
Finding the majority, if it exists

Michiel Smid∗

January 28, 2008

1 The majority problem

These notes are based on the article A cultural gap revisited by A. Shen, which appeared in
The Mathematical Intelligencer, Volume 22, Number 2, 2000, pp. 16–17.

We are given a set S of n objects (n ≥ 1), each of which has a color. Furthermore, we
are told that there is a majority color in S, i.e., a color that occurs strictly more than n/2
times. We denote this majority color by mc(S). Our task is to find an element of S whose
color is equal to mc(S).

We are only allowed to use the operation same color . This operation takes two arbitrary
elements, say x and y, of S, and returns the value

same color(x, y) =

{
true if x and y have the same color,
false otherwise.

In particular, we cannot determine the color of any element of S.

2 The basic algorithm

Our algorithm will be based on the following observation.

Observation 1 Let x and y be two elements of S that have different colors. Then there is
a majority color in the set S \ {x, y}, and

mc(S) = mc(S \ {x, y}).

Proof: Assume that mc(S) = red . Let k be the number of red elements in S. Then we
know that k > n/2. We have to show that the set S \ {x, y} contains more than (n − 2)/2
red elements.

∗School of Computer Science, Carleton University, Ottawa, Ontario, Canada K1S 5B6. E-mail:
michiel@scs.carleton.ca.

1



Case 1: Neither x nor y is red . In this case, the number of red elements in S \ {x, y} is
equal to k > n/2 > (n− 2)/2.
Case 2: Exactly one x and y is red . In this case, the number of red elements in S \ {x, y}
is equal to k − 1 > n/2− 1 = (n− 2)/2.

We maintain the following invariant:

1. S is the disjoint union of three sets N , I, and D.

2. All elements of I have the same color.

3. There is a majority color in the set N ∪ I.

4. mc(S) = mc(N ∪ I).

(Remark: N stands for “Not seen yet”; I stands for “Identical colors”; D stands for “Dis-
carded”.)

Here is the basic version of our algorithm:

N := S; I := ∅; D := ∅;
while N 6= ∅
do if I = ∅

then move one element from N to I
else let x be an element of N ;

let y be an element of I;
if same color(x, y)
then move x from N to I
else move y from I to D;

move x from N to D
endif

endif
endwhile;
return an arbitrary element of I

3 A simple representation of the algorithm

Until now, we did not specify how the sets N , I, and D are represented. There turns out to
be a very simple way to do this: Let the elements of S be stored in an array A[1 . . . n]. We
will use two indices i and j to represent the sets N , I, and D:

1. 0 ≤ i ≤ j − 1 ≤ n,

2. D = A[1 . . . i],

3. I = A[i + 1 . . . j − 1],

2



4. N = A[j . . . n].

If we “translate” our basic algorithm, then we get the following algorithm:

i := 0; j := 1;
while j ≤ n
do if j ≤ i + 1

then j := j + 1
else if same color(A[j], A[i + 1])

then j := j + 1
else i := i + 1;

swap(A[j], A[i + 1]);
i := i + 1;
j := j + 1

endif
endif

endwhile;
return A[i + 1]

If we change the order of the operations, then we get the following algorithm:

i := 0; j := 1;
while j ≤ n
do if j ≥ i + 2 and same color(A[j], A[i + 1]) = false

then i := i + 2;
swap(A[j], A[i])

endif;
j := j + 1

endwhile;
return A[i + 1]

Observation 2 In the pseudocode above, the condition

j ≥ i + 2 and same color(A[j], A[i + 1]) = false

is equivalent to the condition

same color(A[j], A[i + 1]) = false.

Proof: Assume that same color(A[j], A[i+1]) = false. We have to show that j ≥ i+2. We
know from the invariant that j ≥ i + 1. If j = i + 1, then same color(A[j], A[i + 1]) = true.
Therefore, j 6= i + 1. It follows that j ≥ i + 2.

Using this observation, we can further simplify the algorithm, and obtain the final algo-
rithm:

3



i := 0; j := 1;
while j ≤ n
do if same color(A[j], A[i + 1]) = false

then i := i + 2;
swap(A[j], A[i])

endif;
j := j + 1

endwhile;
return A[i + 1]

4


