Shortcutting lists

Michiel Smid*
June 25, 2003

Logarithms are binary. We define log 0 := 0.

1 Shortcutting lists

Let V := {z1,29,...,2,} be a set of n vertices and let L be the undirected
graph on V with edge set {{z;,z;11} : 1 < i < n}. Hence, L is the list
containing the vertices of V' in increasing order of their indices. We will
write this list as L = (z1,2,...,%,). We will consider undirected graphs
that contain L. Let G = (V, E) be such a graph and let ¢ and j be any two
indices such that 1 <14 < j <n. We will say that z; is to the left of x; in L.
A path
P = (SEZ = iy Liyy Tigy e ooy Ty, = iEj)

in G between z; and z; is called a monotone path, if
10 <1 <o <...< 1

The monotone diameter of G is defined as the smallest integer k, such that
for any two indices 7 and j with 1 <14 < j < n, the vertices z; and z; are
connected in G by a monotone path that contains at most k edges.

We consider the following shortcutting problem. Given any list L and any
positive integer k, construct a graph on the vertices of L having monotone
diameter k£ and that contains as few edges as possible. It should be clear
that a solution to this problem can be used to construct ¢-spanners of low
spanner diameter for one-dimensional point sets, even for ¢ = 1.

*School of Computer Science, Carleton University, Ottawa, Ontario, Canada K1S 5B6.
E-mail: michiel@scs.carleton.ca

1.1 Monotone diameters one, two, and three

The only graph having monotone diameter one is the complete graph, having
(%) edges. Algorithm mono_diam(L,n,2), given in Figure 1, constructs a
graph having monotone diameter two. (It turns out to be convenient to

define this algorithm for any integer n > 0.)

Monotone diameter two: Consider the list L. We connect each
vertex to the middle vertex z. Then we recursively compute a graph
having monotone diameter two for those vertices that are less than z.
Similarly, we recursively compute a graph having monotone diameter
two for those vertices that are larger than z.

L L

-~ -~

recursion recursion

Lemma 1.1 Let L be a list on the vertex set V and let n be the number
of vertices of V. The graph G = (V,E) that is computed by algorithm
mono_diam(L,n,2) has monotone diameter less than or equal to two.

Proof. The proof is by induction on n. If n < 3, then the claim clearly
holds. So let n > 4 and assume that for any list L' having less than n
vertices, algorithm mono_diam(L',|L'|,2) computes a graph on the vertices
of L' having monotone diameter less than or equal to two.

Let z and y be any two distinct vertices of L such that x is to the left
of y. First assume that x and y are both to the left of the middle vertex z.
Consider the edge set E; that is computed by our algorithm. The induction
hypothesis implies that there is a monotone path, in F;, between z and v,
containing at most two edges. Clearly, this path is also monotone in G. The
case when = and y are both to the right of z can be treated in a symmetric
way. Assume next that x or y is equal to the middle vertex z. Then z and
y are connected by an edge in E. This single edge forms a monotone path
in (G. The final case is when z is to the left of z, and y is to the right of z.
In this case, and y are connected by the monotone path in G, consisting
of the two edges {z, z} and {z,y}. [

Algorithm mono_diam(L,n,2)
(x L is a list with n vertices. The algorithm returns a graph
whose monotone diameter is at most two.)
if0<n<3
then F := edge set of L;
return B
else z := [n/2]-th vertex of L;
L, := list containing all vertices of L that are strictly
to the left of z;
Ey := mono_diam (L, [n/2] — 1,2);
L, := list containing all vertices of L that are strictly
to the right of z;
Ey := mono_diam(Ly, |n/2],2);
E:=E UEyU{{x,z}: zis a vertex of L, z # z};
return B
endif

Figure 1: Constructing a graph having monotone diameter less than or equal
to two.

Let Fy(n) denote the number of edges in the graph that is computed by
algorithm mono_diam(L,n,2). We have

0 ifn=0,
Fy(n)=¢ n—1 if 1 <n <3,
n—14+ Fy([n/2] — 1)+ Fy(|n/2]) ifn>4.
Lemma 1.2 Fy(n) < nlogn for alln > 0.
Proof. The proof is by induction on n. If 0 < n < 3, then the inequality

is easy to verify. (Recall that we defined log0 = 0.) Let n > 4 and assume
that Fy(k) < klogk for all £ with 0 < k < n. Then

Fy(n) = n—1+F(n/2] - 1)+ F(|n/2))

< n+([n/2] —1)log([n/2] — 1) + [n/2]log|n/2]
< n+[n/2]log(n/2) + [n/2]log(n/2)

n + nlog(n/2)

nlogn.

This completes the proof. |

By using a similar recurrence, it follows that the running time of algorithm
mono_diam(L,n, 2) is O(nlogn). Hence, we have proved the following result.

Theorem 1.3 Given a list with n vertices, we can compute in O(nlogn)
time a graph on these vertices having at most nlogn edges and whose mono-
tone diameter is less than or equal to two.

We now turn to the problem of constructing a graph having monotone
diameter three. The construction is a generalization of the previous algorithm
mono_diam(L,n, 2).

Monotone diameter three: Consider the list L. Let L' be the
list containing every sqrin-th vertex of L. We connect the vertices
of L' by a complete graph. Also, we connect each vertex of L\ L'
to the nearest vertex to its left in L', and to the nearest vertex to
its right in L'. The vertices of L' divide the list L into \/n sublists,
each containing /n — 1 vertices. We recursively compute a graph
having monotone diameter three for each sublist. At each level of
the recursion, O(n) edges are obtained. Since the recursion depth is
O(loglogn), the total number of edges obtained is O(nloglogn). In
the figure below, the dots and rectangles represent the vertices of L.

/ _ \

S S I I

—— ——
recursion recursion

recursion

The formal algorithm, which we denote by mono_diam(L,n, 3), is given
in Figure 2. The following lemma states the correctness of this algorithm.
The proof is similar to that of Lemma 1.1.

Lemma 1.4 Let L be a list on the vertex set V and let n be the number
of vertices of V. The graph G = (V,E) that is computed by algorithm
mono_diam(L,n,3) has monotone diameter less than or equal to three.

4

Algorithm mono_diam(L,n, 3)
(x L is a list with n vertices. The algorithm returns a graph
whose monotone diameter is at most three. x)
if0<n<4
then F := edge set of L;
return F
else number the vertices of L as x1, 29, ..., Z,;
t:=[yn];
m:= |n/l|;
L' := list containing the vertices x;, 1 <1i < m;
E' := edge set of the complete graph on L';
E} = {{xig+j,$(i+1)g} 0<i<m-1,1<j</{—-1};
Ey = {{zme,xj} :ml+1< 5 <n};
fori:=0tom—1
do L, := list containing the vertices z;, il +1 < j < (i+1)¢ — 1,
E; :== mono_diam(L;, ¢ — 1,3)
endfor;
L, := list containing the vertices z;, ml +1 < j <mn;
E. = mono_diam(Ly,,n — m¥, 3);
E=FUE/UESUEUEUE U...UE,;;
return F
endif

Figure 2: Constructing a graph having monotone diameter less than or equal

o three.
emma 1.5

We mentioned above that the number of edges in the graph that is com-
puted by algorithm mono_diam(L,n,3) is O(nloglogn). Let us prove this
formally. Let F3(n) denote the number of edges that are reported by this
algorithm, when given a list with n vertices. The function Fj satisfies the
following recurrence.

0 ifn=0,
F3(n)<<¢ n—1 if 1 <n <4, (1)
(%) +2n+m- F3({ — 1) + F3(n — ¢m) ifn > 5,
where £ := [\/n] and m := |n/{].

F3(n) < 3nloglogn + 1 for alln > 0.

Proof. The proof is by induction on n. For 0 < n < 4, the inequality is easy
to verify. (Recall that we defined log0 = 0.) So let » > 5 and assume that
F3(k) < 3kloglogk + 1 for all k£ with 0 < k < n. First observe that

m=|n/t] <n/l=n/[vV/n] <Vn.
It follows that
(Z) <m?/2 < nJ2.
Since 2 < £ —1 < /n < n, the induction hypothesis implies that

F3(-1) 3((—1)loglog(¢ —1)+1

3¢loglog+/n + 1
3¢(loglogn — 1) + 1.

<
<

Since 0 < n —¥¢m < £, we have n — fm < £ —1 < /n < n. Therefore, the
induction hypothesis implies that

F3(n —¢m) 3(n — ¢m)loglog(n — ¢m) + 1
3(n — ¢m)loglogv/n + 1

3(n — fm)(loglogn — 1) + 1.

<
<

Combining these inequalities with the recurrence (1), it follows that

F3(n) < 5n/2+m(3¢(loglogn — 1)+ 1) + 3(n — ¢m)(loglogn — 1) + 1
= 3nloglogn+1+4+m —n/2
< 3nloglogn + 1,

where the last inequality follows from the fact that m < n/2. |

A similar recurrence as the one for Fj3 shows that the running time of
algorithm mono_diam(L,n, 3) is O(nloglogn). We summarize our result.

Theorem 1.6 Given a list with n vertices, we can compute in O(nloglogn)
time a graph on these vertices having at most 3nloglogn-+1 edges and whose
monotone diameter is less than or equal to three.

1.2 Generalization to higher monotone diameters

Our goal is to generalize the results of Theorems 1.3 and 1.6 to monotone
diameters k£ that are greater than three. We first describe the idea for k = 4.
Assume that n is a power of two. Let £ := logn and consider the list L =
(x1,Z9,...,x,). Let L' be the list containing the vertices z;, 1 < i < n/L.
We connect the vertices of L' by a graph having monotone diameter two. By
Theorem 1.3, there is such a graph having O(n) edges. Next, we connect
each vertex of L\ L' to the nearest vertex to its left in L', and to the nearest
vertex to its right in L'. This also gives O(n) edges. The vertices of L' divide
the list L into n/¢ sublists, each containing £ — 1 vertices. We recursively
compute a graph having monotone diameter four, for each of these sublists.

As in algorithm mono_diam(L,n,3), O(n) edges are added at each level
of the recursion. The recursion depth is bounded from above by log* n, which
is defined as

log*n := min{s > 0: loglog...logn < 1}.
—_—

(Observe that log*0 = log*1 = 0.) Hence, the entire graph will contain
O(nlog" n) edges.

This idea can be generalized in the following way to an arbitrary mono-
tone diameter k.

Monotone diameter k: Consider the list L. We choose an integer
/i, and construct a list L' containing every #;-th element of L. Then
we compute a graph on the vertices of L' having monotone diameter
k — 2. Moreover, we connect each vertex of L\ L' to its left and right
neighbors in L'. The vertices of L' divide L into sublists. For each
sublist, we recursively compute a graph having monotone diameter k.
We choose /, such that the number of edges that are added at each
level of the recursion is O(n). In this way, the total number of edges
in the final graph is “small”. It turns out that the “correct” value of
/), is related to the functional inverse of the Ackermann function. In
the figure below, the dots and rectangles represent the vertices of L.

recursion for k — 2

A

S S e N LI

———— ——— ————
recursion for k recursion for k recursion for k

1.3 The Ackermann function and its inverse

The set of non-negative integers will be denoted by N. We will use the
following notation. For any function f : N — N and any s € N, we denote
the s-fold iteration of f by f(). That is, the functions f*) : N — N are
inductively defined by

fO(n) :=n for all n > 0,

and
f(n) = f(f¢V(n)) for all n > 0 and s > 1.

Definition 1.7 For each k& > 0, the functions A, : N — Nand B, : N —
N are recursively defined as follows:

Ag(n) := 2nforalln >0,

Ap(n) = 1 if k> 1andn=0,

kAT Ap1(Agln—1)) ifk>1andn > 1,

By(n) = n?foralln >0,

Bi(n) 2 if k> 1and n=0,
BT By_1(By(n—1)) ifk>1andn> 1.

The following lemma gives an alternative way for computing the functions
Ay and Byg. The claims can be proved by a straightforward induction on n.

Lemma 1.8 For all k > 1 and n > 0, we have
1. Ay(n) = A" (1) and
2. By(n) = B, (2).

Let us consider some examples. Using Definition 1.7 or Lemma 1.8, it
can easily be verified that for all n > 0,

o Ai(n)=2",
[Ag(n) = 22 s
[] Bl(n) = 22n’

2
[J Bz(n) = 22- .
2n+1

It should be clear from these examples that, for £ > 2, the functions Ay
and By are extremely fast growing. The next four lemmas state some useful
monotonicity properties of the functions A; and By.

Lemma 1.9 For all k > 0 and n > 0, we have
1. Ag(n) > 2n and
2. By(n) > n?.
Proof. The claims can be proved by double inductions on k£ and n. |

Lemma 1.10 For all k > 0, the functions Ay and By are non-decreasing.

9

Proof. It follows immediately from the definition of A, that this function
is non-decreasing. Let £ > 1. We will show that Ag(n) > Ag(n — 1) for all
n > 1. By Lemma 1.9, we have

Ak_l(Ak(n - 1)) 2 2. Ak(’l’b - 1) 2 Ak(n - 1)

Therefore,
Ak(n) = Ak_l(Ak(n — 1)) 2 Ak(n — 1)

The proof that the functions By are non-decreasing is similar. |

Using Lemmas 1.9 and 1.10, the following lemma can easily be proved.
Lemma 1.11 For all k > 0 and n > 0, we have Axy1(n) > Ag(n).
Lemma 1.12 For all k > 0 and n > 3, we have Ax(n+ 1) < Agy1(n).
Proof. First observe that, by Lemma 1.11,

Agi(ln—1) > Ay(n—1)=2n—2>n+ 1.
Since the function Ay is non-decreasing, it follows that
Apt1(n) = Ap(Ap+1(n — 1)) > Ag(n +1),

which is what we wanted to show. |

We now define the functional inverses of the functions A, and Bj.

Definition 1.13 For each & > 0, we define the functions ay;, : N — N and
agk+1 : N — N by

1. agg(n) :=min{s > 0: Ax(s) > n} for all n > 0, and

2. agp+1(n) ;== min{s > 0: Bg(s) > n} for all n > 0.

Observe that by Lemma, 1.9, these functions are well-defined. Let us look
at some examples. For all n > 0, we have

e ay(n) = [n/2],
e ai(n) =[vnl],

10

o ay(n) = [logn],
o as(n) = [loglognl,
o ay(n) = log"n,

o as(n) = |1 log*n]

Lemma 1.14 For each k > 0, the function oy is non-decreasing.

Proof. We will prove the claim for even values of k. (For odd values of
k, the proof is similar.) For simplicity, we write 2k instead of k. Let m
and n be two non-negative integers such that m < n. We will prove that

g (m) < agp(n).

Let s := aor(n). By the definition of the function agy, we have Ag(s) > n.
Since m < n, we also have Ag(s) > m. Then the definition of gy implies
that agg(m) < s, i.e., ag(m) < ag(n). [

In Lemma 1.17 below, we will state a useful characterization of the func-
tions «y. Before we can prove it, we need two lemmas.

Lemma 1.15 For each k > 1, we have
1. agp(n) = 1+ agk(aok—2(n)) for alln > 2, and
2. agi1(n) =1+ aggy1(aop_1(n)) for allm > 3.

Proof. Let £ > 1 and n > 2. Since the function Ag_; is non-decreasing, it
follows from the definition of the function as,_o that for all m > 0,

Ag_1(m) > n if and only if m > ag;_o(n).
By using this equivalence, we get the following chain of equalities:

agk(n) = min{s > 0: Ag(s) > n}
= min{s > 1: Ag(s) > n}
= min{s >1:A;_;(Ag(s—1)) >n}
= min{s > 1: Ax(s — 1) > agr_2(n)}
= 1+ min{s' Z 0: Ak (S,) Z Ckgk_g(n)}
= 1+ ag(agk-2(n)).

The second claim can be proved in a similar way. |

11

Lemma 1.16 Let k£ > 0.

1. For each n > 2, there is an s > 1 such that agfc) (n) <1.

2. For each n > 3, there is an s > 1 such that agfc)ﬂ(n) < 2.

Proof. We will prove the first claim, and leave the proof of the second claim
to the reader. By Lemma 1.9, we have Ax(m — 1) > 2(m — 1) > m for all
m > 2. Then the definition of the function as; implies that

age(m) <m —1 for all m > 2. (2)

Now assume that ol (n) > 2 for all s > 1. For s = n, this reads of}” (n) > 2.

On the other hand, by repeatedly applying (2), we obtain

n n—1
al(n) = amn(aly (n))
< agVm) -1
< ag?(n) -2

1
o (n) — (n — 1)
= ag(n)—(n—1)
< 0,
which is a contradiction. [|

Lemma 1.17 For all k > 1 and n > 0, we have

1. an(n) = min{s > 0: o) ,(n) < 1}, and
2. agg+1(n) =min{s > 0: aéz)fl(n) < 2}.

Proof. We only prove the first claim. The second claim can be proved in
a similar way. If n € {0,1}, then the first claim follows from the fact that
agg(n) = 0. So let n > 2. Let s > 1 be the smallest integer such that
agz)_Q(n) < 1. By Lemma 1.16, s is well-defined. Observe that agg_Z(n) > 2
for all 7 with 0 < j < s. By applying Lemma 1.15 twice, we get

ag(n) = 1+ agk(ogk—2(n))
= 2+ ag(or—2(02k—2(n)))

= 24 an(a) ,(n)).

12

Repeating this, we get

ag(n) = 3+a2k(a§i),2(n))

= 4+ ag(aly ,(n))

s—1
= (5= 1)+ an(ay 3 ()
= s+ azn(ofy ,(n).
Since ozg?_z(n) € {0,1}, we have Osz(agZ)_Q(n)) = 0. Hence, ag(n) = s,
which is exactly what we wanted to show. |

We now define the Ackermann function A and its functional inverse c.

Definition 1.18 (Ackermann function) The Ackermann function A: N —
N is defined by
A(n) := Ap(n) for all n > 0.

The reader can easily verify that A(0) =0, A(1) =2, A(2) =4, A(3) =
216 = 65,536. Moreover, we have

2

A4) = A5 | 22
65,536

Definition 1.19 (inverse Ackermann function) The inverse Ackermann
function o : N — N is defined by

a(n) :==min{s > 0: A(s) > n} for all n > 0.

By Lemma 1.9, we have A(n) = A,(n) > 2n > n, for alln > 0. Therefore,
the function « is well-defined. It is not difficult to verify that «(0) = 0,
a(l) =1, a(2) =1, a(3) = 2, and «(65,536) = 3. Although the function « is
unbounded, it grows extremely slowly. In fact, for all practical applications,
we have a(n) < 4.

Lemma 1.20 The function a is non-decreasing.

13

Proof. The proof is similar to that of Lemma 1.14. |

We now consider the behavior of the function ag(n) for values of £ that
are close to a(n). Observe that for such k&, the index of the function oy
depends on n.

Lemma 1.21 The following inequalities hold:
1. agq(ny—2(n) > a(n) for alln > 1,
<«

2. azam)(n) (n) for alln >0, and

8. ga(ny+2(n) <4 for alln > 0.
Proof. Let n > 1. The definition of the function « implies that
Agmy-1(a(n) = 1) = A(a(n) — 1) < n.
Combining this with the definition of the function asam)—2(n), i-e.,
Q2a(n)—2(n) = min{s > 0: Aym)-1(s) > n},

and the fact that the function A,)—1 is non-decreasing, we obtain cga(ny—2(n) >
a(n) — 1. Since auan)—2(n) and a(n) are integers, this proves the first in-
equality.
To prove the second inequality, let n > 0. The definition of the function
o implies that
Aamy(a(n)) = A(a(n)) > n.

Since
Q2q(n) () = min{s > 0 : Aym)(s) > n},

it follows that agam)(n) < a(n).
It remains to prove the third inequality. Let n > 0. Lemma 1.12 implies
that for all £ > 0,

Ap1(3) > Ap(4) > Ap1(5) > ... > Ag(k+4) =2(k +4) > k.

Combining this inequality with the fact that the function Ay is non-decreasing,
we get
Apt1(4) = Ap(Ak+1(3)) = Ar(k) = A(k),

14

for all £ > 0. For k := «(n), this reads
Aamyr(4) > Afa(n)).
By the definition of «, we have A(a(n)) > n. Hence,
Aamy+1(4) = n.
Then the definition of the function value ayu(n)+2(n), i-e.,

a20¢(”)+2(n) = min{s >0: Aa(n)+1 (8) > TL},

immediately implies that aqm)+2(n) < 4. [|

1.4 Computing the a-values

See La Poutre’s thesis.

1.5 Monotone diameters larger than three

We are now ready to solve the shortcutting problem for a list L with n
vertices and monotone diameter k, for values of k that are greater than or
equal to four. The basic idea was given in Section 1.2. The formal algorithm,
which we denote by mono_diam(L,n, k), is given in Figure 3.

Lemma 1.22 Let L be a list on the verter set V', let n be the number of
vertices of V., and let k > 4. The graph G = (V, E) that is computed by
algorithm mono_diam(L,n, k) has monotone diameter less than or equal to

k.

Proof. We prove that the algorithm terminates. Using this, the claim about
the monotone diameter can be proved by a straightforward induction on k.

Let £ > 4 and n > k+2. Consider the non-negative integers £ := ay_o(n)
and m := |n/¢| that are used in the algorithm. Since n > 6, it follows easily
from the definition of the function ay_5 that £ > 1. Also, by (2), we have
L =ay 9(n) <n-—1if k—2is even. It is easy to verify that this inequality
also holds if £ — 2 is odd. Hence, we know that 0 < /—1 <n —2 < n. This
shows that the list L; in the recursive call mono_diam(L;, ¢ — 1,k) has less
than n vertices. It is also easy to see that 0 < n—mf < £ < n, which implies

15

Algorithm mono_diam(L,n, k)
(x L is a list with n vertices and k£ > 4. The algorithm returns a
graph whose monotone diameter is at most k.)
ifo<n<k+1
then F := edge set of L;
return F
else number the vertices of L as x1, 29, ..., Z,;
0= ag_s(n);
m:= |n/l|;
L' := list containing the vertices x;, 1 <1i < m;
E' := mono_diam(L',m, k — 2);
E} = {{xig+j,$(i+1)g} 0<i<m-1,1<j</{-1};
Ey = {{zme,zj} :ml+1< 5 <n};
fori:=0tom—1
do L, := list containing the vertices z;, il +1 < j < (i+1)¢ — 1,
E; :== mono_diam(L;, ¢ — 1,k)
endfor;
L, := list containing the vertices z;, ml +1 < j <mn;
E = mono_diam(Ly,,n — ml, k);
E=FUE/UESUEUEUE U...UE,;;
return F
endif

Figure 3: Constructing a graph having monotone diameter less than or equal
to k.

that the list Ly, in the recursive call mono_diam(L,,,n—m/, k) has less than
n vertices.]

For each k£ > 2, we denote by Fi(n) the number of edges in the graph
that is computed by algorithm mono_diam(L,n, k), when given a list L with
n vertices. Lemmas 1.2 and 1.5 give upper bounds for the functions F; and
F3. From algorithm mono_diam(L,n, k), we obtain the following recurrence
for the functions Fj with k& > 4:

16

0 if n=0,
Fe(n) < ¢ n—1 if1<n<k+1,
2n+ Fy_o(m) +m - Fr({ — 1)+ Fy(n —fm) ifn>k+2,
(3)

where £ := a;_s(n) and m := |n//].
Lemma 1.23 For all k > 2 and n > 0, we have
Fi(n) < knag(n) + n.

Proof. The proof is by a double induction on £ and n. For k = 2, the claim
follows immediately from Lemma 1.2. If £ = 3 and n = 0, then the claim
follows from the fact that F3(0) = 0. For £ = 3 and n > 1, the claim follows
from Lemma 1.5. Let £ > 4 and assume that

Fr o(s) < (k—2)sag o(s) + s (4)
for all s > 0. We will prove that
Fi(n) < knoag(n) +n (5)

for all n > 0. If n = 0, then (5) holds, because Fi(0) =0. If 1 <n < k+1,
then (5) follows from the fact that Fy(n) < n—1. Solet n > k + 2 and
assume that

Fi(s) < ksoy(s)+s (6)

for all s with 0 < s < n. Let £ := ax_s(n) and m := |n/f]. Then m <
n/ag—s(n) < n. Since the function oy, is non-decreasing, it follows that

mag_o(m) < mag_s(n) =ml <n.
Hence, by the induction hypothesis (4), we obtain
Fi_o(m) < (k —2)mag_o(m) +m < (k —2)n+ m.

We saw in the proof of Lemma 1.22 that 0 < ¢ — 1 < n. Therefore, by the
induction hypothesis (6), we have

Fl—1) < k(f—1)ap(t—1)+€—1

k(€ — 1) () + € — 1.

VANVAN

17

Since 0 < n —fm < £ < n, it follows from the induction hypothesis (6) that

Fi(n —¢m) k(n —fm) ag(n — fm) +n — fm

k(n —€m) ag(€) +n — ¢m.

IN A

Combining these inequalities with the recurrence (3), we get

Fie(n) < 2n+(k—=2)n+m+mk({ —1)ap(f) + m(l—1)
+k(n —tm) ag(f) +n —Im
= k(n—m)ax(l) + (k+ 1)n.

By Lemma 1.15, we have
ag(n) =1+ ag(ou—2(n)) =1+ a(f).

We conclude that

Fi(n) < k(n—m)(ax(n)—1)+(k+1)n
= knoag(n)+n+km(l — ax(n))
< knag(n) + n,
where the last inequality follows from the fact that ax(n) > 1. n

Let Ty (n) denote the running time of algorithm mono_diam (L, n, k), when
given a list L with n vertices. There is a positive constant ¢ such that

To(n) < c ifo<n<k+1,
FIVS en+Too(m) +m-To(€ — 1) + Ti(n — tm) ifn > k+2,

where £ := y_o(n) and m := |n/¢|. This recurrence solves to Ty(n) =
O(kn ax(n)), where the constant factor in the Big-Oh bound is independent
of k. We have proved the following result.

Theorem 1.24 Given a list with n vertices and an integer k > 2, we can
compute, in O(knag(n)) time, a graph on these vertices having at most
knag(n) + n edges and whose monotone diameter is less than or equal to
k. The constant in the Big-Oh bound does not depend on k.

18

1.6 Shortcutting a list using O(n) edges

In this section, we consider shortcuttings of a list with n vertices that use
O(n) edges. Observe that Theorem 1.24 does not give such a shortcutting.

Bucketing: Let L = (z1,9,...,1,) be a list, £ := 2a(n) + 6, and
m :=n/l. Let L' be the list containing every ¢-th vertex of L. We
apply Theorem 1.24, with k = 2a(n) + 2, to L'. Hence, we connect
the vertices of L' by a graph whose monotone diameter is at most
2a(n)+2 and whose number of edges is O(km ax(m)) = O(km ax(n)).
Since ay(n) < 4—see Lemma 1.21—the graph on L' has O(n) edges.
The vertices of L' divide L into m sublists, each containing ¢ — 1
vertices. We connect each sublist using the edges of L; hence no new
edges are added to the sublist. Finally, we connect each vertex of
L\ L' to its left and right neighbors in L'.

The formal algorithm, which we denote by lin_mono_diam(L,n), is given
in Figure 4.

Theorem 1.25 Algorithm lin_mono_diam(L,n) computes a graph on the n
vertices of the list L having at most Tn edges and whose monotone diameter
is less than or equal to 2a(n) + 4. The running time of this algorithm is

O(n).

Proof. Let V be the vertex set of L. Consider the edge set E that is returned
by the algorithm and let G = (V, E) be the corresponding graph.

If 0 < n < 2a(n) + 5, then the theorem clearly holds. Assume that
n > 2a(n) + 6. Let i and j be two indices such that 1 < i < j < n, and
consider the vertices x; and z; of the list L. We will prove that x; and x; are
connected, in G, by a monotone path having at most 2a(n) + 4 edges.

If both z; and z; are contained in L', then there is a monotone path in
G between them, having at most k¥ = 2a(n) + 2 edges. If one of z; and z;
is contained in L', then G contains a monotone path between them having
at most k + 1 = 2a(n) + 3 edges. The list L' divides the list L into sublists
of length less than or equal to ¢ — 1, where ¢ = 2a(n) + 6. If z; and z; are
in different sublists, then G contains a monotone path between them having
at most k£ + 2 = 2a(n) + 4 edges. The remaining case is when z; and x; are
contained in the same sublist. Since a sublist contains at most £ — 1 vertices,

19

Algorithm lin_mono_diam(L,n)
(* L is a list with n vertices. The algorithm returns a graph with
O(n) edges whose monotone diameter is at most 2a(n) + 4. *)
k= 2a(n) +2;
ifo<n<k+3
then F := edge set of L;
return F
else number the vertices of L as x1, 29, ..., Z,;
¢:=2a(n) + 6;
m:=|n/l];
L' := list containing the vertices x;, 1 <1i < m;
E' := mono_diam(L',m, k);
Ei = {{xiﬁ—jax(i—f—l)é} 0<1<m— 1, 1<] < l— 1};
Ey = {{zi,%ie1;} : 1 <i<m—-1,1<j5< -1}
Ej = {{zme,zj} :ml+1< 5 <n};
fori:=0tom—1
do Ez = {{ﬁUj,.’L'j_H . Zg—f‘ 1 S j S (’L+ 1)6— 2}
endfor;
E, ={{zj,zj41 : tm+1<j<n-1}
E=FUE/UESUEUE,UE U...UE,;;
return F
endif

Figure 4: Shortcutting a list using O(n) edges.

it follows that in this case, there is a monotone path in G between zx; and
z; having at most £ — 2 = 2a(n) + 4 edges. This proves that the monotone
diameter of the graph G is less than or equal to 2a(n) + 4.

Next, we prove the upper bound on the number of edges of the graph
G. Consider the edge set E’ that is computed by the algorithm. By Theo-
rem 1.24, we have

|E'| < km ag(m) + m.
We know from Lemma 1.21 that ax(n) < 4. It follows that

|E'| < k(n/f)ag(n) +n/t
< (4k+1)n/t

20

< A4n.

Finally, it is easy to see that the total size of the other edge sets that are
computed by the algorithm, i.e., E{, E}, E5, Ey, E, . .., Ep,, is bounded from
above by 3n. This proves that the graph G contains at most 7n edges.

The O(n)-bound on the running time of algorithm lin_mono_diam(L,n)
follows in a similar way. |

We now show how the monotone diameter can be reduced to 2a(n) + 2,
while still using O(n) edges. In fact, this improved solution even uses less
edges than the solution of Theorem 1.25.

Bucketing and skip lists: Consider the integers £ and ¢, and the
list L' in algorithm lin_mono_diam(L,n). This list L' divides L into
sublists, each containing ¢ — 1 vertices. We connected the vertices
within each sublist by a list, having monotone diameter ¢ — 2. In
our improved solution, we connect the vertices within a sublist by
a deterministic skip list. In this way, the monotone diameter for
each sublist will be at most 2log(¢ — 1). As we will see, by choosing
the integers k£ and / slightly smaller and larger, respectively, than
in algorithm lin_mono_diam(L,n), we improve upon the result of
Theorem 1.25.

In the rest of this section, we will formalize this idea.

Lemma 1.26 Let L be a list with n vertices. In O(n) time, we can com-
pute a graph on these vertices having at most 2n edges and whose monotone
diameter s less than or equal to 2logn.

Proof. The graph is a deterministic skip list on the vertices of L. |

We denote the algorithm that takes as input a list L with n vertices and
returns the graph of Lemma 1.26, by skip _list(L,n). The improved algorithm,
which we denote by lin_mono_diam'(L,n), is given in Figure 5.

Theorem 1.27 Algorithm lin_mono_diam'(L,n) computes a graph on the n
vertices of the list L having at most 4n + o(n) edges and whose monotone

21

Algorithm lin_mono_diam'(L,n)
(* L is a list with n vertices. The algorithm returns a graph with
O(n) edges whose monotone diameter is at most 2a(n) + 2. *)
k= 2a(n);
ifo<n<k+3
then F := edge set of L;
return F
else number the vertices of L as x1, 29, ..., Z,;
(=14 2ite),
m:=|n/l];
L' := list containing the vertices x;, 1 <1i < m;
E' := mono_diam(L',m, k);
Ei = {{$i5+j,$(i+1)g} :0 S 1 S m —]., 1 S] S l— 1},
Eé = {{.Iig,.fi“_j} | SZSm—l,l Sj Sg—l},
Ey = {{zme,z;} - ml+1<j<nk
fori::=0tom—1
do L; := list containing the vertices z;, il +1 < j < (i +1)¢ — 1;
E; := skip _list(L;, £ — 1)
endfor;
L,, := list containing the vertices z;, ml +1 < j <m;
E,, = skip list(Lp,,n — mkb);
E=FUE/UESUEUEUE U...UE,;;
return F

endif

Figure 5: The improved shortcutting algorithm.

diameter is less than or equal to 2a(n)+2. The running time of this algorithm
is O(n).

Proof. Let V be the vertex set of L. Consider the edge set E that is
returned by the algorithm and let G = (V, E) be the corresponding graph.
If 0 < n < 2a(n) + 3, then the theorem clearly holds. Assume that n >
2a(n) + 4. By considering different cases as in the proof of Theorem 1.25,

and using Lemma 1.26, it follows that the monotone diameter of the graph
GG is bounded from above by

max(k + 2,2log(¢ — 1)) = 2a(n) + 2.
22

Next, we analyze the number of edges of the graph G. First consider the
edge set E’ that is computed by the algorithm. It follows from Theorem 1.24
that

|E'| < kmag(m) +m = (kag(m) +1)m

By Lemma 1.21, we have o (n) = aaa(m)(n) < a(n). Therefore,

|E| (kag(n) + 1)m
(ka(n)+1)n/t
2(a(n))?+1 o
1+ 921+a(n)

= o(n).

<
<

By Lemma 1.26, the total size of the edge sets Ey, 1, ..., E,, is less than or
equal to 2n. Finally, the lists E{, Ej, and E} together have size at most 2n.

This proves that the graph G contains at most 4n+o(n) edges. In a similar
way, it follows that the running time of algorithm lin_mono_diam'(L,n) is
O(n). [

23

