
Partial Enclosure Range Searching∗

Gregory Bint1 Anil Maheshwari1 Subhas C. Nandy2 Michiel Smid1

1 School of Computer Science, Carleton University, Canada,

{gbint, anil, michiel@scs.carleton.ca}
2 Indian Statistical Institute, Kolkata, India, nandysc@isical.ac.in

Abstract: A new type of range searching problem, called the partial enclosure range

searching problem, is introduced in this paper. Given a set of geometric objects S and

a query region Q, our goal is to identify those objects in S which intersect the query region

Q by at least a fixed proportion of their original size. Two variations of this problem are

studied. In the first variation, the objects in S are axis-parallel line segments and the goal

is to count the total number of members of S so that their intersection with Q is at least

a given proportion of their size. Here, Q can be an axis-parallel rectangle or a rectangle

of arbitrary orientation. In the second variation, S is a polygon and Q is an axis-parallel

rectangle. The problem is to report the area of the intersection between the polygon S and

a query rectangle Q.

Keywords: Partial range search, simplex range searching, data sreucture, computational

geometry

1 Introduction

In a geometric range searching problem, a set of geometric objects S are given, such as

points, lines, circles, or boxes, and the query is with respect to another well-defined geo-

metric object Q. The objective is to identify all elements in S contained within the query

region Q. Traditionally, preprocessing schemes are developed to build a data structure so

that queries can be answered efficiently. Over the past four decades, several variants of

range searching problems have been studied depending on the complexity of the objects in

S, the query region Q, and the query requirements.

In this paper, we address a different variation of this problem, called partial enclosure range

searching (PERS). To the best of our knowledge, this problem is not studied previously.

In this setting, the goal is to identify, for a given query region Q, all objects in S that

satisfy the partial enclosure property. An object in S is said to satisfy the partial enclosure

∗Research supported by NSERC.

1

Figure 1: An example of partial enclosure range searching in Microsoft OneNote. The

selected line segments are not entirely enclosed in the query region.

property if at least some fixed proportion of the object (with respect to its length, area,

volume) intersects the query region Q.

This problem was inspired by the use of Microsoft OneNote. Using a digital pen, OneNote

can be used much like a paper notebook, allowing the user to add handwriting, diagrams,

equations, etc. to a page. Figure 1 shows some handwritten notes, and a diagram which has

been partially selected. Here the horizontal line segments of the diagram are not entirely

enclosed by the selection tool, but they appear as part of the set of selected items. This

behaviour of selecting partially enclosed objects is described in a patent [6]. Although the

problems that we will examine take place in simpler settings, we will nevertheless develop an

understanding of the major challenges of this problem domain, as well as some techniques

for addressing them.

The paper proposes algorithms for the following variations of the partial enclosure range

searching problem.

PERS - Partial enclosure range searching: Given a set S of line segments in IR2, pre-

process it such that for any query object Q, which is an axis-parallel rectangle or a

slab bounded by two parallel lines of arbitrary orientation, the number of members in

S that partially (or fully) lie in Q can be reported efficiently. In this study, we have

considered S containing only axis-parallel line segments, but, Q can be a rectangle or

a slab of any arbitrary orientation.

PEAC - Partial enclosure area computation: Here, S is a monotone or arbitrary poly-

gon, and Q is a query object which may be an axis-parallel rectangle or a slab of

arbitrary orientation, and the objective is to compute the area of the region S ∩Q.

2

Table 1: Summary of Contributions

Problem Object Query Space Time Query time

PERS AP Segment AP Rectangle O

(
n
(

logn
log logn

)2
)

O(n log2 n) O

((
logn

log logn

)3
)

PERS AP Segment AO Slab O(n logn log log n) O(n log2 n log log n) O(
√
n logn)

PERS AP Segment 2 AO Slabs O(n log2 n log log n) O(n log3 n log log n) O(
√
n log2 n)

PEAC Monotone P AP Rectangle O(n logn) O(n logn) O(logn)

PEAC Simple P Horiz Slab O(n) O(n logn) O(logn)

Table 1 gives a broad overview of the proposed results in this paper. Here, ‘AP’ is used for

Axis-Parallel, ‘AO’ for Arbitrary Orientation, and ‘P’ for Polygon.

The paper is organized as follows. In Section 2, we state some preliminaries. Section 3

focuses on the partial enclosure range counting problem when the objects are axis-parallel

line segments and the query region is an axis-parallel rectangle, Section 4 considers the

counting problem in the same environment where the query region is an arbitrary-oriented

slab. Section 5 considers the partial enclosure area computation problem in polygons.

Finally, we conclude in Section 6, where we summarize our contributions and future work.

2 Preliminaries

Let P be a set of n points in IRd (d ≥ 2). A range tree for P is a data structure that

supports counting and reporting the members of P in an axis-parallel rectangular query

range [5, Chapter 5]. It can be constructed in O
(
n logd−1 n

)
time using O

(
n logd−1 n

)
space.

The counting and reporting query time complexities are O
(
logd−1 n

)
and O

(
logd−1 n+ k

)
respectively, where k is the number of reported points.

Jaja et al. [7] proposed a dominance query data structure in IRd, where the query range

is of the form [a1,∞] × [a2,∞] × . . . × [ad,∞]. The preprocessing time, space and query

time complexity results are O
(
n logd−2 n

)
, O

(
n
(

logn
log logn

)d−2)
, and O

((
logn

log logn

)d−1)
re-

spectively. Moreover, for a constant value of d, the axis-parallel hyper-rectangular range

counting query can be formulated using O(1) dominance query in IRd. Thus,

Lemma 1. Given a set P of n points in IRd (d ≥ 3), it can be preprocessed in O(n logd−2 n)

time using O

(
n
(

logn
log logn

)d−2)
space, such that the number of points inside any given axis-

parallel hyper-rectangular query region can be reported in O

((
logn

log logn

)d−1)
time.

The range trees are used to query for an axis-parallel hyper-rectangle region in IRd where

each side of the hyper-rectangle is a range of values of the corresponding variable. For

some problems considered in this paper, the ranges may be expressed using half-planes

comprising of two query variables. For those, we use the following structure described in

Chan[2], restated here with d = 2.

3

Theorem 1 (Corollary 7.3 of Chan[2]). Given a set P of n points in IR2,

(a) one can form O(n) canonical subsets C = {C1, C2, . . .} (possibly overlapping) of total

size O(n log n) in O(n log n) time, such that the query about the subset of all points

inside any given simplex can be reported as a union of the results of disjoint canonical

subsets {C1, C2, . . . , Ck} ⊆ C. Here,
∑k

i=1

√
|Ci| ≤ O(

√
n log n), and the overall query

time is O(
√
n log n) with high probability with respect to n.

(b) for any fixed γ < 1
2 , one can form O(n) (possibly overlapping) canonical subsets

C = {C1, C2, . . .} of P of total size O(n log logn) in O(n log n) time, such that the

number of points inside any given simplex can be answered as a union of the results

of disjoint canonical subsets {C1, C2, . . . , Ck} ⊆ C. Here,
∑k

i=1 |Ci|γ ≤ O(
√
n), and

the overall query time is O(
√
n) with high probability with respect to n.

This structure is particularly well-suited for multi-part queries. To support such a query,

we construct a canonical subsets structure to perform the half-plane query in the first level.

With the objects of each canonical subset, we construct a secondary query structure for the

second level query which has an existing query method. A similar structure with slightly

worse query time bounds by Matousek[8] is presented in [5, Chapter 16] with an example

of a multi-part query.

A multi-level query is executed by first querying the canonical subsets structure for all

points satisfying the half-plane. With each subset identified by the first step, the secondary

structure is searched to satisfy the conditions to test in the second-level. If the secondary

structure is itself a multi-level structure, then this procedure effectively adds one more layer,

and we can repeat this process to any arbitrary number of levels. The following corollary

formalizes the use of canonical subset structures to build multi-level structures and details

the preprocessing and query requirements.

Corollary 1.1. Given a set of n objects a1, a2, . . . , an which can be queried with a data

structure A requiring preprocessing space S(n), preprocessing time T (n), and query time

Q(n), and where each object ai also has an associated point pi in IR2, we can construct a

multi-level data structure which can identify all objects whose associated point pj satisfies a

half-plane and where aj satisfies a query on A.

(a) If S(n) ∈ O
(
n logf n α(n)

)
, T (n) ∈ O(n logg n β(n)), and Q(n) ∈ O

(√
n logh n

)
,

where f, g, h ∈ O(1) , 0 ≤ f ≤ g and α(n), β(n) are sub-logarithmic functions of n,

then the resulting multi-level data structure requires O
(
n logf+1 n α(n)

)
preprocessing

space, O
(
n logg+1 n β(n)

)
preprocessing time, and O

(√
n logh+1 n

)
query time with

high probability.

(b) If S(n) ∈ O
(
n logf n

)
, T (n) ∈ O(n logg n), and Q(n) ∈ O

(
logh n

)
, where f, g, h ∈

O(1) , 0 ≤ f ≤ g, then the resulting multi-level data structure requires O
(
n logf n log logn

)
4

preprocessing space, O(n logg n log log n) preprocessing time, and O(
√
n) query time

with high probabily.

(c) If S(n) = O

(
n
(

logn
log logn

)f)
, T (n) = O(n logg n), and Q(n) = O

((
logn

log logn

)h)
,

where f, g, h ∈ O(1) , 0 ≤ f ≤ g, then the resulting multi-level data structure re-

quires O

(
n
(

logn
log logn

)f
log logn

)
preprocessing space, O(n logg n log log n) preprocess-

ing time, and O(
√
n) query time with high probabily.

Proof. (a) Let the canonical subsets generated by Theorem 1 be P1, P2, . . . , Pm, where

m = O(n), Pi ⊆ P , for all i = 1, 2, . . . ,m, and
∑m

i=1 |Pi| =
∑m

i=1 ni = O(n log n). The

time needed for this generation is O(n log n). Now, the preprocessing space required for

the multi-level structure is
∑m

i=1O(ni logf niα(ni)) = O(n logf+1 nα(n)). Similarly, the

preprocessing time result follows.

Query requires getting the canonical subsets in O(
√
n) time and the time required for search-

ing in the associated structures of all the disjoint canonical structures C1, C2, . . . , Ck. The

total time for searching in the associated structures is
∑k

i=1Q(Ci) =
∑k

i=1O(
√
|Ci| logh |Ci|) =∑k

i=1O(
√
|Ci| logh n) = O(

√
n logh+1 n) (by Theorem 1(a)),

(b) Choosing γ = 1
4 , we have the sum of sizes of the partitions

∑m
i=1 |Pi| =

∑m
i=1 ni =

O(n log log n), where P1, P2, . . . , Pm (m = O(n)) are the generated canonical subsets by

Theorem 1(b), where Pi ⊆ P , for all i = 1, 2, . . . ,m. Thus, the preprocessing space

and time of the multilevel structure are
∑m

i=1O(ni logf ni) = O(n logf n log logn) and

O(n logf n log log n) respectively. While querying, the disjoint canonical structures C1, C2,

. . . , Ck can be computed in O(
√
n) time, and the total time required to search in the (dis-

joint) Ci’s is
∑k

i=1Q(Ci) =
∑k

i=1O(logh |Ci|) ≤
∑k

i=1O((|Ci|)γ) (for any positive constant

γ) ≤ O(
√
n) (by Theorem 1(b)). Thus, the overall query time is O(

√
n).

(c) Here also, choosing γ = 1
4 , the sum of sizes of the partitions

∑m
i=1 |Pi| =

∑m
i=1 ni =

O(n log logn), and the time needed for generating this partition is O(n log n). Now, the

preprocessing space required for the structures associated with these partitions in the multi-

level structure is
∑m

i=1O

(
ni

(
logni

log logni

)f)
= O

(
n
(

logn
log logn

)f
log log n

)
. Similarly, the

preprocessing time result follows.

Query requires getting the canonical subsets in O(
√
n) time and the time required for

searching in the associated structures of all the disjoint canonical structures C1, C2, . . . , Ck.

The total time for searching in the associated structures is
∑k

i=1O

((
log |Ci|

log log |Ci|

)h)
. Since

γ = 1
4 and h is a constant, we have

(
log |Ci|

log log |Ci|

)h
≤ |Ci|γ . Again, as

∑
i |Ci|γ ≤ O(

√
n), we

have the total query time O(
√
n) with high probability (see Theorem [2](b)).

We use this corollary as a “black box” in Section 4.

5

(α, β)

(γ, δ)

(1) (2) (3)

(4a)

(4b)

(5a)

(5b)

(6a)

(6b)

(a, b) (c, d)

Figure 2: An axis-parallel query on axis-parallel segments. Different cases of horizontal

segments interacting with the query region are shown.

3 PERS problem for Axis-Parallel Rectangles

Problem 1. Given a set S of n axis-parallel line segments in the plane, and a fixed pa-

rameter ρ (0 < ρ ≤ 1), count those segments in S which are sufficiently enclosed by an

axis-parallel query rectangle Q so as to satisfy the partial enclosure property, defined below.

Definition 1. For a given ρ (0 < ρ ≤ 1), a segment s ∈ S is said to satisfy the partial

enclosure property with respect to a query object Q if and only if |s∩Q| ≥ ρ · |s|, where |x|
denotes the length of the segment x.

We use the following notation. Each segment si = (ai, bi, `i) ∈ S, 1 ≤ i ≤ n is defined by its

left or bottom endpoints (ai, bi) depending on whether si is horizontal or vertical, and its

length `i. The query rectangle Q is given by its bottom-left corner (α, β) and its top-right

corner (γ, δ). We say that si ∈ρ Q if and only if si satisfies the partial enclosure property

w.r.t. Q, otherwise si 6∈ρ Q.

For horizontal segments, we only need to consider the segments s = (a, b, `) satisfying

β ≤ b ≤ δ. Figure 2 illustrates several cases regarding how such a segment may interact

with Q. Cases (1), (2), and (3) demonstrate the cases where s is entirely to the left, entirely

within, or entirely to the right of Q, respectively. Case (4) considers the situation where s

crosses only the left boundary of Q (i.e., α ≤ a+` ≤ γ). Depending on the partial enclosure

parameter ρ, we further subdivide case (4) into subcases (4a) if s ∈ρ Q, and (4b) if s 6∈ρ Q.

Cases (5a) and (5b) are similar to cases (4a) and (4b), but with respect to γ. Specifically,

s falls into case (5a) or (5b) when α ≤ a ≤ γ and a+ ` > γ. In case (6), s crosses both the

left and right boundaries of Q, with neither of its endpoints inside Q; the subcases are (6a)

if s ∈ρ Q and (6b) if s 6∈ρ Q. Our goal is to count all segments belonging to cases (2), (4a),

(5a), and (6a), and none of the segments belonging to any other case.

Let w = γ − α be the width of Q. We need to consider only the segments in S1 = {si ∈

6

S | β ≤ bi ≤ δ & `i ≤ w
ρ }, discarding all segments in case (6b), among others. We

partition the members in S1 according to the location of their left endpoint with respect

to α. Specifically, let SL = {si ∈ S1 | ai < α} and let SR = {si ∈ S1 | ai ≥ α}. Now, we

test an appropriate partial enclosure expression to determine whether si should be counted.

For segments in SL, we want to ensure that “not too much of si is outside of Q”, i.e.,

S′L = {si ∈ SL | α − ai < (1 − ρ) · li}. Thus, the segments in cases (4a) and (6a) satisfy

this test. For segments in SR, we want to ensure that “enough of si is inside Q”, i.e.,

S′R = {si ∈ SR | γ − ai ≥ ρli}. The cases (2) and (5a) satisfy this test. Thus, we have the

following observation.

Observation 1. The subset of segments satisfying the partial enclosure property is Sρ =

S′L ∪ S′R.

The members in S′L can be identified by mapping each segment si ∈ S to a point ŝi =

(bi, ρ · `i, ai, ai + (1 − ρ) · `i) in IR4, and then observing those points lying inside the four

dimensional query box Q̂ = [β, δ] × (0, w] × (−∞, α] × (α,∞). Similarly, the members in

S′R can be identified by mapping each segment si ∈ S to a point ˆ̂si = (bi, ρ · `i, ai, ai + ρ · `i)
in IR4, and then observing those points lying inside the four dimensional query box

ˆ̂
Q =

[β, δ]× (0, w]× [α,∞)× (−∞, γ].

We can answer these queries by constructing two 4D range trees [5] with two sets of points

{ŝi|si ∈ S} and { ˆ̂si|si ∈ S} respectively, and executing the counting query with the corre-

sponding 4D query rectangle. The preprocessing time and space required for constructing

these two range trees are both O
(
n log3 n

)
, and the query can be answered in O

(
log3 n

)
time. Finally, we report the sum of two results as the answer of the query. Note that we can

use the same first three levels for both the range trees since the first three components of

both the types of query points (for a < α and a > α) are same. In the fourth level, at each

node we create two associated structures, one for each of the partial enclosure expressions,

and query the one as needed.

For vertical segments, the method of querying is exactly similar to that for horizontal

segments, only we need to consider the height of Q instead of its width, and we consider

symmetric coordinates of each segment while mapping them to points in 4D. Using Lemma

1, we have the following theorem that summarizes the solution of this problem.

Theorem 2. Given a set of n axis-parallel line segments, we can identify a set of disjoint

subsets containing all segments which satisfy the partial enclosure property for an axis-

parallel query rectangle in O

((
logn

log logn

)3)
time, with a data structure requiring O

(
n
(

logn
log logn

)2)
space created in O

(
n log2 n

)
time in the preprocessing phase of the algorithm.

7

4 PERS problem for Arbitrarily-Oriented Slabs

In this section, we show how we can answer partial enclosure range searching queries where

the elements of S are horizontal line segments, and the query region Q is a slab bounded by

two parallel lines of arbitrarily orientation. Next, we extend our solution for a query region

which is the intersection of two slabs.

4.1 Querying with One Slab

Problem 2. We are given a set S of n horizontal line segments in the plane, and a fixed

parameter ρ such that 0 < ρ ≤ 1. The objective is to identify those segments which are

sufficiently enclosed inside (satisfy partial enclosure property with respect to) an arbitrarily

oriented (not necessarily parallel to any one of the coordinate axis) slab Q.

As in Section 3, here also we use a triple si = (ai, bi, `i) to represent an object in S. The

query slab Q is given by three inputs - (α, β, w), where the left and right bounding lines of

Q are defined by L1 : y = αx+β and L2 : y = αx+β−αw respectively; w is the horizontal

width of Q.

Identifying whether a segment si ∈ρ Q requires three broad steps: (i) restrict segments

to those which are “not too long” to fit sufficiently inside Q, (ii) classify all segments by

whether their left endpoints are left or right of L1, and (iii) for each class of segments, test

an appropriate partial enclosure expression. We will use a multi-level canonical sets data

structure [2] for answering these queries. We now describe the different steps of the query

in more detail.

Step 1 [Restrict length]: Here, we perform a length test, as it simplifies future steps. With

the query parameter w given, only segments with length ` ≤ w
ρ can satisfy the partial

enclosure property. Thus, with a 1-dimensional orthogonal range to query we can extract

a subset S1 = {s ∈ S | ρ` ≤ w}.
Step 2 [Classify Endpoints]: The left endpoints of the members of S can be in any one

of the following three regions: (1) left of L1, (2) between L1 and L2, and (3) right of L2.

Note that, the segments belonging to cases (1) and (2) are only interesting to us. However,

the partitioning segments as left or right of L1 is sufficient, as we can discriminate between

cases (2) and (3) while testing partial enclosure expressions in the next step.

Identifying segments whose left endpoints appear to the desired side of L1 can be accom-

plished using a half-plane query on the left endpoints of the members in S. Thus, we have

SL = {s ∈ S1 | p is left of L1}, and let SR = {s ∈ S1 | p is right of L1}.
Step 3 [Check the partial enclosure property]: For each of SL and SR, the final step is to

identify those segments which satisfy the partial enclosure property.

Set SL can be classified into four subsets as follows (see Figure 3(a)):

(1) Segments which are entirely left of L1 (and which are not counted),

8

L1 : y = αx+ β L2 : y = αx+ β − αw

(1)

(2)

(3)

(4)

(a)

L1 : y = αx+ β L2 : y = αx+ β − αw

(1)

(2)

(3)

(4)

(b)

Figure 3: Segments with left endpoints (a) to the left of L1, and (b) between L1 and L2.

(2) Segments which intersect L1, and are sufficiently enclosed by Q,

(3) Segments which intersect L1, but not sufficiently enclosed byQ (these are not counted),

(4) Segments which intersect both L1 and L2.

Given a segment s = (a, b, `) ∈ SL, with left endpoint p = (a, b), let s : y = b be the line

through s, and let (a′, b) be the point of intersection of s and L1, where a′ = b−β
α .

Observation 2. s ∈ρ Q if and only if a′ − a < (1− ρ)`.

Proof. We look at each of the above cases to show that this single expression is enough to

identify all segments correctly. First, the test directly identifies segments belonging to cases

(2) or (3) since a′ − a is precisely the amount of s outside of Q. This test rejects segments

in case (1) since a′ − a > ` > (1− ρ)` and cannot satisfy partial enclosure property for any

allowed value of ρ.

If a segment is not too far left of L1, then either it crosses only L1, and case (2) holds, or

it crosses L1 and L2. In the latter case we know that |s| < w
ρ , where w is the width of the

query slab. Since any segment in case (4) has the property |s ∩ Q| = w, this implies that

s ∈ρ Q.

Thus, among the segments in SL, we can count those satisfying the partial enclosure prop-

erty by executing a halfplane range counting query: a′−a < (1−ρ)` ≡ a+(1−ρ)` > 1
αb−

β
α .

We map each segment s to a point with coordinates (b, a+ (1− ρ)`). The segments in SL

satisfying the partial enclosure expression then correspond to the points satisfying the half-

plane y > 1
αx−

β
α .

The segments in SR can also be classified into four subsets as follows (see Figure 3(b)).

(1) Segments which are between L1 and L2. Here, s ∈ρ Q.

(2) Segments which are entirely to the right of L2. Here s ∩Q = ∅, and hence s 6∈ρ Q.

(3) Segments which intersect L2, and s ∈ρ Q.

(4) Segments which intersect L2, but s 6∈ρ Q.

9

Let s be the horizontal line through s, and (a′′, b) be the intersection point of s with L2

where a′′ = b−β
α + w. The following observation is easy to follow.

Observation 3. s ∈ρ Q if and only if a′′ − a ≥ ρ`.

As in the case of SL, here also the counting of elements in SR satisfying a′′ − a ≥ ρ`, or

equivalantly ρ`+a ≤ 1
αb−

β
α +w, can be done using a half-plane range query. Here we map

each segment s = (a, b, `) ∈ SR to a point (b, ρ`+ a), and the query is performed with the

halfplane y ≤ 1
αx−

β
α + w.

4.1.1 Data structure and complexity analysis

We will use the multi-level canonical sets data structure described in Section 2 to perform

this query. Each of the three steps of the query will correspond to one nested level of the

final data structure. It is easiest to describe the structure inside-out, so we begin with the

innermost structure.

The innermost structure answers the length restriction step of the overall query. This is

answered in O(log n) time using a 1-dimensional range tree, which can be realized as an

AVL tree [5], keyed on the segment lengths. The size of this data structure is O(n), and

can be built in O(n log n) time during the preprocessing.

In the next level, we identify segments with partial enclosure property. We maintain two

half-plane query data structures for SL and SR (as mentioned in the discussion after Ob-

servation 2 and 3 respectively).

With each subset created for this structure, we will associate the structure required for

testing the length restriction. Applying Corollary 1.1(b) gives us the following result.

Lemma 2. Given a set of n horizontal line segments, we can identify a set of disjoint

subsets containing all segments which are not “too much” to a specific side of a query line

and which do not exceed a maximum length in O(
√
n) time, using a data structure of size

O(n log log n), which can be built in O(n log n log logn) preprocessing time.

In the topmost level, we have the data structure for classifying the left-endpoints of the

segments as left or right of L1. We attach both the data structures (for SL and SR) at each

internal node of this data structure. By Corollary 1.1(a) with α(n), β(n) = log log n, we

have the following result.

Lemma 3. Given a set of n horizontal line segments, we can identify a set of disjoint

subsets containing all segments whose left endpoints are to a specific side of a query line,

which are not “too much” to a specific side of another query line, and which do not exceed

a maximum length in O(
√
n log n) time, using a data structure of size O(n log n log log n),

which can be built in O
(
n log2 n log logn

)
preprocessing time.

10

L1 L2 L3 L4

Sp Sn

Q

y = αx+ β y = α(x− wp) + β y = γx+ δ y = γ(x+ wn) + δ

wp wn

Figure 4: A query parallelogram Q formed by the inputs α, β, wp, γ, δ, and wn.

Finally, to fully answer the query Q, we need to preprocess two such data structures,

choosing our expressions appropriately for the left and right cases. During query time, we

will query both structures and combine their results. The following theorem summarizes

the overall solution.

Theorem 3. Given a set of n horizontal line segments, we can identify a set of disjoint

subsets containing all segments which satisfy the partial enclosure property for an arbitrarily-

oriented query slab in O(
√
n log n) time, using a data structure of size O(n log n log log n),

requiring O
(
n log2 n log log n

)
preprocessing time.

4.2 Querying with Two Slabs

In this subsection, we consider a generalization of the slab query, where the objects in S are

same as in Section 4.1, and the query input are a pair of slabs; we are interested in those

segments which satisfy the partial enclosure property with respect to their intersection.

Formally, the problem is stated as follows:

Problem 3. Given a set S of n horizontal line segments in the plane and a fixed parameter

ρ such that 0 < ρ ≤ 1, we want to identify those segments s ∈ S that satisfy the partial

enclosure property (s ∈ρ Q) with respect to a parallelogram Q, or in other words, |s ∩Q| ≥
ρ · |s|.

Here the query parallelogram Q is defined by the intersection of two slabs with positive

and negative slopes respectively (see Figure 4). If the two slabs are orthogonal, then the

query is with respect to a rectangle of arbitrary orientation. The overall approach is very

similar to subsection 4.1. Specifically, a query region Q = Sp ∩ Sn is given as a 6-tuple

(α, β, wp, γ, δ, wn), where α > 0, wp > 0, γ < 0, and wn > 0. More specifically, we have

11

wp < wn wp > wn

Qa

Qb

Qc

Qa

Qb

Qc

S1

S2

S3

S4

S5

Figure 5: Decomposition of the query region Q. The orientation of Q depends on the

relative widths of the slabs which define it.

Sp: a slab (α, β, wp) with positive slope α, whose left edge is defined by the line L1 : y =

αx+β, and the width is wp. Thus, its right edge is defined by L2 : y = α(x−wp) +β.

Sn: a slab (γ, δ, wn) with negative slope γ, whose left edge is defined by the line L3 : y =

γx+ δ, and the width is wn. Thus, its right edge is defined by L4 : y = γ(x+wn) + δ.

Q: The parallelogram Sp ∩ Sn.

Just as in the single slab problem, identifying the segments si ∈ρ Q is accomplished by

classifying its endpoints by how they interact with the boundaries of Sp and Sn forming Q,

and then testing an appropriate partial enclosure expression.

The query Q is decomposed into three regions, Qa, Qb, and Qc, by extending horizontal lines

through each vertex of Q. Qa and Qc are triangular regions, while Qb is a parallelogram.

Qa is defined by L1 on the left and L4 on the right. Likewise, Qc, is defined by L3 on the

left and L2 on the right. The definition of Qb depends on the overall orientation of Q, which

depends on the relationship between wp and wn. Specifically, Qb is defined by L1 and L2

when wp < wn and is defined by L3 and L4 when wp > wn. When wp = wn, Qb disappears.

Thus, based on the query input, we can define five horizontal slabs as shown in Figure 5.

The subset of segments in S falling in the i-th region is named as Si, i = 1, 2, 3, 4, 5. In each

horizontal slab, we have three zones, namely ZL, ZC , and ZR, where the center zone ZC is

the query region itself. Figure 6 gives an illustration; ZL, ZC , and ZR are coloured blue,

green, and red, respectively. The segments in the i-th horizontal slab can be classified into

six groups: (ZL, ZL), (ZL, ZC), (ZL, ZR), (ZC , ZC), (ZC , ZR), or (ZR, ZR), where the first

and second component in the tuple of each group represents the zone containing respectively

the left and right endpoint of the segments lying in that group. For a segment s ∈ S with

endpoints p and q:

• If p, q ∈ (ZC , ZC), then s is entirely inside Q and s ∈ρ Q.

12

Qa

Qb

Qc

Figure 6: Classification zones for each region of Q. Each region has a left, center, and right

zone, coloured blue, green, and red, respectively, where we may find segments which need

further testing.

• If p, q ∈ (ZL, ZL), or p, q ∈ (ZR, ZR) then s is entirely outside Q and s 6∈ρ Q.

• Otherwise, s crosses one or both boundaries of the query region and we need to test

the appropriate partial enclosure expression.

Note that, Qb may be a parallelogram, which we decompose into two triangular regions.

4.2.1 Partial enclosure property

We begin with examining Qa in detail. Let s = (a, b, `) ∈ S be a horizontal line segment

and let s be the line through s, defined by the equation y = b. Let (a′, b) = s ∩ L1 and

(a′′, b) = s ∩L4, be the intersection points of s with L1 and L4, respectively, then a′ = b−β
α

and a′′ = b−δ
γ − wn. We have three combinations of classification zones that need further

testing.

For the (ZL, ZC) case, we know that s only crosses L1. We check that not too much of s is

outside of Qa, giving the partial enclosure expression: a′ − a < (1− ρ)`, or in other words,

b 1α −
β
α < a+ (1− ρ)`.

We can query for segments matching this expression by performing a half-plane query.

We map each segment s to a point with coordinates (b, a + (1 − ρ)l), and query with the

half-plane y > 1
αx−

β
α .

For the (ZC , ZR) case, we know that s only crosses L4. We check that enough of s is

inside Qa, which gives the partial enclosure expression: a′′ − a ≥ ρ`, or in other words,

b · 1γ − δ
γ −wn ≥ a+ ρ`. We can test this expression by mapping each segment s to a point

with coordinates (b, a+ ρl) and then querying with the half-plane y ≤ 1
γx− δ

γ − wn.

Finally, for the (ZL, ZR) case, we know that both endpoints of s are outside of Qa, so we

13

only need to measure the width of s ∩Qa. Specifically, we require that:

a′′ − a′ ≥ ρl

=⇒ b− δ
γ
− wn −

b− β
α
≥ ρl

=⇒ b

γ
− δ

γ
− wn −

b

α
+
β

α
≥ ρl

=⇒ b ·
(

1

γ
− 1

α

)
+

(
β

α
− δ

γ
− wn

)
≥ ρl

We can test this expression by mapping each segment s to a point with coordinates (b, ρl)

and then querying with the following half-plane: y ≤
(

1
γ − 1

α

)
· x+

(
β
α − δ

γ − wn
)
.

Classification into the left and right zones is somewhat “rough”, as the zone continues above

Qa itself. This is not a problem in the (ZL, ZC) and (ZC , ZR) cases since one endpoint of

s is classified directly in the closed zone ZC and the segments are horizontal. However, it

can happen that a segment classified into (ZL, ZR) is entirely above Qa. In this case, since

we are measuring a′′−a′, and a′′ < a′ above the apex of Qa, the expression will be negative

and the segment will be rejected.

The partial enclosure expressions for Qb and Qc are developed using exactly the same

reasoning as for Qa, differing only by which of the lines L1, L2, L3, and L4 we use to define

a′ and a′′.

4.2.2 Construction and analysis

We will use a multi-level query structure for this problem, just as we did for the single slab

query. Here, each step corresponds to one nested level of the data structure to be proposed

here. Also, we explain the data structure for counting segments intersecting Qa that satisfy

the partial enclosure property. The test is decomposed in three stages.

Stage 1: In this stage, we identify the segments that lie in the horizontal slab containing

Qa slab using an AVL-tree with the y-coordinates of the left end-points {ai, i =

1, 2, . . . , n} of the segments in S.

Stage 2: In this stage, we accumulate segments in each of the four groups, (ZL, ZC),

(ZC , ZR), (ZL, ZR) and (ZC , ZC) by performing two nested half-plane queries for

left and right end-points of the segments in S. We maintain four data structures

with each node of the (primary) data structure of Stage 1 for the test of four groups,

namely (ZL, ZC), (ZC , ZR), (ZL, ZR) and (ZC , ZC). The elements of S that pass the

test of Stage 1 has to go through the test of all the three groups independently. All the

segments in the group (ZC , ZC) satisfy the partial enclosure property, and this count

is directly added to the result (total count of segments satisfying partial enclosure

property). For other groups, we need to do the partial enclosure test in Stage 3.

14

Stage 3: In the next stage, for each group we identify segments satisfying the partial enclo-

sure expression using the corresponding half-plane query data structure by applying

Corollary 1.1(a),

Lemma 4. Given a set of n horizontal line segments, we can count the subsets of S con-

taining all the segments satisfying the partial enclosure property with respect to the trian-

gular region Qa obtained from the given pair of query slabs as described in Problem 3 in

O
(√
n log2 n

)
time, using a data structure of size O

(
n log2 n log log n

)
, which can be built

in O
(
n log3 n log logn

)
time.

Proof. In Stage 1 the elements lying in the narrowest horizontal slab containing Qa can be

accumulated in O(log n) time using a data structure of size O(n) created in O(n log n) time.

All the elements in S that satisfy the test in Stage 2 can be identified in O(
√
n log n) time

with preprocessing space and time O(n log n log log n) and O
(
n log2 n log log n

)
respectively

(by applying Corollary 1.1(b), and then 1.1(a)).

Finally in Stage 3, we count the segments that satisfy the partial enclosure expression among

the subsets of S that satisfy the test of Stage 2. Using Corollary 1.1(a), the overall query

time is O
(√
n log2 n

)
; the overall preprocessing space and time are O

(
n log2 n log logn

)
and

O
(
n log3 n log log n

)
respectively.

The same approach is followed for the other two parts Qb and Qc, decomposing them to

triangles, if needed. Thus, we have the following result:

Theorem 4. A set of n horizontal line segments can be preprocessed in O
(
n log3 n log log n

)
time to create a data structure of size O

(
n log2 n log logn

)
, such that given a parallelogram

Q, we can count all segments satisfying the partial enclosure property with respect to Q in

O
(√
n log2 n

)
time.

5 PEAC Problem on Monotone Polygons

In this section, we describe the partial enclosure range searching problem on monotone

polygons. Formally, the problem is stated as follows:

Problem 4. We are given a polygon P bounded by two monotone chains1 PL and PU

(|PL| + |PU | = n), and a fixed parameter ρ such that 0 < ρ ≤ 1. We want to determine

whether at least ρ ·area(P) is enclosed by an axis-parallel query rectangle Q, where area(P)

is the area of the polygon P .

1A polygonal chain (an ordered set of line segments such that each pair of consecutive segments in that

order share a common point) is said to be monotone if any line paralle to the y-axis cuts the chain either at

one point or at no point. A polygon is said to be monotone if it is bounded by two monotone chains such

that the left-most (resp. rightmost) point of both the chains are same.

15

(α, β)

(γ, δ)

Figure 7: A monotone polygon P with query Q. The area of P enclosed by Q, Q ∩ P , is

highlighted.

The main contribution of this section is a method to calculate the area of a monotone poly-

gon appearing within an axis-parallel query rectangle. Once the enclosed area is calculated,

determining whether the partial enclosure property is satisfied is straight-forward.

Throughout this section, we will use the following definitions. The input is a polygon P ,

monotone with respect to the x-axis. P is defined by its vertices v1, v2, . . . , vn in clockwise

order, where vn and v1 share an edge to close the polygon. A query rectangle Q is given

by its lower-left and upper-right corners (α, β) and (γ, δ), respectively. See Figure 7 for an

example.

5.1 Horizontal slab query

We will first describe an algorithm which solves the following simpler problem. Then we

extend it for our main problem.

Problem 5. Given a monotone polygon P , and a query in the form of a horizontal slab S,

compute the area of P enclosed by S.

Our overall approach for this problem is to define a function (actually, a collection of

functions) which returns the area below a given horizontal query line.

5.1.1 Decomposing P

In order to create an area formula for the entire polygon, we decompose P into a linear

number of regions and calculate area formulae for each. These regional formulas are then

combined into an overarching multi-region formula.

We begin by sorting all of the vertices by their x-coordinates. If two vertices share the same

x-coordinate (no more than two can do so, since P is monotone), we can skip the duplicate

without any other change to the algorithm. However, for ease of discussion, we will assume

that every vertex has a distinct x-coordinate. For the remainder of this section, we relabel

16

h3

h2

h1

h0

xi xi+1

ei

e′i
θ′

θ

Figure 8: A trapezoidal region of P

the x-coordinates by their sorted order so that x1 is the x-coordinate of the leftmost vertex

of P , x2 the next leftmost, etc.

Let x be the vertical line through any x-coordinate. Let PU and PL be the upper and lower

chains of P , respectively. Consider the sequence of vertical lines x1, x2, . . . , xn through the

vertices of P . For every line xi, let ai = xi ∩ PU and a′i = xi ∩ PL be the intersections

of xi with the upper and lower chains of P , respectively. We will calculate all of these

intersections as we walk from left to right over both PU and PL simultaneously. We also

keep track of ei and e′i, the edges of PU and PL, respectively, which are intersected by xi,

and upon which reside the points ai and a′i. If xi intersects a vertex of PU or PL, we store

the edge to the right of that vertex as the corresponding value of ei or e′i. This walk allows

us to generate a sequence of regions R1, R2, . . . , Rn−1, defined as

• For each 1 ≤ i ≤ n − 1, let Xi be the vertical slab between xi and xi+1, then Ri =

Xi ∩P . Alternately, Ri is the trapezoidal region formed by the cycle ai, ai+1, a
′
i+1, a

′
i.

5.1.2 Area of a Region

For each region Ri ∈ {R1, R2, . . . Rn−1}, we create a function F (Ri, h) which will return the

area of Ri below a horizontal query line y = h. Figure 8 shows an example region. From

bottom to top, we have at most 4 “critical heights”, where the nature of growth of a region

with respect to h changes. For a general region R, these 4 critical heights are:

• h0, where R begins.

• h1, where R stops growing as a triangle and begins growing as a rectangle.

• h2, where R stops growing as a rectangle and begins growing as a triangle.

• h3, where R ends.

17

These 4 critical heights give rise to a piecewise function representing the area, as follows.

F (R, h) =



0 if h < h0

A1h
2 +A2h+A3 if h0 ≤ h < h1

B2h+B3 if h1 ≤ h < h2

C1h
2 + C2h+ C3 if h2 ≤ h < h3

D3 if h3 ≤ h

The area functions are quadratic in h. However, for different values of h, some or all of the

coefficients may be 0. The details of each part of this function, and the definitions of the

constants A,A′, B,C,C ′ and C ′′ are as follows.

h < h0: The area of R below h is 0 since no part of R exists below h0.

h0 ≤ h < h1: Here, the area of R below the line y = h grows as a triangle. Taking h′ =

h − h0, the base of the triangle is t′ = xi+1−xi
h1−h0 h

′. Thus, the area of R below h is
1
2h
′t′ = A(h′)2, where A = 1

2
xi+1−xi
h1−h0 . Thus, refering to the area formula, we have

A1 = A, A2 = −2.A.h0, A3 = A.h20.

h1 ≤ h < h2: Here, the area of R includes the triangular part between y = h0 and y = h1,

and the rectangular part between y = h1 and y = h. The area of the triangle is

C = 1
2(xi+1 − xi)(h1 − h0). Taking h′ = h − h1, the area of the rectangular part is

Bh′, where B = (xi+1 − xi). Thus, the total area of R is Bh′ + C. Refering to the

area formula, we have B2 = B, B3 = C − h1.B.

h2 ≤ h < h3: Here, the area ofR includes the area ofR includes the triangular part between

y = h0 and y = h1, the rectangular part between y = h1 and y = h2, and the

trapezoidal part between y = h2 and y = h. Taking h′ = h3−h, area of the trapezoidal

part is 1
2
xi+1−xi
h3−h2 +((h3−h2)2−(h′)2), and the rectangular part is D = (xi+1−xi)(h2−

h1). Thus, the total area can be written as A′(h′)2 + C ′ = A′(h3 − h)2 + C ′, where

A′ = −1
2
xi+1−xi
h3−h2 and C ′ = A + D − A′(h3 − h2)2. Refering to the area formula, we

have C1 = −A′, C2 = −2.A′.h3, C3 = C ′ +A′.h23.

h3 ≤ h: Here, the area of R is D3 = A+D + 1
2(xi+1 − xi)(h3 − h2).

5.1.3 Creating Multi-Region Formulas

We store the area formulae in an array A. Its each entry A[i] corresponds to an interval

[xi, xi+1], i = 0, 1, 2 . . . , n−1, and it consists of 13 fields, namely h0, h1, h2, h3, A1, A2, A3, B2,

B3, C1, C2, C3, D3, as mentioned in the expression of the area formula in the earlier section.

We create another array B, whose entries correspond to the y-coordinates of the n vertices

of P , and each entry consists of four fields, namely h, Q, L and C, which stand for the

coefficient of quadratic, linear and constant terms in the overall area expression below a

18

given horizontal line y = h. Initially, we assume that the y-coordinates of the vertices of

P are distinct. We maintain four lists Hj , j = 0, 1, 2, 3, where Hj contains hj values for all

the n intervals (xi, xi+1], i = 0, 1, . . . , n− 1. Each element contains its corresponding vertex

number in P .

We sort the vertices of P in increasing order of their y-coordinates, and process them in

order. While processing an element (h, k) (where k is the vertex number corresponding to

h), h lies in the k− 1-th and k-th element in the array A. Suppose h = A[k].hj (hj-th field

of A[k]), j ∈ {0, 1, 2, 3}. We update Q, L and C by deleting j − 1-th area expression of

A[k − 1] and A[k] and adding j-th area expression of A[k − 1] and A[k], and store them in

the Q, L and C fields of B[h].

Algorithm 1: BuildMultiRegionFormula

Input: List of regions R = R1, R2, . . . , Rn−1

1 Initialize a list Y
2 foreach R in R do

3 Y ← Y ∪ {(y,R) | y ∈ {R.h0, R.h1, R.h2, R.h3}}
4 sort(Y on y)

5 y′ ← minimum y-value in Y
6 F (P, y′)← coefficients A,B,C set to 0

7 foreach (y,R) in Y do

8 F (P, y) = F (P, y′)

9 i← {0, 1, 2, 3} such that y = hi ∈ {R.h0, R.h1, R.h2, R.h3}
10 if i > 0 then

11 F (P, y).A← F (P, y).A−R.hi−1.A
12 F (P, y).B ← F (P, y).B −R.hi−1.B
13 F (P, y).C ← F (P, y).C −R.hi−1.C
14 F (P, y).A← F (P, y).A+R.hi.A

15 F (P, y).B ← F (P, y).B +R.hi.B

16 F (P, y).C ← F (P, y).C +R.hi.C

17 y′ ← y

18 H ← the list of all F (P, h) created above

19 return H

5.1.4 Querying Multi-Region Formulas

For an input height y of a query, we need to report the area of the portion of the polygon

P below y. We can answer this query by searching y among the h-field of the elements in

B, and then computing AREA = Q[α].y2 + L[α].y + C[α], where y ∈ [B[α − 1].h,B[α].h].

19

We summarise our results in the following theorem.

Theorem 5. Let P be a monotone polygon consisting of n vertices. In O(n log n) time

and O(n) space, we can create a data structure that allows us to determine area(S ∩ P) in

O(log n) time for any horizontal slab query region S.

5.2 Extending to Rectangular Queries

Our actual query, as introduced in Figure 7, is a rectangular area. Our solution to this type

of query is extended from the methods we used to solve a horizontal slab query.

5.3 Preprocessing

We develop a list of regions R = R1, R2, . . . , Rn−1 just as in Section 5.1.1. Now, instead of

constructing a single list of multi-region formulas to cover all of P , we will construct a tree

of such lists so that for any 1 ≤ i ≤ j ≤ n− 1, we can query the subpolygon
⋃j
k=iRk for its

area below a query line h in O(log n) time.

Let this multi-region formula tree be T ; we construct T in the following way. First, construct

the multi-region formula tree for each half of the regions recursively, giving the subtrees Tl

and Tr. If |R| = 1 for any recursive step, we create a leaf and return the area formula for

that single region.

Let H(Tl) and H(Tr) be the multi-region formula lists for Tl and Tr, respectively. We

need to create a merged list, H(T) representing the regions of both subtrees together.

Unfortunately, we cannot just naively merge the formulas into a combined sorted list, as

each formula is only concerned with the regions upon which it was originally created.

Instead, we need to generate new coefficients for each critical height of h which will be valid

for all regions of the combined area. This process is precisely Algorithm 1 without the initial

sorting step, which we can avoid since H(Tl) and H(Tr) are already sorted. Thus, we can

build H(T) in time O(|H(Tl)|+ |H(Tr)|). Algorithm 2 gives more formal details.

In the last step of the algorithm we create a list of formulas over all regions, which implies

that we can answer horizontal slab queries from the root of T . Recursing on half of the

regions at each step gives us a tree which will be balanced with depth O(log n). At each level

of T , every critical height for every region is considered, resulting in O(n) area formulas.

As mentioned, the merging step at each node is completed in linear time with respect to

the number of regions processed. Therefore, the total time and storage required to build T

is O(n log n).

5.3.1 Querying

Our query rectangle Q is given by the lower-left and upper-right coordinates (α, β) and

(γ, δ), respectively. We define β and δ as the horizontal lines through β and δ, and α and

20

Algorithm 2: BuildMultiRegionFormulaTree

Input: List of regions R = R1, R2, . . . , Rn−1

1 if |R| = 1 then

2 T ← create new leaf node

3 H(T)← F (R, h)

4 return T,H(T)

5 m←
⌊
|R|
2

⌋
6 Rl = {R1, R2, . . . , Rm}
7 Rr = {Rm+1, Rm+2, . . . , Rn−1}
8 Tl, H(Tl)← BuildMultiRegionFormulaTree(Rl)

9 Tr, H(Tr)← BuildMultiRegionFormulaTree(Rr)

10 T ← Create new node with left child Tl and right child Tr

11 H(T)← Merge H(Tl) and H(Tr) using Algorithm 1

12 return T,H(T)

γ as vertical lines through α and γ, respectively.

Using a binary search on the x-values of P , we can identify the regions which α and γ pass

through; let these regions be Ri and Rj , respectively. Let V (Q) be the vertical slab defined

by Q; that is, the vertical area between α and γ. We can calculate the area of Q ∩ P by

considering how Q interacts with the following areas:

1. The leftmost region Ri, where Ri 6⊂ V (Q). Let Ai = area(Q ∩Ri).

2. The center regions Ri+1, Ri+2, . . . , Rj−1, where Rk ⊂ V (Q) for i+ 1 ≤ k ≤ j − 1. Let

Ac = area
(
Q ∩

(⋃j−1
k=i+1Rk

))
.

3. The rightmost region Rj , where Rj 6⊂ V (Q). Let Aj = area(Q ∩Rj).

See Figure 9 for an example. To calculate Ai, Ac, and Aj , we begin with the center regions.

All of these regions are entirely within V (Q), and so we can use their precalculated area

formulas directly, which is Ac = area
(
Q ∩

(⋃j−1
k=i+1Rk

))
=
∑j−1

k=i+1 F (Rk, δ)− F (Rk, β).

Performing this sum naively takes O(n) time as there may be a linear number of regions

spanned by Q. However, using T , we can answer this query for any values of i and j by

checking at most O(log n) subtrees. At each subtree, we require O(log n) time to find the

correct formula, for a total query time of O
(
log2 n

)
. However, since each subtree queries

for the same value of h, we can reduce this query time to only O(log n) by using fractional

cascading [3, 4].

Considering Ai now, if α = xi, then Ai = F (Ri, δ) − F (Ri, β). In general, however, xi <

α < xi+1, and we cannot use our precalculated area formulas. Fortunately, Q ∩ Ri is a

polygon of O(1) complexity, specifically a trapezoid, so its area can be calculated directly

21

Q

xi xj+1xjxi+1

s

t

t′

(γ, δ)

(α, β)

s′

Figure 9: A monotone polygon P with query Q. The tiled areas cannot be queried using

preprocessed area formulas and will require special handling.

in constant time. With all three area calculations completed, a simple sum completes our

query. We summarize our results with the following theorem.

Theorem 6. Let P be a monotone polygon consisting of n vertices. In O(n log n) time and

O(n log n) space, we can create a data structure which allows us to determine area(Q ∩ P)

in O(log n) time, for any axis-parallel rectangular query region Q.

5.4 Remarks on Simple Polygons

We can apply our method for horizontal slab queries “as it is” to simple polygons. We

compute the trapezoidal decomposition of the given (simple) polygon P , and store the

trapezoids in an array. For each trapezoid R, we have a a multi-region area formulas

F (R, h) which is a function of the height h (see Section 5.1.2). Using four priority queue data

structures storing the four critical heights of the generated trapezoids, we can implement

a horizontal line sweep to compute the fields Q(h), L(h) and C(h) for each critical height

h ∈ H, where H is the set of critical heights of all the trapezoids. Now, the query about

the area inside a horizontal slab S is answered by performing binary search as in Section

5.1.4. The result is summarized in the following corollary.

Corollary 6.1. Let P be a simple polygon consisting of n vertices. In O(n log n) time and

O(n) space, we can create a data structure which allows us to determine area(S ∩ P) in

O(log n) time for any horizontal slab query region S.

6 Conclusion

In this paper, we introduce the partial enclosure range searching problem. Two variants of

the problem are studied. In the first variant, a set of line segments S is preprocessed so

22

that the partial enclosure range query for a query range Q can be performed efficiently. In

the second variant, S is a polygon and Q is an axis-parallel rectangle, and the objective of

the partial enclosure area problem is to compute the area of S ∩Q.

In the first variant, we have proposed query algorithms (i) when the given objects S are

axis-parallel line segments, and Q to be an axis-parallel rectangle, or a slab of arbitrary

orientation, or the intersection of two slabs of arbitrary orientation.

In the second variant, when S is a monotone polygon, our presented algorithm requires

O(n log n) preprocessing time and space and the query time is O(log n). In [1], it is shown

that the space can be improved to O(n) by increasing the query time to O(
√
n). It is also

shown in [1] that if S is a convex polygon then, in O(n) time and space, we can create

a data structure which can compute the area of S ∩ Q in O(log n) time, for any arbitrary

oriented rectangular query range Q. For the case where S is a simple polygon, we can handle

queries where Q is an axis-parallel slab. Unfortunately, we cannot extend our method for

rectangular queries to work with simple polygons so easily. While the multi-region formulas

themselves do not use the monotone property, our tree of multi-region formulas does. The

tree functions by partitioning the trapezoidal regions with respect to vertical lines, however,

in a simple polygon, a vertical line passing through the boundary of one region may pass

through the interior of another. This lack of clean partitioning prevents the multi-region

formula from working correctly for all possible horizontal query lines which may be given

as input to the formula. Thus, the partial enclosure problem for simple polygons is worth

studying.

References

[1] G. Bint. Partial enclosure range searching. Master’s thesis, School of Computer Science,

Carleton University, Ottawa, Canada, 2014.

[2] T. M. Chan. Optimal partition trees. Discrete & Computational Geometry, 47(4):661–

690, 2012.

[3] B. Chazelle and L. Guibas. Fractional cascading: I. a data structuring technique. Algo-

rithmica, 1:133–162, 1986.

[4] B. Chazelle and L. Guibas. Fractional cascading: II. applications. Algorithmica, 1:163–

191, 1986.

[5] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational geometry:

Algorithms and Applications. Springer-Verlag, Berlin, third edition, 2008.

[6] R. Jarrett, G. Schobbe, M. Iwema, C. Lui, F. Jones, E. Rimas, B. Dresevic, and S. Bhat-

tacharyay. Lasso select, Oct. 11 2011. US Patent 8,037,417.

23

[7] J. Jaja, C. W. Mortensen and Q. Shi. Space-Efficient and Fast Algorithms for Multidi-

mensional Dominance Reporting and Counting. Proc. ISAAC 2004, pages 558-568.

[8] J. Matousek. Efficient partition trees. Discrete & Computational Geometry, 8:315–334,

1992.

24

