goal is to estimate Pr(T,, > s).

To apply the Chernoff technique, we must express 7, as a sum of
mutually independent random variables. For 1 < i < n, let X; denote

1.5. Tail estimates: Chernoff bounds 21

the number of flips between the (i—1)-st and the i-th ones. (We exclude
the flip that gives the (i — 1)-st one, but we include the flip that gives
the i-th one.) Then, T, = > | X;, each X; is distributed according to a
geometric distribution, and X5, X, ..., X, are mutually independent.

The expected value of T,, follows from the linearity of expectation:

n n

E(T,) =Y E(X;)=)_2=2n.
i=1 i=1
Hence Markov’s inequality gives Pr(7, > (24 t)n) < 2/(2+1t). As we
will see, the Chernoff technique gives a much better upper bound.
Let 0 < A < In2. Then, applying Lemma 1.3.3 with f(z) = e**, we

get
A

B =3 e - Pr(X, = k) = Y (¢}/2)F = ——.
k=1 k=1 2-¢

Now we apply the basic inequality (1.1) with s = (2+¢)n, where ¢ > 0.
We get

2 —er

A n “A(1+)\ "
Pr(T, > (2 + t)n) < ¢ N0n e) (€ .
(T, > (2+1t)n) <e 5o

This inequality holds for any 0 < A < In2. Hence, we now choose A
such that the term on the right-hand side is minimal. It turns out that

this happens for A = In(1 + 3%;). We find that

Pr(T. > (2 PYCTSA N ST
r(”—(+t)n)—(+§> (_2+2t) '

Since 1 — x < e~ * for all x, we have

(1 — ;>1+t < (e—t/(2+2t))1+t — ot
242t -

Moreover, 1 +t/2 < e'/* for t > 3. This proves that for ¢ > 3
Pr(T, > (2 +t)n) < e/*. e /2 = ¢~tn/4,

(Compare this with the bound obtained from Markov’s inequality!)

22 1. Skip Lists: a randomized dictionary

Theorem 1.5.1 Let X, X, ..., X, be mutually independent random
variables and assume that each X; is distributed according to a geomet-
ric distribution. Let T,, = X1 + Xo+ ...+ X,,. Then E(T,) = 2n and
foranyt >3,

Pr(T, > (2 +t)n) < e~ /4,

Corollary 1.5.1 Let ¢ > 1 be a constant, and let n be a positive inte-
ger. Then for any s > 5,

Pr(T[c-lnn] >s-c-lnn) < n(8—2)c/4

1.6 Tail estimates for skip lists

We use the results of the previous section to prove tail estimates for
the size, search time and update time of a skip list.

Consider a skip list for a set S of n elements. Let M denote the
total size of the sets S, S, ..., Sy, and let M’ denote the total number
of nodes of the skip list. Then, M' = M + h. We have seen that
the expected size of the skip list is equal to E(M') = E(M + h) <
2n+3+ [logn]. We are interested in the probability that M’ is at least
equal to (2 + t)n.

Clearly, if M' > (2+t)n, then h > tn/2 or M > (2+1t/2)n. As a
result,

Pr(M' > (2+t)n) < Pr(h >tn/2) + Pr(M > (2+t/2)n).

In Section 1.4, we already estimated the first probability on the
right-hand side. There, we proved that Pr(h > k + 1) < n/2F! for
k > 1. Hence, for ¢ > 1 and n sufficiently large,

_ elnn+21n2—(tn/2)ln2 < e—tn/8.

Pr(h > tn/2) < SnTEE =

It remains to bound Pr(M > (2 4+ t/2)n). As in Section 1.4, let
h(z) be the number of sets S;, 1 < ¢ < h, that contain xz. Then,
the random variables h(z), € S, are mutually independent and each
one is distributed according to a geometric distribution. Since M =
> zes h(z), Theorem 1.5.1 implies that for ¢ > 6,

Pr(M > (2+1t/2)n) < ™8,

1.6. Tail estimates for skip lists 23

This proves that for ¢t > 6,
Pr(M'> (2+t)n) < 2-e 8,

i.e., it is extremely unlikely that the size of a skip list deviates much
from its expected value.

The analysis of the search time is more complicated. Let x € IR
and let ¢ > 1 be a constant. We want to estimate the probability that
searching for z takes more than ¢ - Inn steps. We analyze this cost
by considering the costs up to level [c¢-Inn]| and above level [¢-Inn]
separately.

Let T, denote the number of nodes traversed in the levels 1 + [c -
Inn],2+[c-Inn],...,h, when searching for z. We proved in Section 1.4
that the expected value of T, is bounded by O(n/2[¢™""1) = O(n'~¢1n2).
Then, Markov’s inequality shows that

Pr(T, > 1) < E(T,) = O(n'~¢""?),

Let T, be the number of nodes traversed in the levels 1,2,..., [c-
Inn|, when searching for . In order to apply Theorem 1.5.1, we have
to express 7}, as a sum of mutually independent random variables, each
one distributed according to a geometric distribution. In order to do
this, we give a new construction of our skip list.

Let S;1 =85 = (s11 < 812 < ... < S1n,), Where n; = n. Moreover, let
l1(x) be the number of elements of S; that are at most equal to x.

Let ¢ > 1 and assume we have constructed S; = (s;1 < 830 < ... <
Sin;), With m; = |S;|. Let li(x) = {y € S; : y < z}|. We do the
following:

Stage 1: We flip our coin n; — [;(z) times.
Stage 2: We flip the coin /;(x) times.

Stage 3: If the previous /;(x) flips only produced zeros, then we flip
the coin until we get a one.

Let f; be the total number of flips made during these stages, and denote
the outcomes by Fji, Fio, ..., Fj;,. Note that f; > n;,. We proceed as
follows:

24 1. Skip Lists: a randomized dictionary

1. We define Si—|—1 = {Sij 01 S] <n; A Ej = 1},TL,'+1 = |Sz'+1| and
livi(z) == {y € Sig1 1y <z}

2. We define the random variable X; as the number of flips after
Stage 1 until the first one comes up.

3. We define the random variable C; as the minimum of 1 + /;(x)
and Xj.

The construction stops as soon as an empty set S;;; has been con-
structed. As usual, we denote the number of sets by h. Hence, we now
have sets

D=5, CSh1CSh2C...C5CS =8,

and random variables X, Xo, ..., Xj_1 and C4, Cs, ..., Ch_1.

This construction defines a probability distribution on skip lists,
which is the same as that of our previous two constructions. In fact,
the new construction is the same as our first one, except that Stage 3
and the random variables X; and C;, ¢ > 1, have been added.

Let us go back to the analysis of the search time. For convenience,
we define C; = 0 for all © > h. Recall that T} is the number of nodes
traversed in the levels 1,2,..., [c-Inn]. We have

[elnn]

Tb: Z CZ
=1

That is, we have written 7} as a sum of random variables. However,
the variables C1, Cs, ..., C,_1 are not mutually independent: It is easy
to see that

PI‘(CZ'_l = 3n/4 A C, = 37’L/4) = 0,

but
Pr(C; 1 = 3n/4) - Pr(C; = 3n/4) # 0.

Moreover, the C;’s are not distributed according to a geometric distr-
bution: For j > [;(x), we have Pr(C; = j) = 0.

1.6. Tail estimates for skip lists 25

On the other hand, it is easy to see that C; < X; foralll <: < h—1.
Moreover, the random variables X;, 1 < ¢ < h — 1, are mutually in-
dependent and each one is distributed according to a geometric distri-
bution. For ¢ > h, let X; also denote a random variable distributed
according to a geometric distribution. Since

[clnn] [clnn]

Tb: Z ng Z Xia
=1 =1

we infer

[clnn]
Pr(T,>s-c-Ilnn) <Pr() X;>s-c-Inn).

i=1
Corollary 1.5.1 immediately gives
Pr(Tb >s-c-ln ’rL) < n7(5’2)0/4 < nfsc/S’

forc > 1 and s > 5.

Now we can give the tail estimate for the search time . Let T
denote the total number of nodes traversed when searching for z. Then
T =T,+4+T,. Moreover, if "> 1+5c-Inn then T, > 1 or T, > 5c-Inn.
Hence,

Pr(T'>1+45¢-Inn) < Pr(T, > 1)+ Pr(T}, > 5¢- Inn).

Our results for the two probabilities on the right-hand side imply
that for ¢ > 1,

Taking ¢ = t/(51n2), where t > 5In2 = 3.47, we get

Pr(T > 14tlogn) = O(n' V5 4 t/Bn2)
O(nl—t/5 +n—9t/50).

Note that this estimate only makes sense for ¢ > 5. This completes
the analysis of the search time. Since the update time is proportional
to the search time, similar bounds can be proved for it. We summarize
our result.

26 1. Skip Lists: a randomized dictionary

Theorem 1.6.1 Let S be a set of n real numbers and let SL be a skip
list for S.

1. For eacht > 6, the probability that SL consists of at least (2+1t)n
nodes is at most 2 - e "8,

2. For eacht > 5 and x € IR, the probability that a search in SL for
z visits at least 1 +tlogn nodes is O(n'=*/5 + n=9/%0),

3. There is a constant ¢ such that for any sufficiently large t, the
probability that an insert or delete operation in SL wvisits at least
tlogn nodes is O(n™).

Remark 1.6.1 Consider again the random variables C; and X;. We
have seen that the total number 7" of nodes visited when searching for
x is equal to

h h

i=1 i=1
Therefore, the expected search time E(T') is at most equal to E(X!_, X;).
(See Exercise 1.3.6.) The random variables h, X7, X, ..., X}, are mu-
tually independent. (Convince yourself that this is true.) Therefore,
by Ubungsaufgabe 5.4,

E(T) < B} X;) = E(h) - E(X1) < (3+ [logn]) - 2 = O(logn).

This gives an alternative proof of the logarithmic expected search time.

1.7 Further reading

Skip lists were invented by Pugh in 1989. See [19, 20, 21]. Another
randomized dictionary, based on binary search trees, was introduced in
1989 by Aragon and Seidel [1].

An introduction to probability theory can be found in the book by
Cormen, Leiserson and Rivest [4]. The standard book on this topic
is Feller [7]. A comprehensive overview of randomized algorithms and
data structures, especially in computational geometry, is the book by
Mulmuley [16].

Chapter 2

The Union-Find Problem

In this chapter, we consider the well-known Union-Find Problem:

Given a collection of n disjoint sets Si, Sa, ..., Sp, each containing
one single element, perform a sequence of operations of the following
two types:

Union(A,B,C): Combine the two disjoint sets A and B into a new set
named C.

Find(z): Compute the name of the (unique) set that contains x.

The sequence of operations is given on-line, i.e., the next operation
becomes available if the current one has been processed.

2.1 An optimal amortized solution

The data structure consists of a collection of trees. For each set A in
the current collection of sets, there is a tree with |A| nodes. Each node
in this tree stores one element of A. Moreover, except for the root, each
node contains a pointer to its parent. With the root, we store the name
of the set and its size. See Figure 2.1.

Initialization: At the start of the sequence of operations, there are n
trees. For 1 <7 < n, the i-th tree consists of one node that stores the

element of S;, the name of this set and its size.

27

28 2. The Union-Find Problem

0BG
(6) (4)
() ® ® (19

Figure 2.1: Trees for the sets A = {1,3,5,6,7,10,11,17,21} and B =
{2,4,8,9,12,13, 15,19},

Now we can start with the operations:

Union: To process the operation Union(A, B, C), we are given pointers
to the roots r4 and rp of the trees that represent A and B, respectively.
In these roots, we read the sizes of A and B.

1. If |A] < |B|, then we merge both trees by making r4 a child of
rg: We give r4 a pointer to rg, and with rg we store the name
C of the new set and its size, which is |A| + |B].

2. If |B| < |A|, then we merge both trees by making rp a child of
ra: We give rg a pointer to 74, and with r4 we store the name
C of the new set and its size, which is |A| + | B].

See Figure 2.2 for an example.

Find: To process the operation Find(z), we are given a pointer to the
node u containing x. We perform the following two steps.

2.1. An optimal amortized solution 29

Figure 2.2: The result of Union(A, B, C) on the two trees of Figure 2.1.

1. Starting in node u, we follow parent-pointers until we reach the
root r of u’s tree. In r, we read the name of the set that contains
x.

2. We again traverse the path from u to r. Each node v # r on this
path becomes a child of r: We give v a new parent-pointer to r.

See Figure 2.3. The process of Step 2 is called path-compression. Sub-
sequent Find-operations may profit from this.

In the next sections, we will analyze the complexity of these al-
gorithms. We will show that any sequence of m Union- and Find-
operations can be processed in an amount of time that is almost linear
in m+mn. It turns out that this is optimal in the pointer machine model.

30 2. The Union-Find Problem

Syl

Figure 2.3: The result of Find(19) on the tree of Figure 2.2.

2.2 Ackermann’s function and its inverse

To analyze the algorithms of the previous section, we need to introduce
an extremely slowly growing function. This function is the inverse of
an extremely rapidly growing function, which we define first.

We will use the following notation. If f is a function and 7 is a non-
negative integer, then f() denotes the i-th iterate of f. That is, f(©
is the identity function and for i > 0, ¢V is defined by f0+Y(z) =
f(f9(x)) for all z.

For k£ > 0, we define the function A; : IN — IN recursively, as
follows:

1. For all z € IN, Ay(z) :=2x + 1.
2. For k> 0and z € N, 4;4(z) := A" ().

To get an idea of the behavior of these functions, we consider a few of
them. For z = 0, we have Ay(0) = 1 and Ag.1(0) = A,(CO)(O) = 0 for

2.2. Ackermann’s function and its inverse 31

k> 0. For z =1, we have Ap1(1) = AV (1) = 4,(1) = ... = 4(1) =
2. Let x > 2. Then Ap(z) =z + 1 and

Ai(z) = AP (2) = A(AF V(@) = AF V(@) +1
= AAF @) +1=AF"(z) +2.

Continuing in this way, we get A;(x) = 2z. For k = 2, we get

Ap(x) = AP (2) = A(AF V() = 2- AT (a)
= 2 A4 (AP (@) = 2°- AP ()
which implies

The function A, grows so fast that we only consider A4(2):

A4(2) = AP (2) = A43(45(2)).

Since
A5(2) = AP (2) = Ay(45(2)) = A5(8) = 2048,
we get
A4(2) = A5(2048) > 227
2049

Exercise 2.2.1 Prove that forallk > 0andy >z > 1,
(1) Ak(l') Z x,
(2) Ar(y) > Ag(2).

Now we can define our extremely rapidly growing function A :
IN— IN:

A(k) := Ag(2) for k > 0.

32 2. The Union-Find Problem

This function is called Ackermann’s function. The function we are
actually interested in is its inverse v : IN — IN, defined by

a(n) :=min{k > 0: A(k) > n}.

We claim that for all practical applications, «(n) is at most 4. In-
deed, let n be such that a(n) > 5. Then A(k) < n for 0 < £k < 4.
In particular, n > A(4). We have seen, however, that A(4) = A4(2) is
already a number beyond comprehension.

Exercise 2.2.2 Prove that « is well-defined. That is, prove that for
each n > 0, there is a k£ > 0 such that A(k) > n. Also, prove that
a(n) — oo for n — co.

Remark 2.2.1 In the literature, several different definitions of Acker-
mann’s function appear. All these functions grow at roughly the same
rate.

At first sight, the function « looks rather artificial. In the next sec-
tion, we will prove that any sequence of m Union- and Find-operations,
processed as in Section 2.1, takes O((m + n)a(n)) time. It has been
shown by Tarjan and La Poutré that this is optimal on a pointer ma-
chine. (This is a machine model having no random access.)

In fact, the function « appears in the analysis of many combinato-
rial an computational problems. As an example, consider a set of n line
segments in the plane. See Figure 2.4. These segments induce a parti-
tion of the plane into maximally connected regions, so-called faces. The
complexity of a face is defined as the number of its edges. Note that
one segment can contribute several edges to one face. The maximal
complexity of such a face is bounded by O(n - a(n)). Moreover, there
is a constant ¢ that for each n there are n line segments whose induced
partition contains a face of complexity at least ¢-n - a(n). This shows
that the function « appears in nature. (Well, in Euclidean nature.)

Exercise 2.2.3 Consider the partition of the plane induced by n lines.
Prove that each face in this partition has complexity O(n).

2.3. Analysis of the Union-Find algorithm 33

Figure 2.4: A face of complexity 19.

2.3 Analysis of the Union-Find algorithm

As mentioned in the previous section, we will show that our algorithms
of Section 2.1 process any sequence of m Union- and Find-operations
in O((m + n)a(n)) time. In order to prove this, we need to introduce
the notion of rank.

2.3.1 The rank of a node

Let o be any sequence of m Union- and Find-operations. Assume that
we process this sequence in two ways. Once, we use the algorithms of
Section 2.1. In the other way, we also use these algoritms, but without

34 2. The Union-Find Problem

Step 2 of the Find-algorithm. We say that we process ¢ with and
without path compression, respectively.

Observation 2.3.1 At any moment during the processing of o,

1. the contents of the trees are the same with or without path com-
pression,

2. the roots of the trees are the same with or without path compres-
ston,

3. a node u becomes a descendant of v with path compression if and
only if it does without path compression. With path compression,
however, u may at some later point become a non-descendant of
v.

Let T;(u) denote the subtree rooted a u at time ¢ in the processing
of o without path compression. We define the rank of a node u as

rank(u) := 2 + height (T}, (u)),

where height(7") denotes the height or length of a longest path in 7.

Observation 2.3.2 Without path compression,

1. as long as node u does not have a parent, the height of T;(u) can
still increase,

2. once u becomes a child of another node, the tree rooted at u be-
comes fized,

3. the height of a tree can never decrease.

Lemma 2.3.1 With or without path compression, if u ever becomes a
descendant of v, then

rank(u) < rank(v).

2.3. Analysis of the Union-Find algorithm 35

Proof: We know from Observation 2.3.1 that u becomes a descen-
dant of v with path compression if and only if it does without path
compression.

Assume that u becomes a descendant of v at time ¢. It is clear
that height(7;(u)) < height(7}(v)). (Recall that T3(-) is a tree during
the processing of o without path compression.) By Observation 2.3.2,
we have height(7s(u)) = height(7;(u)) for all s > t. Moreover, by
Observation 2.3.2 height(T;(v)) > height(T3(v)) for all s > ¢. It follows
that height(75(u)) < height(7s(v)) for all s > ¢. The definition of rank
immediately implies that rank(u) < rank(v). N

Lemma 2.3.2 For all nodes u and any time t,

|Tt(u)| > 2height(Tt(u)).

Proof: The proof is by induction on t. For ¢ = 0, the claim is true,
because |Ty(u)| = [{u}| = 1 and height(Ty(u)) = 0. Let ¢ > 0 and
assume the claim holds at time ¢. Consider the (¢ + 1)-st operation of
o. Let u be any node.

If height(T},1(u)) = height(T;(u)), then the claim is true at time
t + 1, because |Ty(u)| < [Tyy1(u)l.

Otherwise, we have height (7}, (u)) > height(7;(u)). Then, the (t+
1)-st operation must be a Union-operation, and during this operation,
a tree T;(v) is merged into T;(u), making v a child of u in Ty 41 (u). Then
height(7;(v)) = height(T341(v)) = height(7;11(u))—1. By the induction
hypothesis, we have |T}(v)| > 2Pei8ht(T:(®)) Moreover, since we always
merge smaller trees into larger ones, |T3(u)| > |T3(v)|. Therefore,

Tera(uw)] = |Ty(u)| + T3 (v)]
> 2|T(v)]
> 21+height((Tt (v))
— 2height(Tt+1 (u)) .
This completes the proof. |

Lemma 2.3.3 For any node u, rank(u) < |logn| + 2.

36 2. The Union-Find Problem

Proof: Since |T,,(u)| < n, we get from Lemma 2.3.2,

n > [T, (u)| > 2beight(Tn(w) — grank()-2

Hence, rank(u) — 2 < logn. Since rank(u) is an integer, it follows that
rank(u) — 2 < |logn]. [

Lemma 2.3.4 For any interger r > 2,
{u : rank(u) = r}| < n/2" 72

Proof: If u and v are nodes such that rank(u) = rank(v), then by
Lemma 2.3.1, T,,(u) and 7,,(v) are disjoint. Moreover, by Lemma
2.3.2, if rank(u) = r, then |T,,(u)) > 2"72. Therefore,

n> > [T

wrank(u)=r

Z Z 27‘72

wrank(u)=r

= |{u:rank(u) =71} - or—2.

[|

Now we define a function § which maps non-root nodes u to integers

d(u). We process the sequence o with path compression. Recall that

rank(u) is an integer that is independent of time. However, the parent
parent(u) of u can change with time, and so can rank(parent(u)).

Exercise 2.3.1 Prove that the value rank(parent(u)) can only increase.
(Hint: use Lemma 2.3.1.)

The function ¢ is defined as follows:
d(u) := max {k > 0 : rank(parent(u)) > Ag(rank(u))}.
Note that the value §(u) depends on time.

Lemma 2.3.5 Let n > 5. For any non-root node u,

1. §(u) is well-defined,

2.3. Analysis of the Union-Find algorithm 37

2. §(u) can never decrease with time,
3. 0<4(u) <a(n)—1.
Proof: We know from Lemma 2.3.1 that
rank(parent(u)) > rank(u) + 1 = Ag(rank(u)).

Hence the set {k > 0 : rank(parent(u)) > Ag(rank(u))} is non-empty.
Let k£ > a(n) and assume that rank(parent(u)) > Ag(rank(u)). By
Lemma 2.3.3, we have rank(parent(u)) < |logn| + 2. Hence

n > |logn| + 2 > rank(parent(u)) > Ay (rank(u)).

Since rank(u) > 2 and since the function A is non-decreasing (see
Exercise 2.2.1), we get

n > Ap(2) = A(k).
But, since Ackermann’s function is also non-decreasing, we have
A0) < A1) < A(2) <...< A(k) <n.

Then the definition of the function « implies that a(n) > k. This is a
contradiction.

We have proved that rank(parent(u)) < Ag(rank(u)) for all £ >
a(n). As a result 6(u) is well-defined and satisfies 0 < 6(u) < a(n) — 1.
Exercise 2.3.1 implies that §(u) can only increase. [

2.3.2 The analysis

We now prove the upper bound on the total time to process the sequence
o of m Union- and Find-operations with path compression.

Each Union-operation takes O(1) time. Hence, the total time for
all Union-operations is bounded by O(m).

It remains to consider the Find-operations. The operation Find(a)
takes time proportional to the length of the path from the node u
containing a to the root v of u’s tree. This path is traversed twice,
once to find v and once for the path compression. We spend constant
time, say one time unit, per node along this path.

Let z be any node on the path from u to v.

38 2. The Union-Find Problem

1. If 2 has an ancestor y such that 6(y) = 0(x), then we charge the
time unit of x to node x itself.

2. If x does not have such an ancestor, then we charge the time unit
of z to the Find-operation.

The total time for the Find-operations is proportional to the total
number of time units that are charged by us. We count the time units
that are charged to nodes and to Find-operations separately.

First consider an operation Find(a). How many time units are
charged to this operation? Let u be the node containing a and let
v be the root of u’s tree. Let x be any node on the path from u to v
and assume we charge the time unit of x to this Find-operation. Then,
for all ancestors y of z, we have d(y) # 6(x). Hence, if 6(x) = k, then
x is the highest node on the path from u to v whose 4(:)-value is k.
That is, there is only one node on this path with §(-)-value k£ whose
time unit is charged to the current Find-operation. By Lemma 2.3.5,
the function ¢ can take a(n) possible values. Hence, at most a(n) time
units are charged to this operation.

This proves that we charge at most m - a(n) time units to all Find-
operations.

Now consider a node x. How many time units are charged to = over
the entire computation? If we charge one time unit to x at time ¢, then
x must have an ancestor y such that §(y) = 6(z). Let k = §(z). Then
at time ¢,

rank(parent(x)) > Ag(rank(z)),

and
rank(parent(y)) > Ag(rank(y)).

Suppose that 7 > 1 and
rank(parent(x)) > Ag) (rank(z)).

Let v be the root of z’s tree at time ¢. Note that y # v. We know
from Lemma 2.3.1 that rank(v) > rank(parent(y)) and rank(y) >
rank(parent(x)). Recall that the function Ay is non-decreasing. (See
Exercise 2.2.1.) It follows that at time ¢,

rank(v) > rank(parent(y))

2.3. Analysis of the Union-Find algorithm 39

(rank(y))
(rank(parent(z)))
(

£ (A (rank(z)))
A,(;H) (rank(z)).
Since v is the parent of z at time ¢ + 1, we have at time ¢t + 1,

rank(parent(zx)) > A,(:H) (rank(z)).

k
k

AVAR VAR,

A
A
A

This shows that if we charge a time unit to x for the i-th time, then
rank(parent(z)) > Ag) (rank(x))

at that moment. (Exercise 2.3.1 is needed to prove this statement.)
Therefore, after we have charged rank(z) time units to x, we have

rank(parent(z)) > A,(crank(w))(rank(x)) = Ajy1(rank(z))

and
o(z) > k+1

at that moment. That is, after rank(z) charges against z, the value of
d(z) increases by at least one. Since d(z) can increase only a(n) — 1
times (it never decreases!), there can be at most rank(z) - a(n) time
units charged to x.

Now we are almost done. By Lemma 2.3.4, there are at most n/2" >
nodes of rank r. Hence, there are at most

n r
' Qr—2) Qr—2
time units charged to nodes of rank r. Summing over all values of r,
we obtain the following upper bound on the total number of time units
that are charged to nodes:

r-a(n) =n-a(n)

o o i 2
> n-an)- T2=n-a(n)zl+. =6n-n-an).
r=2 2r- A

To summarize, we have shown that all Find-operations together take
O((m + n)a(n)) time.

Theorem 2.3.1 The algorithms of Section 2.1 process any sequence
of m Union- and Find-operations, starting with n singleton sets, in
O((m + n)a(n)) time.

40 2. The Union-Find Problem

2.4 The single-operation complexity

Until now, we analyzed the complexity of an entire sequence of Union-
and Find-operations. That is, we were interested in the total running
time for processing the sequence. What about the single-operation
complexity?

Exercise 2.4.1 (1) Prove that the algorithms of Section 2.1 process
each Union-operation in O(1) time and each Find-operation in O(logn)
time.

(2) Prove that the single-operation complexity of the algorithms of
Section 2.1 is Q(logn). That is, give a sequence of Union- and Find-
operations such that at least one of them takes (logn) time.

This exercise shows that the algorithms of Section 2.1 have a single-
operation complexity of ©(logn). In Ubungsaufgabe 5.6, a family of
data structures is analyzed: For each 2 < k < n, there is a data struc-
ture for the Union-Find problem that processes each Union-operation
and each Find-operation in O(k) and O(logn/logk) time, respectively.
Taking k£ = [logn/loglogn]|, we get a single-operation complexity of
O(logn/loglogn). In this section, we prove that we cannot do better:
Any algorithm (from a broad class) for the Union-Find problem has
Q(logn/loglogn) single-operation complexity.

First we define the class of algorithms for which the lower bound
holds. Any algorithm in this class uses linked data structures that can
be viewed as graphs. We assume that these graphs are undirected.
Hence, edges can be traversed in both directions. (A lower bound for
undirected graphs implies the same lower bound for directed graphs.
In an implementation, we have directed graphs, because edges are im-
plemented as pointers.) The algorithm and its data structure should
satisfy the following constraints:

1. To each element and to each set in the current partition, exactly
one vertex is associated that contains this element and the name
of this set, respectively.

2. The data structure consists of graphs, such that each graph cor-
responds to exactly one set in the current partition. Each such
graph does not contain any edges to vertices outside the graph.

2.4. The single-operation complexity 41

3. To process the operation Find(z), the algorithm obtains the ver-
tex containing x. Starting in this vertex, the algorithm follows
paths until it reaches the vertex that stores the name of the cur-
rent set containing .

4. To process a Union- and Find-operation, the algorithm may insert
or delete any edges, as long as Constraint 2 is satisfied.

Exercise 2.4.2 Convince yourself that the algorithms of Section 2.1
and Ubungsaufgabe 5.6 can be implemented within this class.

In the rest of this section, we will prove the following result.

Theorem 2.4.1 Let A be any algorithm from the given class and let
k be a positive integer. If A processes each Union-operation in O(k)
time, then the single-operation complexity of a Find-operation is

Q logn
logk + loglogn |

Corollary 2.4.1 Any algorithm from the given class has Q(logn/loglogn)
single operation complexity.

Exercise 2.4.3 Prove Corollary 2.4.1.

How do we prove Theorem 2.4.17 Let A be any Union-Find algo-
rithm from our class that processes each Union-operation in O(k) time.
Let Sy, Ss, ..., S, be a collection of n disjoint sets, each containing one
single element. We will define a sequence of Union-operations on this
collection, followed by one Find-operation. This Find-operation will
take Q(logn/(log k + loglogn)) time.

How can we guarantee a lower bound on the time for a Find-
operation? Let A be a set of size a in the current partition, and consider
its graph G in the data structure. If each vertex of G' has degree at
most d, then there is an element x € A, such that the shortest path
from the vertex containing x to the vertex containing the name of A
has length Q(loga/logd). (We will prove that later.) That is, the
operation Find(z) takes Q(loga/logd) time. Hence, to prove a good
lower bound, we have to construct a set A whose values of a and d are
“large” and “small”, respectively.

42 2. The Union-Find Problem

Observation 2.4.1 During each Union-operation, algorithm A can
insert at most ¢ - k edges into the data structure, for some constant
c. We assume w.l.0.g. that c = 1.

Now we can define the sequence of Union-operations that “produce”
an expensive Find-operation. First, we introduce some terminology.
The sequence consists of stages:

1. All Union-operations of stage i — 1 are processed before the first
one of stage 1.

2. Each Union-operation of stage ¢ combines two disjoint sets of size
2:=1 into a set of size 2°.

If A is a set that is constructed during stage i, then G;(A) denotes the
graph in the data structure corresponding to A immediately after all
Union-operations of stage ¢ have been processed.

Initially there are n sets Sy, Ss, ..., S, of size one. For each such
set S;, let Go(S;) be the graph corresponding to this set. Note that
G (S;) consists of two vertices, one containing the name of S; and one
containing the element of it. We say that S, S, ..., S, have been
constructed during stage 0.

Let ¢+ > 1 and let

X;—1:={A: A has been constructed during
stage ¢+ — 1 and all vertices in
G; 1(A) have degree at most 1 +
(1 —1)klogn}.

Note that Xy = {S1, So, ..., Sn}-

Stage i: As long as X;_; contains at least two sets, take and remove
two sets A and B from X;_; and process the operation Union(A, B, C).

Lemma 2.4.1 Let m = [(logn)/4]|. We can perform at least m stages,
and X,, # 0.

Lemma 2.4.2 Let G be any graph with a vertices, and let d > 2.
Assume that each vertex of G has degree at most d. Let r be any vertex
of G. Then there is a verter u in G such that any path from u to r has
length at least |loga/logd].

2.4. The single-operation complexity 43

Using these lemmas (whose proofs are given below), we can prove
Theorem 2.4.1: Let A € X,,, and consider the graph G,,(A). Let r be
the vertex of this graph that contains the name of A. This graph has
at least n'/* vertices, and each of them has degree at most 1+mk logn.
(By the definition of our class of algorithms, any path that starts in
a vertex of G,,(A) lies completely within this graph!) Therefore, by
Lemma 2.4.2, G,,(A) contains a vertex u such that any path from u to
r has length at least

logn'/* _Q logn
log(1+mklogn)| \logk +loglogn /"

If = is the element that is stored in u, then the operation Find(z) takes
Q(logn/(logk + loglogn)) time.
It remains to prove Lemmas 2.4.1 and 2.4.2.

Proof of Lemma 2.4.1: Since |Xy| = n > 2, we can perform the
first stage. Let ¢ > 1 and assume we have performed the first ¢ stages.
(Hence, X;_; contains at least two sets.) Since each set in X;_; has size
2071 we have |X; ;| < n/2°!. Hence, at most n/2¢ Union-operations
have been processed during stage 7. In particular, at most kn/2° edges
have been inserted into the data structure during this stage.

Consider an operation Union(A4, B,C) of stage i. Since A,B €
X;_1, each vertex in G;_1(A) and G;_1(B) has degree at most 1+ (i —
1)klogn. Hence, if C ¢ X;, at least klogn edges have been inserted
into G;(C) during stage 7. This proves that among all sets that have
been constructed during stage ¢, at most

kn/2 n

klogn 2ilogn
do not belong to X;. Let Y; be the collection of all sets that have been
constructed during stage i. Then |X; ;| = 2|Y;| or |X; 4| = 1 + 2|Y}],
depending on whether |X;_;| is even or odd, respectively. Hence,

| X1 —1
2

<Yl =X + Y\ Xg| < |X; ~ ;
< Y = X0+ 95\ X6 < 16+

which rewrites to
1 n
2 2ilogn’

1
| X > §\Xz>1| -

44 2. The Union-Find Problem

Since | Xy| = n > 2, we can perform stage 1 and, hence, X; exists. In
fact,

n 1 n
Xi|> 5 -5 — >
2 2 2logn
hence, we can perform stage 2 and obtain a set X, of size
n 1 n 1 n n 3 2n
X3 >-—-=-=-———-=- =—— - —

4 4 4logn 2 4logn 4 4 4logn

Continuing, we can perform stage i provided |X;_ ;| > 2. In this case,
we obtain a set X; of size

i .
‘Xi|2£_2'1_'m .
2t 2! 2'logn

For i = m = [(logn)/4], we get

| Xom| > _n __y_ 1+(lgn)/d =
ml = 91+(logn)/4 2(logn)/4 logn
= l7’1,3/4 — 1 - n3/4
4 logn’

which is at least n3/4/8 > 2 for n sufficiently large. Hence, we can
perform m stages. Since X, contains at least two sets, it is non-empty.
|

Proof of Lemma 2.4.2: Let [= |loga/logd|. Assume the lemma is
false. Then for any vertex u, there is a path from u to r of length less
than [. We can as well consider all paths that start in 7. Taking paths
of length 7, we can reach at most d’ vertices of G. Hence, all paths of
length less than [that start in 7 can reach at most

-1 dl_l
(- dl
gd T T <

vertices of G. On the other hand, by our assumption, these paths visit
all vertices of G. Hence, d' > a, which implies [> loga/logd. This is
a contradiction. []

2.5. Further reading 45

Remark 2.4.1 The lower bound of Theorem 2.4.1 coincides with the
upper bound of Ubungsaufgabe 5.6 if k = Q((logn)) for some ¢ > 0.
For smaller values of k, there is still a gap between the upper and
lower bounds. For example, for £ = loglogn, the upper bound is
O(logn/logloglogn) and the lower bound is Q(logn/loglogn). Clos-
ing this gap is an open problem.

2.5 Further reading

The Union-Find algorithm of Section 2.1 that uses path compression
and merging smaller into larger, is due to Mcllroy and Morris. They
used this algorithm to construct minimum spanning trees. Theorem 2.3.1
was first proved by Tarjan [26]. The proof given here is much simpler
than Tarjan’s original proof. It appears in Kozen [11].

Lower bounds for the Union-Find problem have been proved by Tar-
jan [27] and La Poutré [12]. Section 2.4 follows Blum [3]. Ubungsaufgabe 5.6
is from Smid [24].

Good references are Tarjan and van Leeuwen [28] and the survey
paper by Galil and Italiano [8].

46

2. The Union-Find Problem

Chapter 3

Range Trees and the
Post-Office Problem

This chapter discusses a problem from computational geometry:

Given a set S of n points in IR” preprocess them into a data struc-
ture such that for any query point p € IR”, we can efficiently find a
point p* € S that is nearest to p, i.e.,

d(p, p*) = min{d(p, q) : ¢ € S}.

Here, d(p, q) denotes the Euclidean distance between p and g:

D 1/2
d(p,q) = <Z(pz - %)2) :
i=1

This problem is known as the nearest neighbor searching problem or
the post-office problem: Think of S as a set of post-offices. Assume you
are walking around. Suddenly, you find a letter in your pocket which
you want to send. At that moment, you want to know the post-office
that is closest to your current position.

In the planar case (D = 2), the problem can be solved optimally, i.e.,
with O(logn) search time and using O(n) space, by means of Voronoi
diagrams and point location. In higher dimensions, however, the prob-
lem gets difficult. At this moment, the best results either use a large
amount of space (roughly n°/2) or have a very high search time (roughly
n'=F D) where f(D) goes to zero for increasing D).

47

48 3. Range Trees and the Post-Office Problem

In the dynamic version of the problem, we want to maintain the data
structure under insertions and deletions of points. At this moment, it
is not known if the dynamic planar post-office problem can be solved
with polylogarithmic search time, polylogarithmic update time, using
O(n(logn)°M) space.

In view of these negative results, it is natural to consider weaker
versions of the post-office problem. What happens to the complexity
of the problem if we replace the Euclidean metric by a simpler one?
Define the L, -distance between the points p and g by

doo(p,) = max{|p; — ¢;| : 1 <@ < D}.

(The Euclidean distance is also called Ly-distance.) In the Lu,-post-
office problem, we want to find a point p* € S that is closest to the
query point p w.r.t. the L -metric, i.e.,

doo (P, p*°) = min{d(p, q) : ¢ € S}.

We can also consider the following approximate Lo-post-office prob-
lem: Let € > 0 be a fixed constant. Instead of searching for the exact
Euclidean neighbor p* of p, we are satisfied with a (1 + €)-approzimate
neighbor of p, i.e., a point ¢ € S such that

da(p,q) < (1 +¢) - da(p,p*).

In this chapter, we will see that both these problems can be solved
efficiently, i.e., with polylogarithmic search and update times, using
O(n(logn)°M) space.

The data structure used is the range tree, one of the oldest data
structures in computational geometry. Range trees were invented for
solving the so-called orthogonal range searching problem. (See Ubungsaufgaben 5.7
and 5.8.) We show that they can also be used to solve the L.,-post-
office problem.

In the rest of this chapter, we restrict ourselves to the planar case.
For the generalization to higher dimensions, the reader is referred to
the literature.

3.1. From the L..-problem to the approximate Lo-problem 49

3.1 From the exact L. -problem to the ap-
proximate Lo-problem

Let S be a set of n points in the plane. In this section, we show that
any solution for the L..-post-office problem can be transformed into a
solution for the approximate Lo-post-office problem.

Let p € IR? be a query point, and let p* and p™ be the Euclidean
neighbor and L.-neighbor of p, respectively. As a first try let us take
p> as an approximate Lo-neighbor of p. How large is the error? That
is, what is the largest value the quotient ds(p, p*>°)/da(p, p*) can take?

Exercise 3.1.1 Prove that in the L,-metric, a circle with radius one
centered at p is an axes-parallel square with sides of length two centered
at p.

We can visualize the process of finding p* and p*> as follows. To
find p*, we grow a circle centered at p until its boundary hits at a point
of S. This point is the Euclidean neighbor p* of p. Similarly, to find
p>°, we grow an L.-circle, which is an axes-parallel square, centered at
p until its boundary hits at a point. This point is the L..-neighbor p™
of p.

This observation allows us to bound the quotient dy(p, p™°)/ds(p, p*).
Let § = dw(p,p*) and consider the axes-parallel square C with sides
of length 20 centered at p. See Figure 3.1. Note that p* lies on the
boundary of C. Since p* is the L.,-neighbor of p, it must lie inside or
on the boundary of C. Hence, dy(p, p®) < v/2 - §, and equality occurs
if and only if p* coincides with one of the corners of C'. Similarly,
do(p,p*) > 6, and equality occurs if and only if p* coincides with the
midpoint of one of the four sides of C'. It follows that

do(p, ™) < V28 < V2 do(p,p").

That is, p® is a v/2-approximate Lo-neighbor of p. The error is
maximal if and only if p* is the midpoint of a side and p™ is a corner
of C.

Now consider the circle with center p and radius dy(p, p*). The point
p>° lies outside or on the boundary of this circle. Hence, p*™ must lie
in the shaded region of Figure 3.1.

50 3. Range Trees and the Post-Office Problem

Figure 3.1: p* lies on the boundary of the square centered at p having
sides of length 20, where 6 = d(p,p*). The circle is centered at p and
has radius do(p, p*). The Lo,-neighbor p* lies in the shaded region.

We see from Figure 3.1 that the upper bound on the error depends
on the angle between the line segment pp* and the X-axis: The error
can be maximal if and only if this angle is zero. On the other hand, if
the angle is close to 7/4, the shaded region in Figure 3.1 is very small,
and the quotient do(p, p™°)/da(p, p*) is close to one. In fact, if the angle
is exactly 7/4, then p* and p*> are equal.

Exercise 3.1.2 Let o be the angle between the segment pp* and the
positive X-axis. Assume that 0 < o < 7/2. Prove that: dy(p, p™) <
V2dy(p, p*) cos a if o < m/4, and dy(p, p™®) < V2dy(p, p*)sina if o >
/4.

Here is the conclusion: The L-neighbor p* is a good approxima-
tion for the Ly-neighbor p* if the angle between pp* and the positive
X-axis is close to m/4. Of course, in general, this angle will not be
close to 7/4. Nevertheless, we can use this approach to find a (1 + ¢)-
approximate Ls-neighbor of p. The idea is to maintain a number of

3.1. From the L.,-problem to the approximate Ly-problem 51

different coordinate systems such that there is always at least one sys-
tem in which the angle between pp* and its X-axis is close to /4.

The details are as follows. We assume that the (XY)-coordinate
system is given. Let 0 < ¢ < 7w/4. For 0 < i < 27/e, let X; and
Y; be the directed lines that make angles of 7 - ¢ with the positive
X- and Y-axis, respectively. Consider the (X;Y;)-coordinate systems,
0<1i<2nm/e.

Lemma 3.1.1 For each point q in the plane, there is an index i, such
that the angle between the line segment from the origin to q and the
positive X;-azis lies in between w/4 and 7 /4 + €.

Proof: Let ¢'be the line segment from the origin to ¢, and let v be the
angle between ¢ and the positive X-axis. First assume that 7/4 < v <
2m. Let i = |(y — w/4)/e| and let 7; be the angle between ¢ and the
positive X;-axis. Then 7, =v—i-cand 7/4 <, < 7/4 +¢.

If 0 < < /4, then we can take i = [(77/4 + 7)/e]. In this case,
v =2m —i-e+yand again 7/4 < ; < 7w/4d +¢. |

For 0 < i < 27/e, let S; denote the set of points in S with coor-
dinates in the (X;Y;)-coordinate system. Let p be a query point and
let ¢ be an L..-neighbor of p in S;, 0 < i < 2m/e. Let g be the
L-neighbor having minimal L,-distance to p.

Lemma 3.1.2 q is a (1 + ¢)-approzimate Ly-neighbor of p.

Proof: First note that the L.-distance depends on the coordinate
system. Each (X;Y;)-system has its own L.-distance function. The
Lo-distance, however, is the same in all these systems. Let p* be the
exact Lo-neighbor of p. We have to show that ds(p, ¢) < (1+¢)-dz2(p, p*).

By Lemma 3.1.1, there is an index 7 such that the angle v; between
the line segment from the origin to the point p* — p and the positive
X;-axis satisfies 7/4 < 7; < w/4+¢ < w/2. Note that 7; is also the
angle between the line segment from p to p* and the positive X;-axis.
Exercise 3.1.2 implies that

ds(p, V) V2dy(p, p*) sin;
V2dy(p, p*) sin(m /4 + €)

(cose + sine)ds(p, p*),

<
<

52 3. Range Trees and the Post-Office Problem

where we used the formula sin(« 4 3) = sin «cos 8 + cos asin 5. Since
0 <e<m/4, we have 0 < cose <1 and 0 < sine < e. Therefore,

Now consider point ¢q. This point has minimal Lo-distance to p
among all L.-neighbors ¢), 0 < j < 27/e. In particular, dy(p, q) <
da(p,). This completes the proof. [|

Remark 3.1.1 We showed that ds(p, q)/da2(p,p*) < 1+ €. By a more
careful analysis, it can be shown that in fact da(p, q)/d2(p, p*) < V2 cos(m/4—
£/2). See also Ubungsaufgabe 5.9.

We have proved that any solution for the exact L,-post-office prob-
lem can be used to solve the approximate Lo-post-office problem:

Theorem 3.1.1 Let e > 0 be a constant. The complexity of the planar
(1 + €)-approzimate Lo-post-office problem is at most O(1/¢) times the
complexity of the planar exact Lo -post-office problem.

In Section 3.3, we will see how the L.,-post-office problem can be
solved using range trees. This data structure is introduced in the next
section.

3.2 Range trees

Range trees are based on balanced binary search trees. We use binary
trees as leaf search trees: Let V be a subset of R U { — oo, 00} of size
n. We assume that V' contains —oo and oco. A leaf search tree for V is
a binary tree storing the elements of V' in its leaves, sorted from left to
right. Internal nodes contain information to guide searches. That is,
each internal node u contains the values

1. maxl(u), which is the maximal value stored in the left subtree of
u, and

2. minr(u), which is the minimal value stored in the right subtree of
u.

3.2. Range trees 93

Exercise 3.2.1 (1) Prove that any leaf search tree for V' consists of
2n — 1 nodes.

(2) Let € IR. Give an algorithm that finds the smallest element of
V that is at least equal to x. Similarly, show how to find the largest
element of V' that is at most equal to x.

Clearly, the best performance is obtained if the binary tree is per-
fectly balanced, i.e., for each internal node u, the number of leaves in
the left and right subtrees of u differ by at most one. It is easy to see
that such a tree has height O(logn).

Exercise 3.2.2 Give two algorithms, one bottom-up and the other
top-down, to construct a perfectly balanced leaf search tree for V in
O(nlogn) time. If the elements of V are sorted already, the running
time should be O(n).

Exercise 3.2.3 Give an exact formula (a function of n) for the height
of a perfectly balanced leaf search tree for V.

Now we can define the range tree. Let S be a set of n points in the
plane.

Assumption 3.2.1 All xz-coordinates of the points of S are distinct,
and the same is true for the y-coordinates of the points of S.

Hence, no two points of S lie on a horizontal or vertical line. This
assumption is made to simplify the algorithm. Later, we shall see how
it can be removed.

Definition 3.2.1 A range tree for S consists of the following:

1. An z-tree (also called main tree), which is a perfectly balanced
leaf search tree for the z-coordinates of the points of S and the
artificial z-coordinates —oo and oo.

2. Each node v of this tree contains a pointer to a y-tree (also called
associated or secondary structure): Let S, be the set of points of
S whose z-coordinates are stored in the subtree of v. The y-tree
of v is a perfectly balanced leaf search tree for the y-coordinates
of the points of S, and the artificial y-coordinates —oo and oc.

54 3. Range Trees and the Post-Office Problem

See Figure 3.2 for a pictorial representation. Note that S, is a subset
of S. In particular, if v is the rightmost leaf of the z-tree, then S, = 0,
although v stores the artificial z-coordinate oco.

Of course, in an implementation, we store with each z- and y-
coordinate (a pointer to) the corresponding point of S. Consider a node
v of the z-tree. Then we can search in the set S, for an z-coordinate
as well as for a y-coordinate. This makes range trees useful for solving
geometric problems.

: QT
I

— S5 —

Figure 3.2: A range tree. The subtree of v stores the x-coordinates
of the points of S, in sorted order its leaves. The y-tree of v stores
the y-coordinates of these points, and the values —oo and 0o, in sorted
order in its leaves.

Let p be a point in the plane. Often we want to search (e.g. with
a y-coordinate or a range of y-coordinates) in the set of all points of S
that are on or to the right of the vertical line through p. Using the z-
tree, we can decompose this set into O(logn) pairwise disjoint subsets,
as follows. Search in the z-tree for the smallest z-coordinate that is
at least equal to the z-coordinate of p. During this search, each time
we move from a node v to its left son, add the right son of v to an
initially empty set M. The leaf in which the search ends is also added
to M. See Figures 3.3 and 3.4. In Lemma 3.2.1 below, we will show

3.2. Range trees 95

procedure decompose(p) (* p = (pg, py) is a point in the plane x)
begin
M = 0;
v := root of the z-tree;
while v # leaf
do if maxl(v) < p,
then v := right son of v
else M := M U {right son of v};
v := left son of v
fi
od;
M= MU {v}
end

Figure 3.3: Partitioning all points of S that are to the right of p into
O(logn) subsets.

that {¢ € S : ¢z > pr} = Uuerr Su- Hence, we indeed decomposed the
set of all points of S that are to the right of p into O(logn) subsets. If
we want to search in this set, then we can search in each set S, u € M,
separately.

Lemma 3.2.1 Consider the set M of nodes of the x-tree that are com-
puted by a call to the procedure decompose (p). Then

{qESi%sz}= U Sua

ueEM

and the right-hand side is a union of pairwise disjoint sets. The set M
consists of O(logn) nodes.

Proof: Let v be the leaf in which the procedure decompose(p) ends,
and let be the point whose z-coordinate is stored in v. (We assume
that v is not the rightmost leaf of the x-tree. In that case, the lemma is
true.) Then r, > p,. All leaves in the subtree of any node u € M \ {v}

56 3. Range Trees and the Post-Office Problem

U4

V3

V2

U1

Figure 3.4: The search for p, ends in the leaf v;. We have M =
{1)1,1)2,1)3,1)4}.

3.2. Range trees o7

are to the right of v. Hence, the z-coordinates stored in these leaves
are at least equal to p,. This proves that Uycayr Su C {g € S : ¢x > ps}-

To prove the converse, let ¢ be a point of S such that ¢, > p,. Let
[be the leaf that contains g,. Then [= v, or [is to the right of v. If
I = v, then ¢ € Uyepr Su, because v € M. Assume [# v. Let w be
the lowest common ancestor of v and [. Then v is in the left subtree of
w, [is in the right subtree of w, w is on the search path to p,, and in
w this path moves to the left son of w. Therefore, the right son w’ of
w is contained in M. Since ¢, is stored in the subtree of w’, we have
qc UueM Su

Next we prove that the sets S,, u € M, are pairwise disjoint. Let
u and v’ be distinct nodes of M. First note that u is not contained in
the subtree of u', and u' is not contained in the subtree of u. Let w be
the lowest common ancestor of u and u'. Then, u and u' are contained
in different subtrees of w. This proves that S, N S, = 0.

Since each node on the search path “delivers” at most one node to

the set M, it follows that this set has size O(logn). n
Let us analyze the size of a range tree for a set S of n points.
Consider a fixed level of the z-tree, and let uq, us, ..., ux be the nodes

on this level. For 1 < i < k, the y-tree of u; has size O(|S,,|). Note
that the sets S,,, 1 < i < k, partition S. Therefore, % | |S,.| = n.
It follows that the y-trees of the nodes wq, us, ..., ur together have
size O(n). This holds for any level of the z-tree. Hence, all y-trees
together have size ©(nlogn). Since the z-tree itself has size O(n), we
have proved:

Lemma 3.2.2 A range tree for a set of n points in the plane has size

©(nlogn).

To finish this section, we consider the problem of building a range
tree. By Lemma 3.2.2, this takes ©2(nlogn) time. Here is an algorithm
that builds the data structure in O(nlogn) time.

1. Build the z-tree.

2. Do the following for each leaf u of the z-tree: Let p be the point
whose z-coordinate is stored in u. Give u a pointer to a y-tree
storing the set {—o0, py, co}. (The y-trees of the leftmost and
rightmost leaves store the sets {—o0, co}.)

58 3. Range Trees and the Post-Office Problem

3. Build the y-trees of the internal nodes in a bottom-up fashion:
If u is an internal node with sons v and w, such that the y-trees
of v and w have been built already, then we copy and merge
these y-trees. (The values —oo and oo are stored only once in the
resulting tree.) The tree obtained in this way is the y-tree of u.

Exercise 3.2.4 Prove that this algorithm builds a range tree in O(nlogn)
time.

We now explain how to remove Assumption 3.2.1. In the z-tree, we
store the points using the lexicographical ordering instead of the or-
dering by x-coordinates. The search information stored in the internal
nodes become points instead of z-coordinates.

Similarly, in a y-tree, we store points using the “reversed” lexi-
cographical ordering (a y-coordinate has higher priority than an z-
coordinate). The algorithms are only slightly changed. In the proce-
dure decompose(p), we search for the leftmost leaf that stores a point
whose z-coordinate is at least equal to p,.

3.3 Solving the L,-post-office problem

Recall the problem we want to solve: Preprocess a set S of n planar
points in a data structure, such that for any query point p € IR?, we
can find its L..-neighbor, i.e., a point p*™ € S such that

doo (p, p™°) = min{d(p,) : ¢ € S}

We will show that this problem can be solved using range trees.

Consider a query point p. Let p' and p" be the L, -neighbors of p
in the sets {¢ € S : ¢, < p,} and {qg € S : ¢ > p.}, respectively.
We call these points the left-L,.-neighbor and right-L-neighbor of p,
respectively. Clearly, one of them is the L.,-neighbor of p.

We show how to find the right- L,.-neighbor p" of p. (This point may
not be unique. Actually, we should talk about a right-L.-neighbor.)
The algorithm consists of three stages. Here is a brief overview.

Stage 1: Call the procedure decompose(p) of the previous section.
This procedure computes a set M of nodes such that {g € S :

3.3. Solving the L, -post-office problem 59

gz > Pz} = Uyem Su- Number these nodes vy, vs, ..., vy, where
m = |M| and wv; is closer to the root than v;_1, 2 < i < m. (See
Figure 3.4.)

Stage 2: We know that the right-L-neighbor p" is contained in the
union Uyear Sy In the second stage, we want to search for a node
v € M such that S, contains p”. This turns out to be difficult.
We can, however, reach the following somewhat weaker goal: We
compute a node v € M and a small set C' C S such that C'U S,
contains p".

Stage 3: given node v and set C', we walk down the subtree of v.
During this walk, we maintain the invariant that C' U S, contains
p". If vis a leaf, then the set C' U S, is small enough to look at
all its points and take the one having minimal L..-distance to p.
This point is the right-L,-neighbor p" of p.

We now discuss Stages 2 and 3 in more detail.

3.3.1 Stage 2
Run the following algorithm.

C :=0; i :=1; stop := false;
while ¢ < m and stop = false
do search in the y-tree of v; for the largest resp. smallest y-coordinate
that is less than resp. at least equal to p,;
let @ and b be the points that correspond to these y-coordinates;
r := the point stored in the rightmost leaf of the subtree of v;;
0:=1y— Du;
R := the rectangle [p, : r;] X [py — 0 : py + 0];
if a and b outside R
then C := C U {qa,b};
1:=14+1
else v := v;;
stop = true
fi
od

60 3. Range Trees and the Post-Office Problem

In words, this algorithm does the following. It visits the nodes of
M from left to right (or, equivalently, from bottom to top). Consider
one iteration. (See Figure 3.5.) The algorithm searches with p, in the
y-tree of v;. This gives two points ¢ and b of S,, between (w.r.t. the
vertical direction) which p lies. The vertical lines through p and the
point 7 define a slab whose width is denoted by §. Note that all points
of S,, lie in or on the boundary of this slab. Consider the rectangle R.
If a and b are both outside R, then we add these points to C and go to
the next iteration. Otherwise, if a or b is in R or on its boundary, then
the while-loop stops.

Figure 3.5: Illustrating one iteration of Stage 2.

Remark 3.3.1 Since the z- and y-trees also store values —oo and oo,
we have to be careful. If the rightmost leaf in the subtree of v; stores
the value oo, then there is no point r corresponding to it. In this case,
the value of 9, which is r, — p, = 00 — p, according to the algorithm,

—)—

3.3. Solving the L, -post-office problem 61

is set to co. As a result, the rectangle R is the halfplane to the right
of the vertical line through p.

Similarly, the y-coordinate b, may be oo. Then, there is no point
b corresponding to this value. In this case, we use an artificial point b
which is outside rectangle R if r, is finite, and inside R if r, = co. A
y-coordinate a, = —oo0 is treated in a similar way.

We consider the variable stop at the end of the while-loop and dis-
tinguish the two cases where this variable has value true or false.

Lemma 3.3.1 If the variable stop has value false after the while-loop
has been completed, then the set C' contains a right-Lo,-neighbor of p.

Proof: First note that the while-loop makes m iterations. Let p" be
a right-L.,-neighbor of p, and let ¢ be the index such that p" € S,,.
Consider the i-th iteration. The points a and b selected during this
iteration are outside R.

Let ¢ be any point of S,,. Then p, < ¢, < 7r; and, hence, 0 <
Qe — Pz < 1z — pr = 6. On the other hand, since ¢ is outside R, we
have |g, — py| > 6. It follows that du(p, ¢) = |¢y, — py|. That is, for all
points of S,,, the Ly-distance to p is the same as the distance to p in
the y-direction.

Assume w.l.o.g. that duo(p,a) < dx(p, b). Then

doo(p7 CL) = |py - ay| S |py _p;| = doo(papT)

On the other hand, since p" is a right-L.-neighbor of p, we have
doo(P, ") < doo(p, a). This proves that du(p, a) = doo(p, P").

Hence, a is also a right-L.,-neighbor of p. Since a is added to C
during the ¢-th iteration, the proof is completed. |

If the variable stop has value false at the end of the while-loop, then
we can easily complete the algorithm: We consider all points of C' and
take the one having minimal L..-distance to p. By Lemma 3.3.1, this
point is a right-L-neighbor of p.

Lemma 3.3.2 If the variable stop has value trueafter the while-loop
has been completed, then the set C' U S, contains a right-Ls.-neighbor

of p.

62 3. Range Trees and the Post-Office Problem

Proof: Let p" be a right-L-neighbor of p, and let ¢ be the index such
that p" € S,,. Let j be the integer such that during the j-th iteration,
the variable stop is set to the value true. Note that v = v;.

First assume that 7 < j. During the i-th iteration, the points a and
b that are selected in the y-tree of v; are outside the rectangle R. In
exactly the same way as in the proof of Lemma 3.3.1, it can be shown
that a or b is also a right-L.-neighbor of p. Since both points are added
to C' during the i-th iteration, the claim follows.

Next assume that ¢ = j. Then the set S,, hence also the set CUS,,
contains a right-L.,-neighbor of p.

It remains to consider the case where ¢ > j. Look what happens
during the j-th iteration. Let a and b be the points in the y-tree of v;
that are selected during this iteration. At least one of them is contained
in the rectangle R. Assume w.l.0.g. that a lies in R. Then dy(p,a) < 4,
where ¢ is the z-distance between p and the rightmost point 7 in the
subtree of v;.

Since the z-coordinates of all points in S,; are at most equal to the
x-coordinates of the point in S,,, we have p], > r,. This implies that

deo(D,D") > Pl — Pz > Tg — Pg = 0.

We have shown that d(p, a) < doo(p,p”). On the other hand, since p"
is a right-Le-neighbor of p, we have dy(p,p") < doo(p, a). This proves
that doo(p,p") = doo(p,a) and, hence, a is also a right-L.-neighbor of
p. Since a € Sy, = Sy, the proof of the lemma is completed. [|

This concludes Stage 2. To summarize, if the variable stop has
value false after the while-loop has been completed, then we find a
right- Lo.-neighbor of p by looking at all point of C. In this case, the
algorithm terminates. Otherwise, we know that the set C'U.S, contains
a right-L.-neighbor of p. In this case, we proceed to the next stage.

3.3.2 Stage 3
Run the following algorithm.

while v is not a leaf
do w := left son of v;

3.3. Solving the L, -post-office problem 63

search in the y-tree of w for the largest resp. smallest y-coordinate
that is less than resp. at least equal to p,;
let @ and b be the points that correspond to these y-coordinates;
r := the point stored in the rightmost leaf of the subtree of w;
0:=1ry— Dx;
R := the rectangle [p, : r;] X [py — 0 : py + 0];
if a and b outside R
then C := C U {a,b};
v := right son of v
else v:=w
fi
od

Lemma 3.3.3 During the while-loop, the set C U S, contains a right-
L,-neighbor of p.

Exercise 3.3.1 Prove Lemma 3.3.3.

We complete Stage 3 as follows: By looking at all points of C'U S,,
we take the one having minimal L,-distance to p. By Lemma 3.3.3,
this point is a right-L..-neighbor of p.

This concludes the algorithm for computing a right- L,,-neighbor p”
of p. In a completely symmetric way, we compute a left-L,,-neighbor
p' of p. Then, if do(p,p') < doo(p,p"), p' is an Ly-neighbor of p. If
doo(p, P') > doo(p, p"), then p" is an L,-neighbor of p.

We analyze the running time of the query algorithm. By Lemma
3.2.1, Stage 1 takes O(logn) time. Consider the while-loop of Stage
2. Each iteration takes O(logn) time. Since m = O(logn), there are
O(logn) iterations. Therefore, the entire while-loop takes O((logn)?)
time. If the variable stop has the value false after this loop, then we
need O(|C]) time to find a right-L.,-neighbor of p. It is clear that
|C| < 2|M|. Hence, |C| = O(logn). This proves that Stage 2 takes
O((logn)?) time.

In the while-loop of Stage 3, we walk down a path in the subtree of
v. In each node on this path, we spend O(logn) time. Since this path
has length O(logn), the entire loop takes O((logn)?) time. Afterwards,
we need O(|C'U S,]|) time to find a right-L.,-neighbor. Since v is a leaf

64 3. Range Trees and the Post-Office Problem

at this moment, we have |S,| = 1. The size of C' is bounded by O(logn).
Therefore, this final step takes O(logn) time.

We have shown that the algorithm finds a right-L.,-neighbor of p
in O((logn)?) time. In the same amount of time a left-L,,-neighbor
is found. Given these two points, the L, -neighbor of p is obtained in
O(1) time.

We summarize our result.

Theorem 3.3.1 Let S be a set of n points in the plane. Using a range
tree, which has size O(nlogn), we can solve the Lu,-post-office-problem
with a query time of O((logn)?).

Applying Theorem 3.1.1 gives:

Corollary 3.3.1 Let ¢ > 0 be a constant, and let S be a set of n
points in the plane. The (1+¢)-approzimate Lo-post-office problem can
be solved using O(nlogn) space with a query time of O((logn)?).

3.4 Improving the query time: layering

We have seen that a range tree solves the two-dimensional L,-post-
office problem with a query time of O((logn)?). In this section, we
reduce the query time to O(logn).

Consider the query algorithm of the previous section. This algo-
rithm makes O(logn) binary searches in different y-trees, and it does
some additional work. It is easily seen that the additional work takes
only O(logn) time. (Here, we assume that we store with each node of
the z-tree a pointer to the rightmost leaf in its subtree.) The O(logn)
binary searches together take O((logn)?) time. That is, the running
time of the query algorithm is dominated by the time of these binary
searches.

How can we improve the running time? The key observation is
that in each y-tree, we search for the same element: we search for the
y-coordinate of the query point p.

Let u and v be nodes of the z-tree such that v is a son of v. Assume
we want to locate p, in the y-trees of v and v. Recall that S, and

3.4. Improving the query time: layering 65

S, denote the points of S that are stored in the subtrees of v and wv,
respectively.

Assume that the y-coordinate p, is less than all y-coordinates of
the points of S,. Then the search for the smallest element in the y-tree
of v that is at least equal to p, will end in the second leftmost leaf of
this y-tree. (The leftmost leaf stores the artificial y-coordinate —o0.)
Where does the search in the y-tree of v end? Since S, C S, it is clear
that p, is less than all y-coordinates of the points of S,. Therefore, the
search for the smallest element in the y-tree of u that is at least equal
to py also ends in the second leftmost leaf.

In general, the search for p, in the y-tree of v gives information
about the result of a search for the same element in the y-tree of u. As
we will see, we can use this information such that, given the position of
py in the y-tree of v, only O(1) time is needed to locate p, in the y-tree
of u. That is, we avoid making a binary search in this y-tree. The idea
is to link the y-trees of u and v by pointers. This technique is called
layering.

We change the range tree as follows:

1. As before, we have an z-tree which is a perfectly balanced leaf
search tree for the z-coordinates of the points of S and the arti-
ficial z-coordinates —oo and oo.

2. Each node v of the z-tree contains a pointer to a y-tree, which is
a perfectly balanced leaf search tree for the y-coordinates of the
points of S, and the artificial y-coordinates —oo and oo.

3. For all nodes v and v of the z-tree, such that u is a son of v, there
are pointers from the y-tree of v to the y-tree of u: Let [be any
leaf in the y-tree of v, and let g, be the y-coordinate stored in /.
Leaf [stores a pointer to the leftmost leaf in the y-tree of u whose
y-coordinate is at least equal to g,.

We call the resulting data structure a layered range tree. See Figure
3.6. Note that if g, also occurs as a y-coordinate of a point in S, then
the pointer from [points to the occurrence of g, in the y-tree of w.

66 3. Range Trees and the Post-Office Problem

Figure 3.6: A layered range tree. The leaf storing g, contains a pointer
to the leaf storing g,. If ¢, = —oo, then q, = —oo. If g, = oo, the
q, = oo. If g, is finite, then ¢, = min{s, : s = (54, 8) € Sy, 8y > ¢y}

Exercise 3.4.1 Prove that a layered range tree still has size O(nlogn)
and that it can be built in O(nlogn) time.

Let p be any point in the plane. Call the procedure decompose(p).
(See Figure 3.3.) This gives a set M of nodes of the z-tree such that
{¢ €S :¢ >p:} =Uuem Su- We show how to search for the smallest
elements that are at least equal to p,, in the y-trees of all nodes u € M.

We again walk down the path in the z-tree to the leftmost leaf whose
point has z-coordinate at least p,. This walk starts in the root v of the
z-tree. We locate p, in the y-tree of v. Let w be the right son of v.
Then, following the pointer from the leaf in v’s y-tree that stores the
position of p, to the y-tree of w, we have located p, in w’s y-tree. (See
Lemma 3.4.1 below.) If w is on the path to p,, then we proceed in the
subtree of w. Otherwise, let u be the left son of v. Note that w € M.
We follow the pointer from the leaf in v’s y-tree that stores the position
of p, to the y-coordinate of u. This gives the smallest y-coordinate in
this y-tree that is at least equal to p,. Now we proceed in the subtree
of u. The complete algorithm is given in Figure 3.7.

3.4. Improving the query time: layering 67

procedure searchM(p)
(* p = (pg, py) is a point in the plane)
begin
M = (; v := root of the z-tree;
search in the y-tree of v for the smallest y-coordinate that is
at least equal to py;
[:= leaf where this search ends;
q := point whose y-coordinate is stored in [;
while v # leaf
do (* invariant: [is a leaf in the y-tree of v, [stores g,,
¢y = min{s, : s, > p, and s, stored in the y-tree of v } x)
w := right son of v;
follow the pointer from [to the leaf I’ in the y-tree of w;
¢’ := point whose y-coordinate is stored in I;
if maxl(v) < p,
thenv:=w;l:=10';qg:=¢
else M := M U {w}; output a pointer to I';
u := left son of v;
follow the pointer from [to the leaf {” in the y-tree of u;
¢" := point whose y-coordinate is stored in {";
vi=u l:=1"q:=4q"
fi
od;
M = MU {v}
output a pointer to [
end

Figure 3.7: Constructing the set M, and locating p, in the y-tree of all
nodes of M.

68 3. Range Trees and the Post-Office Problem

Lemma 3.4.1 During the while-loop of the procedure searchM(p), the
wnwvariant is correctly maintained.

Proof: It is clear that the invariant holds after the initialization. Con-
sider one iteration. That is, let v be a node of the z-tree, let [be a leaf
in the y-tree of v, let ¢ be the point whose y-coordinate is stored in [,
and assume that

¢y = min{s, : s, > p, and s, stored in the y-tree of v}.

Let w be the right son of v, let I’ be the leaf in the y-tree of w that is
reached by following the pointer stored with /, and let ¢’ be the point
whose y-coordinate is stored in [’

We will show that

g, = min{s, : s, > p, and s, stored in the y-tree of w}.

From the definition of the pointers that link the y-tree of v with that
of w, we know that g, > ¢,. Since g, > p,, we infer that

q; € {sy : s, > py and s, stored in the y-tree of w}.

It remains to show that q; is the minimal element of this set. Assume
this is not the case. Then there is a y-coordinate r, stored in the y-
tree of w such that p, < r, < q?'/. Note that S,, € S,. Therefore, the
y-coordinates stored in the y-tree of w form a subset of those stored
in the y-tree of v. In particular, r, is stored in the y-tree of v. Since
Ty > Py, we infer that r, > g,.

We have shown that g, < r, < ¢, where r, is stored in the y-tree
of w. But then, the pointer from [in the y-tree of v cannot point to
the leaf I’ storing g,. This is a contradiction.

This shows the g, is the smallest value in the y-tree of w that is at
least equal to p,. If the search path proceeds to w, then the invariant
still holds after this iteration. Otherwise, if the search path proceeds to
the left son u of v, then it follows in the same way that g (see Figure
3.7) is the smallest element in the y-tree of u that is at least equal to
py- Hence, also in this case, the invariant still holds after this iteration.
This completes the proof. |

3.5. Partial rebuilding 69

Lemma 3.4.2 The pointers that are reported by the procedure searchM (p)
point to the leftmost leaves in the y-trees of all nodes of M, whose y-
coordinates are at least equal to py.

Proof: This follows immediately from the previous proof. |

We analyze the running time of the procedure searchM(p). The
initialization takes O(logn) time. It is easy to see, that each iteration
takes O(1) time. Since there are O(logn) iterations, the while-loop
takes O(logn) time. This proves that the entire procedure runs in
O(logn) time. That is, by introducing the layered range tree, we re-
duced the time to locate p, in the y-trees of all nodes of M, from
O((logn)?) to O(logn).

Now we return to the algorithm of Section 3.3 for finding an L..-
neighbor of a query point. We replace Stage 1 by the procedure searchM(p).
Then, Stage 2 can be performed in O(logn) time. In a similar way, the
running time for Stage 3 becomes O(logn). This proves:

Theorem 3.4.1 Let S be a set of n points in the plane. Using a layered
range tree, which has size O(nlogn), we can solve the Ly -post-office
problem with a query time of O(logn).

Corollary 3.4.1 Let e > 0 be a constant and let S be a set of n points
in the plane. The (1 + €)-approximate Lo-post-office problem can be
solved using O(nlogn) space with a query time of O(logn).

3.5 Supporting insertions and deletions:
partial rebuilding

Until now we only considered the static version of the post-office prob-
lem. All binary trees that occurred as substructures of the range tree
were perfectly balanced. Of course, if we insert and delete points, the
range tree might become unbalanced. In this section, we show how all
binary trees that constitute the range tree can be kept in balance if
points are inserted and deleted.

Consider a range tree for a set S of n points in the plane. We assume
for simplicity that Assumption 3.2.1 holds. To insert or delete a point
P = (Pz, py), we do the following:

70 3. Range Trees and the Post-Office Problem

1. Search in the z-tree for the leftmost leaf storing an z-coordinate
that is at least equal to p,. Let w be the leaf in which this search
ends.

(a) Assume we have to insert p and assume w.l.o.g. that p ¢ S.
Let g be the point whose z-coordinate is stored in w. Note
that ¢, > p,. We give w two new sons. The left son is a
range tree for the set {p} and the right son is a range tree
for the set {¢}. Finally we update the maxl(v) and minr(v)
values of the nodes on the search path to w.

(b) Assume we have to delete p and assume w.l.o.g. that p € S.
Let u be the father of w, and let v be the other son of w.
Then we replace the subtree of u, which is a range tree for
the set Sy, by the subtree of v, which is a range tree for
Sy = Sy \ {p}. We also update the search information of the
nodes on the search path to u.

2. Consider again the path of Step 1. For each node on this path,
we insert or delete the value p, in its y-tree.

3. We rebalance the data structure.

Exercise 3.5.1 Convince yourself that the structure that results from
Steps 1 and 2 is a (not necessarily balanced) range tree for the set

S U {p} resp. S\ {p}.

Clearly, the problem is how to rebalance the range tree. Standard
binary trees are often rebalanced by means of rotations. Consider a
rotation as in Figure 3.8. Assume we apply this rotation to the z-tree.
Then, v gets the y-tree of u. This is simply done by changing one
pointer. To obtain the new y-tree of u, however, we have to merge the
y-trees that are stored with the roots of A and B. This takes O(|S,])
time, which is large if u is close to the root of the z-tree.

By taking the binary trees from the class of BB[a]-trees, to be de-
fined below, it can be shown that, nevertheless, this leads to an update
algorithm with O((logn)?) amortized running time. The proof of this

3.5. Partial rebuilding 71

AN/ N/ O A

Figure 3.8: A rotation.

result is complicated. In the rest of this section, we give a much sim-
pler technique, the partial rebuilding technique, that gives the same
amortized update time.

Definition 3.5.1 Let 0 < o < 1/3 and let 7" be a binary tree. For
each node v of T', let n, denote the number of leaves in its subtree. The
tree T is called a BBJa]-tree, if for all nodes u and v such that v is a
son of v,

a<nyg/n, <1-—a.

Hence, if the subtree of v contains m leaves, then each of its subtrees
contains at least amn and at most (1 — «)m leaves.

Exercise 3.5.2 Prove that for each n there is a BB[a]-tree with n
leaves. Why do we require that o < 1/37 Prove that the height of a
BB|a]-tree with n leaves is at most ¢,-logn, and determine the constant
Co-

We start with the one-dimensional case. That is, we show how to
maintain a BB[a]-tree storing a set S of n real numbers, if elements are
inserted and deleted in S. We store with each node v the number n,
of leaves in its subtree. Here is the algorithm to insert or delete a real
number p:

72 3. Range Trees and the Post-Office Problem

1. Search for the leftmost leaf storing a value that is at least equal
to p. Let w be the leaf in which this search ends.

2. Insert or delete p and update the appropriate maxl(v), minr(v)
and n, values.

3. Rebalance as follows: walk back from w to the root and find the
highest node v that is out of balance, i.e., does not satisfy the
BBJ[a]-property. If there is no such v, then the tree is already a
BB[a]-tree and we are done. Otherwise, we completely rebuild
the subtree of v as a perfectly balanced binary tree.

Exercise 3.5.3 Convince yourself that the rebalancing step results in
a BB|a]-tree.

Note that if node v is close to the root, rebalancing will take much
time. The following lemma, however, shows that expensive rebalancing
operations do not occur often. As we will see, this ensures that the
given update algorithm has an amortized running time of O(logn).

Lemma 3.5.1 Let v be a node in a BB[a]-tree that is in perfect bal-
ance. Let n, be the number of leaves in the subtree of v at the moment
when it gets out of balance. Then there have been at least (1 —2a)n, —2
updates in the subtree of v.

Proof: Let n!, nj, and n., be the number of leaves in the subtree of
v, the left son of v and the right son of v, respectively, at the moment
when v is in perfect balance. Assume w.l.o.g./ that nj, < n! . Then
n;, = |n!/2]. Clearly, the fastest way for node v to get out of balance
is by deleting elements from its left subtree and inserting elements into
its right subtree.

Suppose that at the moment when v gets out of balance, NV; inser-
tions have taken place in the right subtree of v, and N, deletions have
taken place in its left subtree. Let m;, be the number of leaves in the
subtree of the left son of v at the moment when v gets out of balance.
Then n, = nl, + N; — Ny and ny, = nj, — Ng = |n! /2| — Ny. Since node

3.5. Partial rebuilding 73

v is out of balance at this moment, we have ny,/n, < a. It follows that

an, > N
= |my/2] — N
> ’I’L;/?—l—Nd
U_Ni N
- n#”_l_]\[d
nv—(Ni—i—Nd)

= ~ 1.
2

Thus N;+Ny > (1-2a)n,—2, i.e., there have been at least (1—2a)n, —2
updates in the subtree of v. |

We analyze the running time of the update algorithm. Steps 1
and 2 take time proportional to the height of the BB[a]-tree, which is
bounded by O(logn). It remains to bound the time for Step 3, i.e., the
time for rebalancing. We show that the amortized rebalancing time is
bounded by O(logn). This will prove that the entire update algorithm
has amortized update time O(logn).

Consider a node v of the BB[a]-tree, and assume we rebuild the
subtree of v. Let S, be the set of elements that are stored in the subtree
of v. Note that n, = |S,|. Using the old subtree of v, we obtain the
elements of S, in sorted order, in O(n,) time. Then, in O(n,) time, we
build a perfectly balanced binary tree for these elements. (See Exercise
3.2.2.) Hence, the entire rebuilding operation takes O(n,) time. We
say that this visit to node v has cost O(n,). By Lemma 3.5.1, there
have been (1 — 2a)n, — 3 updates in the subtree of v during which this
subtree was not rebuild. During each of these updates, O(1) time was
spent in node v. That is, each of the provious (1 — 2a)n,, — 3 visits to
node v had cost O(1).

This proves that the (1 —2a)n, —2 most recent visits to node v have
total cost O(n,). Averaged over these visits, we get an upper bound of
O(1) per visit to node v.

To summarize, each node visited during an update operation causes
O(1) rebalancing costs. Since we visit O(logn) nodes during an update
we get an O(logn) upper bound on the total amortized rebalancing
cost. We have proved the following lemma.

74 3. Range Trees and the Post-Office Problem

Lemma 3.5.2 Using the partial rebuilding technique, a BB[a]-tree can
be maintained under insertions and deletions in O(logn) amortized
time per operation.

3.5.1 An alternative proof: the potential method

In this section we give a somewhat cleaner, but more tricky, proof of
Lemma 3.5.2. We start by recalling the potential method.

Consider a data structure on which we perform a sequence of n
operations. The initial data structure is denoted by Dqy. For 1 < k < n,
let C be the cost of the k-th operation, and let Dy be the data structure
that results by performing the k-th operation on Dj_;.

The total cost for the n operations is) ;_; Ck. Often it is difficult
to give a good estimate for this summation. In such cases, one can try
to apply the potential method:

Let ® be a function that maps the data structure Dy, to a real num-
ber ®(Dy), 0 < k < n. This function is called the potential function.
Given this function, define

Cy == Cy + B(Dy) — ®(Dy_1),1 < k < n.

That is Cy, is the sum of the actual cost of the k-th operation and the
increase in potential due to this operation. Now we can rewrite the
total cost for the n operations:

YO = ZCk— (D) + ©(Dy—1))
k=1

n

= Z Cy + (Do) — ®(D,,).

Suppose that our potential function satisfies
1. ®(Dy) =0, and
2. ®(Dg) >0, forall 0 <k <n.

Then,

So <y e
k=1 k=1

3.5. Partial rebuilding 75

i.e., the summation on the right hand side is an upper bound on the
total cost for the n operations. The trick is to define a potential function
® such that the summation EC‘k can be estimated easily.

We apply this technique to analyze the amortized time of the update
algorithm for BB[a|-trees. Recall that for any node v, n, denotes the
number of leaves in the subtree of v. For v an internal node, let v; and
v, be its left an right sons, respectively. Define

Ay =Ny, — Ny, |
The potential of a binary tree T is defined by

oT) =7y D A,

vET: Ay >2

where v is a constant to be fixed later.

Suppose we start with a BB[a]-tree for the empty set. Consider a
sequence of n insert and delete operations. Let Ty, 17,75, ...,T, be the
sequence of BB|a]-trees obtained in this way.

First note that ®(7) = 0 and ®(7}) > 0 for all 0 < k < n. Also, a
perfectly balanced binary tree has potential zero.

Let 1 < k < n and consider the k-th update operation. Let T}
be the tree obtained after performing Steps 1 and 2 of the update
algorithm. Then, T} is obtained by performing Step 3, the rebalancing
step to Tj. Assume that during this step, we rebuild the subtree rooted
at v. Hence, v is the highest node of 7} that is out of balance.

Steps 1 and 2 take O(logn) time. Step 3 takes O(n,) time, where
n, is the number of leaves in the subtree of v in 7). Hence, there is a
constant v such that the time C}, for the k-th update operation satisfies

Cr < +¥'(logn + n,).

To estimate the increase in potential, we consider ®(7}) — ®(7})
and ®(7}) — ®(Tx_1) separately.

During the transformation from T}_; into T}, the A, values of all
nodes v on the search path increase by at most one. All other A, values
remain unchanged. It follows that

O(T}) — ®(Tk-1) < haylogn,

76 3. Range Trees and the Post-Office Problem

where h, is the constant that appears in the O(logn) bound on the
height of a BB[a/|-tree.

Consider the node v in T}. Because v is out of balance, we have
Ty, /Ty < o and ny, /1y, > 1 — @, or n,, /n, < « and n,, /n, > 1 — a.
Assume w.l.o.g. that the first case occurs. Then,

Ty, — Ny, > (1 —)ny — any, = (1 — 2a)n,,.

If Ty, and Ty, denote the subtrees of T and T}, rooted at v, respectively,
then
(T) — (T}) = @(Thw) — ©(Txy)-

Since T, is perfectly balanced, its potential is zero. Moreover,
B(Th,) > A(ny, =) > A(1 = 2a)n,.
Hence,
O(Ti) — ©(T}) < —v(1 = 20)n,.
Putting everything together, we have shown that
O(Ty) — ©(Ty-1) = O(Tir) — (Ty) + &(T}) — ©(Th1)
< —y(1 = 2a)n, + hyylogn.

This implies that

N

Cr = Cp+®(Tx) — D(Ty_1)
< 4'(logn +ny) — y(1 — 2a)n, + hyylogn.

Note that we still have to choose the constant 7 in the definition of ®.
We take v :=+'/(1 — 2«). Then

Ci < +'logn + havylogn.

It follows that the total time for the n update operations is bounded
by

3G <Y G < (3 + ha) logn = Ofnlogn).

k=1 k=1 k=1
That is, the amortized time per update operation is bounded by O(logn).
This proves Lemma 3.5.2.

3.5. Partial rebuilding 77

3.5.2 Range trees and partial rebuilding

In the beginning of Section 3.5, we already gave the basic algorithm for
inserting or deleting a point p in a range tree. The algorithm consisted
of three steps:

1. Search in the z-tree for the position where the z-coordinate p,
of p has to be inserted or deleted. Perform the update at this
position.

2. For each node of the z-tree on the path to p,, insert or delete p,
in its y-tree.

3. Rebalance the range tree.

Definition 3.5.2 A range tree is called a BB[a|-range tree, if the x-
tree and all the y-trees are BB[a]-trees.

Exercise 3.5.4 Prove that the statements of Lemmas 3.2.1, 3.2.2, and
Theorem 3.3.1 also hold for BB|a]-trees.

It will be clear how we maintain BB[a]-range trees under insertions
and deletio