Computing Large Planar Regions in Terrains,

with an Application to Fracture Surfaces™

Michiel Smid

Carleton University, Ottawa, Ontario, Canada K1S 5B6.

Rahul Ray

Maz-Planck-Institute for Computer Science, D-66123 Saarbricken, Germany.

Ulrich Wendt

Department of Materials Science, University of Magdeburg, D-39106 Magdeburg,
Germany.

Katharina Lange

Department of Materials Science, University of Magdeburg, D-39106 Magdeburg,
Germany.

Abstract

We consider the problem of computing the largest region in a terrain that is ap-
proximately contained in some two-dimensional plane. We reduce this problem to
the following one. Given an embedding of a degree-3 graph G on the unit sphere S,
whose vertices are weighted, compute a connected subgraph of maximum weight
that is contained in some spherical disk of a fixed radius. We give an algorithm
that solves this problem in O(n?logn(loglogn)3) time, where n denotes the num-
ber of vertices of G or, alternatively, the number of faces of the terrain. We also
give a heuristic that can be used to compute sufficiently large regions in a terrain
that are approximately planar. We discuss an implementation of this heuristic, and
show some experimental results for terrains representing three-dimensional (topo-
graphical) images of fracture surfaces of metals obtained by confocal laser scanning
microscopy.

Key words: Computational geometry, terrain, planar region, optimization

* This work was supported by the Deutsche Forschungsgemeinschaft, grants WE
2301/3-2 and SM 57/4-1. The work of MS was also supported by NSERC.
Email addresses: michiel@scs.carleton.ca (Michiel Smid),

Preprint submitted to Elsevier Science 10 February 2004



1 Introduction

A terrain is the surface in R® described by a real-valued function in two
real variables. If this function is piecewise linear and the surface consists of a
collection of triangles, then the terrain is called a triangulated irreqular network
(TIN). We consider the problem of computing the largest connected region in
a TIN that is approximately planar. To be more precise, given a TIN, we want
to compute that subset 7" of the triangles of the TIN such that (i) for each
triangle ¢ € T there is another triangle ¢’ € T such that ¢ and ¢’ share an edge,
(ii) there is a two-dimensional plane that approximately contains all triangles
of T, and (iii) the total area of the triangles of T is as large as possible.

In order to define this problem rigorously, we have to specify the notion of
being approximately contained in a plane. In this paper, we define this notion
as follows. Let € be a small positive real number, and let T" be a set of triangles
satisfying (i) above. We say that 7T is e-planar if there is a vector ¢ such that
the normal vectors of all triangles in 7" make an angle of at most € with c. We
now show how this notion can be used to reformulate our problem.

The unit sphere, i.e., the boundary of the three-dimensional ball centered at
the origin and having radius one, is denoted by S% The upper hemisphere is
defined as S% := $°N {(z,y,2) € R* : 2 > 0}. We can regard the normal
vector of any triangle in a terrain as a point on Si. The lower hemisphere S2
is of no interest to us because, due to the imaging principle, each vertical line
can intersect the surface described by the image in only one point. Hence, no
normal can have a negative z-coordinate.

Consider a TIN, and let S C S% be the set of normal vectors of the triangles
in this TIN. Let G = (S, E) be the undirected graph having vertex set S
and in which any two vertices are connected by an edge if and only if the
corresponding triangles in the TIN share an edge. (Actually, S is a multiset
because different triangles may have the same normal. Equal normals are
treated as different vertices in G.) Observe that each vertex of G has degree
at most three. We give each vertex p of G a weight wt(p) which is equal to
the area of the triangle that gives rise to p. The weight wt(C) of any subset
C of S is defined as wt(C) := X ,cc wt(p).

For any point =z € S%r, let D, denote the spherical disk of radius € centered
at z. That is, D, is the set of all points y € S? such that the angle between
the vectors x and y is less than or equal to e. Furthermore, let G, denote the
subgraph of G having SN D, as its vertex set and whose edge set is the set of
all edges (p,q) € E for which p and ¢ are both contained in D,. Finally, we

rahul@mpi-sb.mpg.de (Rahul Ray), Ulrich.Wendt@mb.Uni-Magdeburg.DE
(Ulrich Wendt), Katharina.Lange@mb.Uni-Magdeburg.DE (Katharina Lange).



define W, to be the maximum weight of any connected component of the graph
G . Using this terminology, our problem can be formally stated as follows.

Problem 1 Given a graph G as above having n vertices, and a real constant
e > 0, compute a point x € S%r such that W, is mazimum.

Let (p,q) be any edge of the graph G. If the angle between the vectors p
and q is larger than 2e, then it is clear that (p, ¢) can be ignored when solving
Problem 1. Therefore, we may assume without loss of generality that the angle
between the endpoints (when regarded as vectors) of any edge of G is at most
2e.

1.1 Motivation

The problem considered in this paper arose in a collaboration between the
Departments of Computer Science and Materials Science at the University of
Magdeburg. The goal of this project is to design and implement algorithms
that can be used for the quantification of fracture surface topographies, given
as three-dimensional images obtained by confocal laser scanning microscopy.

The images we used are taken from fracture surfaces of metals. Knowledge of
fracture surface topographies of materials can be used to interpret the mechan-
ical properties and the fracture mechanism of those materials. This knowledge
can help to detect the weak points in a material’s micro-structure with regard
to the mechanical properties. These relationships can be a guideline for the
improvement and to the modification of known materials, as well as to new
design criteria of materials. This holds for all kind of materials such as metals,
polymers, ceramics, and composites.

The images are given as 512 x 512 arrays of pixels, where the grey value stored
at each entry is equal to the height of the corresponding terrain point. One
goal in our research is to find large connected regions in this image that are ap-
proximately planar. The normal vectors and areas of these planar regions give
useful information about the fracture surface generating process. In Section 4,
we will see how we converted the array of pixels to a TIN.

1.2 Owur results

In Section 2, we will show how computational geometry and dynamic graph
algorithms can be used to solve Problem 1 in O(n?logn(loglogn)?) time.

It is unlikely that Problem 1 can be solved in subquadratic time. In fact,



it seems that even the problem of computing a point y € Si such that W,
approximates the optimal solution cannot be solved in subquadratic time.
Therefore, in Section 3, we describe a simple grid-based heuristic. We have
implemented this heuristic and discuss some details about it in Section 4. We
also present some experimental results on images of fracture surfaces obtained
by confocal laser scanning microscopy. These results show that the heuristic
is able to find e-planar regions whose area is sufficiently large.

1.3 Related work

The problem considered in this paper is related to the terrain simplification
problem. In this problem, we want to approximate a polyhedral terrain by a
“smaller” terrain, i.e., one having the minimum number of vertices. Although
this problem has been studied in, for example, the computer graphics com-
munity [12], the main reference we are aware of that considers this problem
from a complexity point of view is Agarwal and Suri [2]. They give evidence
that the terrain simplification problem is hard by proving that a strongly re-
lated problem is NP-hard. They also give a polynomial-time algorithm for
approximating the minimum terrain.

The problem 3SUM is defined as follows: Given three sets A, B, and C, each
consisting of n real numbers, decide whether there are elements a € A, b € B,
and ¢ € C such that a+ b = c. This problem can be solved in O(n?) time, and
it is widely believed that it cannot be solved in subquadratic time. A problem
P is called 3SUM-hard if 3SUM can be reduced to P in subquadratic time;
see Gajentaan and Overmars [8].

If we consider Problem 1 for the case when the graph G is complete and all
vertices have equal weights, then we get the problem of computing a place-
ment of a spherical disk that contains the largest subset of a given set S of n
points on S2 This problem has been considered by Chazelle and Lee [5] for
the case when S is a set of points in the Euclidean plane. They showed that
the problem can be solved in O(n?) time. The related problem of computing
the deepest point in an arrangement of halfplanes is 3SUM-hard, see [8]. This
indicates that it is unlikely that the disk placement problem can be solved
in subquadratic time. Recently, Agarwal et al. [1] gave an alternative O(n?)-
time algorithm for the optimal disk placement problem, as well as randomized
approximation algorithms whose running times are close to linear. Our algo-
rithm in Section 2 for solving Problem 1 has been inspired by the O(n?)-time
algorithm in [1].



2 Solving Problem 1

In this section, we give an algorithm that solves Problem 1. Consider the graph
G = (S, E), and consider the spherical disks D, centered at the points p of S.
Let A be the arrangement on S? defined by the boundaries of the disks D,,
where p € S. That is, A is the subdivision of S? into vertices, edges and faces
defined by the overlay of the boundaries of the disks D,, p € S. Since p € D,
if and only if z € D,, we have W, = W, for any two points z and y that are
in the interior of the same face f of A. Also, for each vertex z of f, we have
W, > W,. This proves the following lemma.

Lemma 2 To solve Problem 1, it suffices to consider points x € Si that are
vertices of the arrangement A.

Throughout this section, we make the following general-position assumption
about the set S. We assume that the elements of S are pairwise distinct.
Moreover, we assume that for any two distinct points p and ¢ of S, the spherical
disks D, and D, are either disjoint or have an intersection of positive area
(hence, D, and D, do not touch each other). Finally, for any three distinct
points p, ¢, and r of S the spherical disks D,, D,, and D, do not intersect in
a single point. We make this assumption only to simplify the description of
our algorithm. This algorithm can easily be extended to handle arbitrary sets
of points.

The discussion above leads to the following preliminary algorithm for solving
Problem 1.

Step 1: Compute the arrangement A.

Step 2: Let W := 0. For each vertex = of A, do the following.

e Compute the graph G,.

e Compute the connected components of G, together with their weights. Let
W, be the maximum weight of any of these connected components.

e Set W := max(W,W,).

Step 3: Return W.

It is clear that this algorithm correctly solves Problem 1. Let us analyze its
running time. Recall that n denotes the number of elements of the point set S.
For any p € S, let deg(p) denote the degree of p in G. Observe that Y-, s deg(p)
is equal to twice the number of edges of G, and that deg(p) < 3 for any p € S.
Therefore, G has at most 3n/2 edges.



Step 1, i.e., computing the arrangement A, takes O(n?) time using, e.g., the
algorithm of Amato et al. [3]. Consider any vertex x of A. The graph G,
can clearly be computed in time proportional to the number of vertices and
edges of G; hence, G, can be computed in O(n) time. Given G, its connected
components and the value W, can be computed in O(n) time; see, e.g., the
book by Cormen et al. [6]. Hence, for each vertex x of A, O(n) time is spent
in Step 2. Since A has O(n?) vertices, the overall time for Step 2 is O(n?).
Hence, the entire algorithm takes O(n?) time.

We now show how to improve the running time considerably. Note that the
bottleneck of the previous algorithm is Step 2. The idea of the improved al-
gorithm is to traverse the arrangement A and maintain the connected compo-
nents of G, in a data structure. Consider what happens when we walk along
an edge of A from a vertex z to a vertex y. Assume that we know the con-
nected components of the graph G,. Our goal is to compute the connected
components of G, as fast as possible. Observe that walking from x to y means
that we move the spherical disk D, along an edge of A to the position D,.
During this move, at most one point of S can enter or leave the spherical disk.
(Here we use our general-position assumption.) Since the graph G has degree
three, it follows that the graph G, can be obtained from G, by performing at
most a constant number of edge insertions and deletions.

Assume that we have a data structure CC that stores the connected compo-
nents, together with their weights, of a given graph, and that supports edge
insertions and deletions, and queries of the form “report the maximum weight
of any connected component”. (We will specify this data structure later. For
the moment, we use it as a black box.) For any point z € S%, we denote by
CC, the instance of this data structure for the graph G,.

Our improved algorithm does the following.
Step 1: Compute the arrangement A.

Step 2: Let x be an arbitrary vertex of A.

Compute the graph G,.

Compute the connected components of G, together with their weights.
Compute W, as the maximum weight of any connected component of G,.
Set W := W,.

Construct the data structure CC,.

Step 3: Starting at x, traverse the vertices of the arrangement A, e.g., in
depth-first order. In a generic step, we walk from a vertex y, along an edge
of A, to a neighboring vertex z. At the moment when we leave y, we have



the data structure C'C,, storing the connected components of the graph G,,
together with their weights. The graph G, can be obtained by inserting and
deleting at most a constant number of edges in the current graph G,. Hence,
we obtain the data structure CC, by performing these updates in the data
structure CC,. Afterwards, we query CC, to find the value of W,, and set
W := max(W, W,).

Step 4: Return W.

The correctness of this algorithm is clear. Steps 1 and 4 take O(n?) and O(1)
time, respectively. The times for Steps 2 and 3 depend on the data structure
CC. Let P(n), U(n), and Q(n) denote the preprocessing time, update time,
and query time of this data structure, respectively. Then Step 2 takes O(n +
P(n)) time. In Step 3, we spend O(U(n) + @(n)) time for each edge of A.
Since this arrangement has O(n?) edges, it follows that the total running time
of the algorithm is

O (P(n) + n*(U(n) + Q(n))) -

It remains to specify the data structure CC. In [14], Thorup gives a data
structure for maintaining a spanning forest of a graph under insertions and
deletions of edges, in O(logn(loglogn)®) amortized time per update, where
n denotes the number of vertices of the graph. Given any two vertices of
this graph, it can be decided in O(logn/logloglogn) time if they are in the
same connected component. (A simpler but theoretically slightly less efficient
data structure was given by Holm et al. [10].) This data structure can easily
be extended so that it maintains the weights of all connected components
within the same time bound. If we store these weights in a heap, then we can
extract the weight of the largest connected component in O(1) time. Moreover,
this heap can be updated in O(logn) time per operation. The data structure
can be built by successively inserting all edges into an initially empty graph.
Hence, we have P(n) = O(nlogn(loglogn)?), U(n) = O(logn(loglogn)?),
and @Q(n) = O(1). Thus, we have proved the following result.

Theorem 3 Problem 1 can be solved in O(n?logn(loglogn)?) time.

It is not clear if Problem 1 can be solved in subquadratic time; see Section 1.3.
Instead, one can ask about the time complexity for approximating the optimal
solution. That is, let ¢ be a real number such that 0 < § < 1, and let x € Si be
a point for which W, is maximum. In the approximation version of Problem 1,
we have to compute a point y € S such that W, > (1 — §)W,.

Consider the following example. Let D be a spherical disk of radius ¢, and let
p and g be two diametrally opposite points on the boundary of D. Let m be



a large integer. For each 7, 1 <1 < m, let a; := p and b; := ¢. Consider the
edges (a;,b;), 1 < i < m, and (b;,a;11), 1 < i < m. Note that these edges
form a path between a; and b, that alternates between the points p and gq.
Let G be a graph containing the points a; and b;, 1 < ¢ < m, as vertices,
and the above edges. All other vertices of this graph are “far” away from
p and ¢, and have “large” distances among each other. We assume that all
vertices of G have unit-weight. (It is easy to construct a TIN for which G is
the corresponding graph.) For this graph, the center of D gives the optimal
solution to Problem 1. If we move the disk D, then either the point p or
the point ¢ leaves the disk and, hence, each connected subgraph of G' that
is contained in the disk consists of one single vertex. This shows that any
approximation algorithm for Problem 1 must return the center of D. Because
of this, the approximation version of Problem 1 has the same time complexity
as Problem 1 itself.

3 A heuristic for finding large e-planar regions

In this section, we give a simple heuristic approach to compute large connected
regions in a TIN that are e-planar. (Different regions need not be approxi-
mately contained in the same two-dimensional plane.) We cannot prove any
non-trivial bounds on the quality of its output, but experiments have shown
that the output is good in practice, and that the heuristic is fast.

Consider a TIN consisting of n triangles, let € > 0, let S be the set of normal
vectors of these triangles, and let G = (S, FE) be the graph as defined in
Section 1. Recall that the weight wt(p) of any element p of S is equal to the
area of the triangle whose normal vector is p. Also, recall that S is actually
a multiset. Our goal is to find all e-planar regions in the TIN having area at
least A, where A is some given positive real number.

We define a grid on the upper hemisphere S% using lines of longitude and
latitude such that every grid cell is contained in some spherical disk of radius
e. To be more precise, we choose an appropriate real number § with § = ©(e)
and use X := [7/d] equally spaced lines of longitude lo;, 0 < i < X, and
Y := [n/(26)] equally spaced lines of latitude la;, 0 < j < Y.

For any two indices 7 and j with 0 < i < X and 0 < 5 < Y, we call the
pair (i, j) the index of the grid cell bounded by lo;, l0;41, la;, and la;;. For
any point p € S%r, we can in O(1) time compute the index of the grid cell
containing p. Note that each grid cell is adjacent to at most four other cells,

except for those that are incident to the north pole.

Our heuristic takes as input the TIN, the positive real numbers ¢ and A,



and the graph G = (S, E). It starts by computing a subset of all e-planar
regions in the TIN having area at least A/4. (Below, it will become clear why
we choose A/4 instead of A. In fact, the factor 1/4 can be replaced by any
constant between zero and one.) Then it makes a boundary correction step, in
which each region is enlarged, while remaining e-planar. To be more precise,
the heuristic makes the following seven steps.

Step 1: Initialize an array C[0..X —1,0..Y — 1], and store with each entry an
empty list of points and an empty list of edges.

Step 2: For each point p € S, compute the index (ip,j,) of the grid cell that
contains p, and add p to the point list of Cl[i,, jp].

Step 3: For each edge (p, q) € E with (ip, jp) = (44, Jq), add (p, ¢) to the edge
list of C[iy, j,]. (Hence, in this step, all edges that are completely contained
within one grid cell are extracted.)

Step 4: Initialize an empty list L.

Step 5: For each ¢ and 7 with 0 <7 < X and 0 < j <Y, do the following.

e Let G;; be the graph having the points of C[i, j] as its vertices, and the
edges of C[i, j| as its edges. Compute the connected components of Gjj,
together with their weights.

e For each connected component of G;;, add it to the list L if it has weight
at least A/4.

Consider the list L when Step 5 has been completed. Each element of L cor-
responds to a connected subgraph of G having weight at least A/4 and that
is contained in one grid cell, i.e., it corresponds to an e-planar region in the
TIN having area at least A/4. It may happen that such a region R can be
enlarged by adding triangles that are adjacent to R and whose normals are
in a grid cell that is adjacent to the grid cell that gave rise to R. Of course,
the enlarged region should still be e-planar. Below, we describe a “boundary
correction” step that does exactly this.

Step 7 (Boundary correction step): This step is performed for each con-
nected subgraph of G that is stored in the list L. Let G’ be any such subgraph.

We first compute the smallest enclosing spherical disk D’ containing all vertices
of G', using the linear-time algorithm as presented, e.g., in de Berg et al. [7].
Let ¢ be the center of D', and let D be the spherical disk of radius e centered
at c. Note that G’ is contained in D, because D’ is contained in D.



We now go back to the TIN and mark the triangles corresponding to the
vertices of G'. Let T be the set of all marked triangles. Note that all normals
of triangles in 7" are contained in D. Now we consider each unmarked triangle
t of the TIN that shares an edge with at least one marked triangle, and mark
t if its normal is contained in D. Let T" be the set of all marked triangles after
we have considered all such triangles ¢. If T'=T", then we stop the boundary
correction step for this subgraph G’. Otherwise, we repeat this process by
considering unmarked triangles that share an edge with at least one marked
triangle.

Step 8: After having completed the boundary correction step for each element
in L, we have a collection of e-planar regions, each one having area at least
A/4. Since these regions may overlap, we continue as follows. We sort all these
enlarged regions according to their areas. If the largest region has area at least
A, then we report it, and mark all its triangles in the TIN. Then we consider
the second largest region. If its area is at least A, and if none of its triangles
has been marked yet, we also report it and mark all its triangles in the TIN.
We continue this until we have reported all regions whose area is at least A
and that do not overlap any of the previously reported regions.

What can we say about the quality of the output? Let R be any e-planar
region in the TIN, and let G’ be the corresponding connected subgraph of
G. Our algorithm reports the region R if and only if G’ contains a connected
subgraph G” of weight at least A/4 that is completely contained in one of
our grid cells. If each edge of G’ crosses a cell boundary, then R will not be
reported. Therefore, in order to improve the chances of finding R, we run the
algorithm several times using shifted copies of the grid.

4 Implementation and experimental results

We have implemented the heuristic that was discussed in the previous section.
The program, which we call PlaneFinder, takes as input a k x £ array of pixels
in tif (tagged image file) format. The value stored at each entry is the height
of the corresponding surface point, i.e., the z-value of the voxel position.

The application is open to all kind of imaging methods which deliver topo-
graphical images. Besides confocal laser microscopy that we used to obtain
our images, examples include scanning force microscopy [13], white light in-
terference microscopy [9], extended focus conventional light microscopy [15],
and photogrammetry based on stereo pairs received by scanning electron mi-
croscopy [4].

10



Fig. 1. Converting an array of pixels to a TIN.

PlaneFinder starts by computing a TIN as illustrated in Figure 1. The vertices
of the TIN are (i) the centers of the pixels, where the z-coordinate is given by
the height of the pixel, and (ii) the centers of all 2 x 2 blocks of pixels, where
the z-coordinate is given by the average height of the four pixels comprising
the block. These vertices are joined by edges as indicated in the right part
of Figure 1. Note that the total number of triangles, which we denote by n,
is equal to n = 4(k — 1)(¢ — 1). Given this TIN, PlaneFinder proceeds as
described in Section 3.

The program is written in C++ and uses the LEDA library [11]. In the current
version, the following operations are supported.

e Show the k largest e-planar regions (as found by the heuristic), for some
values k£ and € provided by the user.

e Show all e-planar regions having area at least A (again as found by the
heuristic), for some values € and A provided by the user.

The output is the original tif-image in which all regions that have been
detected are colored. (A pixel in the image is colored if and only if at least one
of the triangles overlapping the pixel belongs to a region.) The program takes
care that adjacent regions are drawn in visibly distinct colors. The program
also lists the regions found in increasing order of their area.

We have run PlaneFinder on various images of fracture surfaces obtained by
confocal laser scanning microscopy. As mentioned already, these images are in
tif format, and consist of 512 x 512 pixels. Hence, the corresponding TINs
consist of n = 1,044, 484 triangles. Most of the surfaces are very rough and
contain only small e-planar regions. For a typical image PlaneFinder takes
about 35 seconds.

An example is given in Figure 2, which shows the original image (on the left)
as well as the output of PlaneFinder (on the right). The program was run with
€ equal to five degrees and A equal to 1500 square units. The right part shows,
in white, the four e-planar regions found having area at least A = 1500 square

11



Fig. 2. On the left, a confocal laser scanning micrography (topographical image) of
a steel fracture surface is displayed. The colors represent the heights of the pixels.
The four e-planar regions computed by PlaneFinder are marked white in the right
image. The image size is 100pmx 100pm.

units. (Note that area refers to the true area in space and not the projected
area.)

Figure 3 shows an example of an image in which we have added four large
slanted triangles. One of these is e-planar for ¢ = 5 degrees, whereas the
others are €’-planar for a value of ¢ that is slightly larger than five degrees.
PlaneFinder was run on this image with A = 3000 square units. It correctly
detected only one of the triangles.

In order to flatten local roughness in the images, we have included the option
to apply a mean-filter in a preprocessing step. When we apply this filter to
the image of Figure 3, then PlaneFinder finds all four triangles.

5 Concluding remarks

We have considered the problem of computing large regions in a terrain that
are connected and approximately planar. We showed that the problem of com-
puting the largest such region can be solved in a time that is roughly quadratic
in the number of triangles in the terrain, and argued that it is unlikely to solve
the problem faster. We leave open the problem of proving this rigorously. We
also argued that it may even be hard to approximate this largest region. Prov-
ing this claim formally is also left as an open problem.

We defined a connected set of triangles to be “approximately planar” if their

12



Fig. 3. On the top, a topographical image and its parallel projection onto the
zy-plane are displayed. One “approximately planar” triangle and three “not so ap-
proximately planar” triangles have been inserted for testing purposes. The e-planar
regions computed by PlaneFinder are marked white in the bottom image.

normals are contained in a spherical disk of a fixed small radius. It would
be interesting to solve the problem for other notions of being approximately
planar. For example, we could require the angular diameter of the normals
to be at most €, or the set of triangles to be contained between two parallel
planes having distance e.

A first application of our software is the detection of fracture facets in brittle
fracture surfaces of steel and greycast iron.

Our software is in a preliminary stage and has a lot of scope for improvements.
We will add various features to improve the user interaction. In a future version
of PlaneFinder, we will provide the user with more information about the
planar areas. For example, by clicking on a region, information such as the
normal vector and the area of the region will be displayed. Also, we will add a
function that provides a three-dimensional view of the image with the ability
to rotate it.

13



Acknowledgements

The authors thank Mathias Gumz (student of Computational Visualistics) and
Jan Tusch (student of Computer Science), both at the University of Magde-
burg, for the design and implementation of the software for the presentation
of the PlaneFinder-results.

References

[1] P. K. Agarwal, T. Hagerup, R. Ray, M. Sharir, M. Smid, and E. Welzl.
Translating a planar object to maximize point containment. In Proceedings
of the 10th European Symposium on Algorithms, volume 2461 of Lecture Notes
in Computer Science, pages 42-53, Berlin, 2002. Springer-Verlag.

[2] P. K. Agarwal and S. Suri. Surface approximation and geometric partitions.
SIAM J. Comput., 27:1016-1035, 1998.

[3] N. M. Amato, M. T. Goodrich, and E. A. Ramos. Computing the arrangement
of curve segments: Divide-and-conquer algorithms via sampling. In Proc. 11th
ACM-SIAM Sympos. Discrete Algorithms, pages 705-706, 2000.

[4] A. Boyde. Quantitative photogrammetric analysis and qualitative stereoscopic
analysis of SEM images. J. of Microsc., 98:452-471, 1973.

[6] B. Chazelle and D. T. Lee. On a circle placement problem. Computing, 36:1-16,
1986.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, Cambridge, MA, 2nd edition, 2001.

[7] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational
Geometry: Algorithms and Applications. Springer-Verlag, Berlin, 2nd edition,
2000.

[8] A. Gajentaan and M. H. Overmars. On a class of O(n?) problems in
computational geometry. Comput. Geom. Theory Appl., 5:165-185, 1995.

[9] A. Harasaki, J. Schmit, and J. C. Wyant. Improved vertical scanning
interferometry. Appl. Opt., 39:2107-2115, 2000.

[10] J. Holm, K. de Lichtenberg, and M. Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and
biconnectivity. In Proc. 30th Annu. ACM Sympos. Theory Comput., pages 79—
89, 1998.

[11] K. Mehlhorn and S. Naher. LEDA: A Platform for Combinatorial and
Geometric Computing. Cambridge University Press, Cambridge, U.K., 1999.

14



[12] N. S. Sapidis and P. J. Besl. Direct construction of polynomial surfaces from
dense range images through region growing. ACM Transactions on Graphics.,
14:171-200, 1995.

[13] U. D. Schwarz. Scanning force microscopy. In S. Amelinckx, D. van Dyck, and
J. van Landuyt van G. van Tendeloo, editors, Handbook of Microscopy, Vol. II,
page 827. VCH Verlagsgesellschaft, Weinheim, 1997.

[14] M. Thorup. Near-optimal fully-dynamic graph connectivity. In Proc. 32nd
Annu. ACM Sympos. Theory Comput., 2000.

[15] Y. Yamaguchi, M. K. Weldon, and M. D. Morris. Fractal characterization
of SERS-active electrodes using extended focus reflectance microscopy. Appl.
Spectrosc., 53:127-132, 1999.

15



