Primality testing in polynomial time

Michiel Smid*
May 28, 2003

Abstract

These notes contain a description and correctness proof of the de-
terministic polynomial-time primality testing algorithm of Agrawal,
Kayal, and Saxena. Some background from number theory and alge-
bra is given in Section 4.

1 A polynomial identity for prime numbers

Theorem 1.1 Let n > 2 and a > 0 be integers.
1. If n is a prime number, then
(x—a)"=2"—a
in the ring Zy|x].
2. If ged(a,n) = 1 and n is not a prime number, then

(x—a)"#2" —a

in the ring Zy|x].

*School of Computer Science, Carleton University, Ottawa, Ontario, Canada K1S 5B6.
E-mail: michiel@scs.carleton.ca.

Proof. By Newton’s binomial theorem, we have

1=0

If n is a prime number, then (7;) =0modnforl1 <i<n-1, and a" =
a mod n (see Lemmas 4.1 and 4.2). Therefore, in Z,[z],

(z—a)"=(—a)"+2"=2"—a" =2" —a,

proving the first assertion.

To prove the second assertion, assume that ged(a,n) = 1 and n is not a
prime number. Let ¢ be a prime factor of n, and let £ > 1 be the integer
such that ¢* | n and ¢*™' { n.

Since ¢ | n and ged(a,n) = 1, we have ged(a,q) = 1. It follows that

ged(a™?,¢%) = 1. (1)

1 (7). @)

The proof of this claim will be given later. The coefficient of z? in (z — a)"
is equal to (Z) (—1)""%""4. Assume this coefficient is divisible by n. Then

we can write
n _
()a" 1 = an,
q

(e

qk

We claim that

for some integer a.. Hence,

= a-n/qk.

Since the right-hand side is an integer, the left-hand side is also an integer.
But then (1) implies that ¢* divides (Z), contradicting (2). Hence, we have
shown that the coefficient of 27 in (x —a)™ is non-zero modulo n. This proves
that (z — a)™ # 2™ — a in the ring Z,[z].
It remains to prove (2). The proof is by contradiction. So assume that
q" | (Z) Then (Z) = ag” for some positive integer o, i.e.,
n(n —1)(n 2q)'...(n q+1) —

We can rewrite this as

ag —1)lgFt

T -Dm-2)..(n—q+1)

Observe that the right-hand side is an integer. Let 1 < j < ¢—1, and assume
that ¢ | (n — 7). Then n — j = 0 mod ¢. Since n = 0 mod ¢, it follows that
j = 0 mod ¢, which is not true. Hence, ¢ (n —j) forall1l < j < g¢g—1.
Therefore, since ¢ is a prime number,

alg—1)!
m—1)(n—-2)...(n—q+1)

is an integer. But this implies that ¢*™! | n, a contradiction. This completes
the proof of (2). [

2 An improved polynomial identity

If we use Theorem 1.1 to test if n is a prime number, then we have to
compute the coefficients (modn) of the polynomial (z — a)”, for one integer
a with ged(a,n) = 1. Since this polynomial has n + 1 terms, this will lead to
an algorithm whose running time is exponential in the length of n. In this
section, we present a more “efficient” polynomial identity that can be used
to test if n is the power of a prime number. The idea is to compare (x — a)”
and 2" — a modulo a polynomial of “low” degree, for only a “small” number
of values for a. The following theorem formalizes this.

Theorem 2.1 Let n > 2 be an integer, and let ¢ and r be prime numbers
such that

1. ged(m,n) =1 for all1 <m <,
2. q divides r — 1,
3. q>2yrlogn+2,

4. nr=1/4 £ 1 mod r, and

5. foralll <a < |2y/rlogn| +1,
(x —a)" = (2" —a) mod (z" — 1)
in Zy|x).
Then n is the power of a prime number.

In the rest of this section, we will prove this theorem. From now on, we
assume that all assumptions in Theorem 2.1 hold.

Lemma 2.2 There is a prime factor p of n such that q | d, where d is the
multiplicative order of p mod r.

Proof. Let e be the multiplicative order of n mod r. Observe that e exists,
because ged(r,n) = 1. We first prove that ¢ divides e. The proof is by
contradiction. So assume that g { e. By Fermat’s theorem, n"~' = 1 mod r,
which implies that e | (r — 1). Hence, we can write 7 — 1 = ae, for some
positive integer «. Since ¢ divides r — 1, it follows that «e/q is an integer.
Then the facts that ¢ is a prime number and ¢ t e imply that ¢ | «, which in
turn implies that e divides (r — 1)/q. But then, n("~1/¢ = 1 mod r, which is
a contradiction.

Consider the prime factorization n = p’fl ...pFm of n. Foreach 1 <7< m,
let e; be the multiplicative order of p; mod r. We claim that e divides the
least common multiple of e,...,e,. To prove this, let f be any common
multiple of eq,...,e,. Then, for each 1 < i < m, we can write f = oe;,
where «; is a positive integer. Observe that

nl = plflf .. .pfnmf = plflo‘lel ...phmamem =1 mod 7.
Therefore, e divides f. Since f was an arbitrary common multiple, it follows
that the least common multiple of ey, ..., e,, is divisible by e.

Now let f be as above and assume it is the least common multiple of
€1,---,em- We have shown that ¢ | f. We claim that there isan 1 < i <m
such that ¢ | e;. Assume this is not the case. Then, since ¢ is a prime
number, ¢ | «; for each 1 < i < m. But then f/q is a common multiple

of e1,...,en,. This contradicts our assumption that f is the least common
multiple of ey, ..., e,. Therefore, there is an 1 < i < m such that ¢ | e;. By
choosing p := p; (and, hence, d = ¢;), the proof is complete. |

From now on, we let p be the prime number of Lemma 2.2. Furthermore,
we define £ := |2y/rlogn| + 1. Observe that Theorem 2.1 claims that n is a
power of p.

Lemma 2.3 Foralll <a</{,i>0, andj >0,
(z — a)*™ = (2" — a) mod (z" — 1)
in Zy[z].

Proof. We fix 1 < a < /. We know from the assumptions in Theorem 2.1
that (x —a)™ = (2" —a) mod (2" —1) in Z,[z]. Since p divides n, this implies
that

(x —a)" = (2" —a) mod (z" — 1) (3)
in Zy[z]. By Theorem 1.1, we have (z — a)? = 2P — a in Z,[z]. Therefore, we
also have

(x —a)? = (2 — a) mod (2" — 1) (4)
in Z,[z]. Let m and m’ be positive integers such that both equations
(x —a)™ = (2™ —a) mod (z" — 1) (5)
and , ,
(x —a)™ = (™ —a) mod (z" — 1) (6)

hold in Z,[z]. We claim that

(z —a)™ = (2™ — a) mod (2" — 1) (7)

in Z,[z]. This claim, together with (3) and (4), will prove the lemma. (Ob-
serve that the lemma obviously holds if i = j = 0.) So it remains to prove
(7). If we replace z by ™ in (6), then we get

(z™ —a)™ = (z™ — a) mod (2™ — 1)
in Z,[z]. Since 2" — 1 divides 2™ — 1, it follows that

(2™ — a)™ = (2™ — a) mod (z" — 1)
in Z,[z]. By (5), we have

(z™ —a)™ = (z —a)™ mod (z" —1)

in Z,|z]. i

Lemma 2.4 Let o
E:={n'p:0<14,7<|Vr]}

If n is not a power of a prime number, then the set E contains more than r
elements.

Proof. We assume that n is not a power of a prime number. Let 0 < 4,5 <
|\/r] and 0 < 4',j' < |\/r], and assume that n'p’ = n¥p’. We will prove
that (¢,7) = (¢, j'). From this, it will follow that

Bl =1+ [Vr])*>r

Let k > 1 be such that p* | n and p**' { n. Then n = ap* for some
integer o > 2. Observe that ged(c, p) = 1. Since n'p/ = n’p’’, we have

inikti — ¢

N s/
a'p ' k+j)

p
Since ged(a,p) = 1, it follows that o' = o. Therefore, since a > 2, we
must have i = ¢'. This implies that p**7 = p?*+7' from which we obtain
ik +j =ik + j'. Therefore j = j'. [|

If n is the power of a prime number, then Theorem 2.1 holds. So we
assume from now on that n is not a power of a prime number. Then, by
Lemma 2.4, there are 0 < 4,5 < [/r| and 0 < 4,5’ < [/r], such that

(4,5) # (¢',5') and . o
n'p’ =n'p’ modr.
Let m := n'p/ and m' := n’p’. We may assume without loss of generality

that m’ > m. Let k be the nonnegative integer such that m’ = m + kr. By
Lemma 2.3, we have

! !

(z—a)™ = (2™ —a) = (2™ — a) mod (z" — 1)
in Z,[z], for all 1 < a < £. Since 2" = 1 mod (2" — 1) in Z,[z], it follows that
(z —a)™ = (z™ — a) mod (z" — 1)

in Z,[z]. We also know from Lemma 2.3 that

(z™ —a)=(x —a)™ mod (z" — 1)

in Z,[z]. Therefore,

!

(x—a)™ =(x —a)™ mod (z" — 1)

in Z,[z], for all 1 < a < 4.

We will prove below that m = m/. This will imply that n'p’ = n’p’.
As in the proof of Lemma 2.4, it follows that i« = 7' and 7 = j', which is a
contradiction to our assumption that n is not a power of a prime number.
Therefore, Theorem 2.1 follows.

It remains to prove that m = m’. Let h(x) be an irreducible polynomial
in Z,|x] that divides (2" —1)/(z — 1). The degree of h(z) is equal to d (see
Lemma 4.15; recall that d is the multiplicative order of p mod r). Observe
that

(z —a)™ = (z — a)™ mod h(z) (8)

in Z,[z], for all 1 < a < ¢. Define

¢
S = {H(z—a)a“:aae{o,l} foralllgagﬁ},

a=1

which we consider as a subset of Z,[z]/(h(z)). Consider the polynomial
G(z) = 2™ — 2™ in the ring (Z,[z]/(h(z)))[z]. (Elements of this ring are
polynomials in z whose coeflicients are elements of Z,[z|/(h(x)).) By (8),
every element of S is a root of G(z). Since m and m' are both less than or

equal to

the degree of G(z) is less than 2¢. We will prove below that S contains at
least 2¢ elements. Hence, if m # m', the number of roots of G(z) is larger
than its degree. This is not possible, because Z,[z]/(h(z)) is a field (see
Lemmas 4.11 and 4.12). Therefore, m and m' must be equal.

So it remains to prove that |S| > 2f. We first claim that p > £+ 1.
Assume that p < ¢. Then

0= |2yrlogn| +1<2yrlogn+2<gqg<r

and, therefore, p < r. This contradicts the first assumption in Theorem 2.1.
Hence, p > /+1. This implies that the polynomials x—a, 1 < a < /, are pair-
wise distinct elements of Z,[z]; each of them is obviously irreducible. Since

the factorization of any polynomial into irreducible polynomials is unique in
Z,|x] (see Lemma 4.12), the 2° polynomials

where o, € {0,1} for all 1 < a < ¢, are pairwise distinct in Z,[z]. Observe
that the degree of each of these polynomials is less than or equal to £.
Recall that the degree of h(z) is equal to d, that ¢ | d, and ¢ > 2,/r logn+
2. It follows that
d>q>2rlogn+2 > /.

Therefore, the 2¢ polynomials

where a, € {0,1} for all 1 < a < /, are pairwise distinct in Z,[z]/(h(z)).
This proves that the set S contains at least 2¢ elements. Hence, the proof of
Theorem 2.1 is complete.

3 The primality testing algorithm

We now show that Theorem 2.1 leads to a polynomial-time primality test-
ing algorithm. Of course, the main problem is to find the prime number
r. (Observe that the prime number ¢ in Theorem 2.1 is the largest prime
factor of » — 1.) The algorithm, which we denote by prime(n), is given in
Figure 1. First, we prove the correctness of this algorithm. Then, we analyze
its running time. We start by proving that the while-loop makes O(log® n)
iterations.

Lemma 3.1 There exist constants ca > ¢; > 0 such that for each sufficiently
large integer n, there exists a prime number r such that

1. ¢ 10g6n <r<ec log6 n,
2. r —1 has a prime factor q with ¢ > 2+/rlogn + 2, and

8. nr=1/1 2 1 mod r.

Algorithm prime(n)
Input: Integer n > 2.
Output: YES if n is a prime number, and NO otherwise.
ri=2;
found := false;
while r < n and found = false
do if ged(r,n) # 1 then return NO endif;
if r is a prime number and r > 2
then ¢ := largest prime factor of r — 1;
if ¢ > 2\/rlogn +2 and n""V/9 £ 1 mod r
then found := true

endif
endif;
if found = false then r := r + 1 endif
endwhile;

for a :=1 to [2y/rlogn] +1

do if (z — a)” # (2" — a) mod (2" — 1) in Z,[z]
then return NO
endif

endfor;

if n = a® for some integers a,b > 2

then return NO

else return YES

endif

Figure 1: The primality testing algorithm.

Proof. Let w(x) denote the number of prime numbers that are less than or
equal to z. Let 7'(x) denote the number of prime numbers r such that r < x
and 7 — 1 has a prime factor that is greater than or equal to 7%/3. For all
sufficiently large real numbers x, we have

7(x) < bzx/logx

7' (z) > cx/log,

where c is a constant; see Theorems 4.6 and 4.9.

9

Let ¢; := 3% and choose ¢y > ¢; such that c3 := ccy/7 — 5¢1/6 > 0. Let n
be a sufficiently large integer. Let S denote the number of prime numbers r
such that ¢; log®n < r < ¢;log® n and r — 1 has a prime factor that is greater
than or equal to %3, Then

S = 7'(cylog®n) — 7'(c; log® n)
> m'(cylog®n) — m(cylog® n)
S ceylogb n _ 5¢; log® n
— logcy +6loglogn loge, + 6loglogn
e log® n _5¢ log® n
— Tloglogn 6loglogn
log®n
- “ loglogn’

Let := ¢» log6 n and

[1/2)

N = H (n* —1).

i=1
Since any positive integer m has at most log m prime factors, the ¢-th term in
the product defining N has at most ilogn < z'/3logn prime factors. Hence,
the integer N has at most 2%/3 logn prime factors. Since, assuming that n is
sufficiently large,
log® n
2% logn = c§/3 log’n < c;;gi,
loglogn

there is a prime number r such that ¢; logﬁn <r<cy log6 n, r — 1 has a
prime factor ¢ that is greater than or equal to 7?/3, and r { N.

Observe that 723 = r1/6,/r and r'/6 > ¢1/%logn = 3logn. Therefore, we
have r?/3 > 3y/r logn. It follows that

g > r?? > 3v/rlogn > 2v/rlogn + 2.

It remains to prove that n""1/9 # 1 modr. Assume that n(r—1/¢ =
1 mod r. Then r divides n"~1/¢ — 1. Since ¢ > r?3, r < ¢ylog’n, and
T = Co log6 n, we have

-1
= ¢ 2L/3 =713 < (cplogbn)'/3 = z1/3,
q T

10

But this implies that | N, which is a contradiction. |

Lemma 3.2 Algorithm prime(n) is correct.

Proof. We first assume that n is a prime number. Since ged(r,n) = 1
for all 2 < r < n, the algorithm does not return NO during the while-
loop. Consider the integer r after the while-loop has been completed. Let
1<a<|2yrlogn|+1. By Theorem 1.1, (z —a)" = 2™ — @ in Z,[x], which
implies that

(x —a)" = (2" —a) mod (z" — 1)

in Z,[x]. Therefore, the algorithm does not return NO during the for-loop.
Finally, since n is not of the form a’ with a,b > 2, the algorithm does not
return NO in the last if-then-else statement. Hence, the algorithm returns
YES.

If n is not a prime number, then it follows from Theorem 2.1 that the
algorithm returns NO. |

Lemma 3.3 Algorithm prime(n) can be implemented such that its running
time is O(log" n).

Proof. Consider one iteration of the while-loop. By Lemma 4.16, the
gcd-computation takes O(log®n) time. By Lemma 4.20, we can decide in
O(+y/rlog®r) time whether r is a prime number. By Lemma 4.21, the largest
prime factor g of —1 can be computed in O(y/7 log®) time. By Lemma 4.18,
we can compute n{"~/¢ mod r in O(log” n+1log® r) time. It follows that one
iteration of the while-loop takes O(log®n + /rlog?r) time. Since there are
O(log® n) iterations (see Lemma 3.1), the entire while-loop takes O(log® n +
V7 log?rlog® n) time. Since r = O(log® n), this is O(log” n(loglogn)?).
Next, we consider one iteration of the for-loop. By Lemma 4.19, it takes
O(r*log®n) time to compute the coefficients of the polynomial (z — a)" mod
(z" — 1) in Zy|z]. The polynomial (" — a) mod (2" — 1) can be computed
within the same time bound. Hence, the entire for-loop takes O(r2y/r log" n)
time. Since r = O(log® n), this is O(log'® n). Finally, by Lemma 4.29, testing
if n is a perfect power takes O(log” nloglogn) time. |

We remark that using more advanced algorithms for integer multiplication
and the Fast Fourier Transform to multiply polynomials, the running time

11

of the algorithm can be improved to O(log'® n(loglogn)®), for some constant
c. We summarize our result in the following theorem.

Theorem 3.4 There is an algorithm that decides in polynomzial time whether
an arbitrary given positive integer is a prime number.

4 Background

4.1 Number theory

Lemma 4.1 Let p be a prime number and let 1 <1 <p—1. Then

(p) = 0 mod p.
1

Proof. Observe that (’Z’) is an integer, and

G)ZP@—D@—2%~@—i+U.

i .

7!
Since ged(p,i!) = 1, it follows that

(p=D(p=2)...(p—i+1)
3!

is an integer.]

Lemma 4.2 Let p be a prime number. Then a? = a mod p for all integers
a.

Proof. Since (—a)? = —a? mod p for all integers a, it suffices to prove the
lemma for all nonnegative integers a. The proof is by induction on a. For
a = 0, the claim clearly holds. Let a > 0 and assume that a? = ¢ mod p. We
know from Newton’s binomial theorem that

P
P _ Py i
(a+1)P = Z (2 a’.
=0
Reducing this summation modulo p, and applying Lemma 4.1, it follows that

(a+1)P=d’+1=a+1modp.

12

Theorem 4.3 (Fermat) Let p be a prime number and let a be an integer
such that pta. Then
a?~! =1 mod p.

Proof. By Lemma 4.2, ¢ = a mod p. We can rewrite this as a(a? ! — 1)
0 mod p. Since a # 0 mod p, we must have a? ! = 1 mod p.

Lemma 4.4 Letn > 2, k > 1, and d > 1 be integers such that (n* — 1)
(nt —1). Then k| d.

Proof. Write d = ¢k + r, where ¢ and r are integers with ¢ > 1 and
0 < r < k. Observe that

nt—1 n"(n®—1)+(n" —1)
nk—1 nk —1
= " (L+n"+n*+. . +nlDk) 4 iy
nk —1
Hence, (n” —1)/(nf —1) is an integer. If 1 < r < k, then 0 < (n" —1)/(n* —
1) < 1, which is clearly not possible. Therefore, r = 0. |

4.2 A weak version of the prime number theorem

For any real number z, let 7(z) denote the number of prime numbers that
are less than or equal to x. It is known that

lim () =
z—oo z/Inx

We will prove that
m(n) = O(n/logn),

which is sufficient for our purposes. The proof given here is due to Erdds!.

Lemma 4.5 For any positive integer n,

[[p <4,

p<n

where the product is taken over all prime numbers p < n.

'T read the proof in an article by Pach in the Mathematical Intelligencer.

13

Proof. The proof is by induction on n. For 1 < n < 4, the claim is easy
to verify. Let n > 5 and assume the claim holds for all positive integers less
than n. In the rest of this proof, all products are over prime numbers p.
First, we assume that n is odd. We have

[Ie=| II »)-{ II »

p<n p<(n+1)/2 (n+3)/2<p<n

By the induction hypothesis, the first product on the right-hand side is less
than or equal to 4™t1)/2. We claim that

(n+3)/2<p<n

This inequality holds, because

((n +n1>/2) B —(%)'n

which is an integer that is divisible by every prime number p with (n+3)/2 <
p < n. Since

<<" +n1>/2> - % (((n +n1)/2) i <<n —n1)/2>> = %2” =2,

it follows that
Hp S 4(n—|—1)/2 27171 — 4"

p<n

If n is even, then we observe that n is not a prime number. Therefore,

[[o= I[p<a<a

p<n p<n—1

Theorem 4.6 For all sufficiently large integers n,

m(n) < 5n/logn.

14

Proof. In this proof, all sums and products are over prime numbers p. We
first observe that

D logp > > logp

p<n Vvn<p<n

>) logyn

vn<p<n
= (n(n) — n(v/n)) log V.

By Lemma 4.5,

) "logp =log (Hp) < 2n.

p<n p<n
Therefore,

m(n) < w(v/n) + 2n/logv/n = (v/n) + 4n/ logn.

The proof is completed by observing that 7(y/n) < /n < n/logn for all
sufficiently large integers n. |

We next prove that
m(n) = Q(n/logn).
The proof is due to Nair [9]. For any positive integer n, let d, denote the
least common multiple of the integers 1,2,...,n.

Lemma 4.7 For any positive integer n, d, > 2" 2.

Proof. Let m be a positive integer and define I := fo (1 — z)™dx. Since
0<z(l—2z)<1/4forall x with 0 <z <1, we have

0< 1< (1/4)™

Next we observe that

I =

_ k(?) 2 o
k:O
k m—l—k—!—l

The latter summation can be written as A/dy,41 for some integer A > 1.
Hence, we have
d2m—|—1 = A/I 2 4m'

Observe that the inequality ds,,+1 > 4™ also holds if m = 0.
If n is odd, then we can write n = 2m + 1 for some integer m > 0. We

obtain
dn = d2m+1 Z 4m = 277.—1.

If n is even, then we obtain

dp > dp_y > 2",

[|
Theorem 4.8 For all positive integers n,
m(n) > (n—2)/logn.
Proof. Let pi,ps,...,pr be all prime numbers that are less than or equal to

n. We can write each integer m with 1 < m <n as

k
=TT
1=1

where each a,,;, 1 < i < k, is a nonnegative integer. Hence, the least common
multiple d,, of 1,2,...,n is given by

k
dn — H p;nax(ali,...,ani)]
=1

Observe that
ma.x(ali,...,ani) <
7 —

for each 7 with 1 <17 < k. Therefore, we have

n

k
d, < Hn =n™™,
i=1

16

By Lemma 4.7, we have d,, > 2" 2. It follows that
on—2 < n'/r(n),
from which the claim follows. |

The proof of the following theorem can be found in Fouvry [7].

Theorem 4.9 Let 7'(xz) denote the number of prime numbers p such that
p < z and p — 1 has a prime factor that is greater than or equal to p?®.
There exists a constant ¢ > 0 such that

7'(z) > cx/logx

for all sufficiently large real numbers x.

4.3 Group theory

Lemma 4.10 Let G be a finite multiplicative group with unit-element 1, let
n be the size of G, and let a € G. Then a™ = 1.

Proof. Let d be the order of a in G and let H := {1,a,a? ...a%'}. We
claim that H is a subgroup of G. Assuming this claim is true, it follows from
Lagrange’s theorem that |G| = n is a multiple of |[H| = d. Hence, we can
write n = kd for some positive integer k. This implies that a® = (a9)* = 1.
So it remains to prove that H is a subgroup of G.

First, we prove that H is closed under multiplication. Let 0 <17 < j <
d— 1. Write ¢+ +j = qd 4+ r, where ¢ is a nonnegative integer, and r is
an integer such that 0 < r < d. Then a‘a’ = a7 = (a?)%a” = a". Since
0 <r<d,a" is an element of H. Hence, a’a’ is an element of H.

Next, we prove that the inverse of any element of H is contained in H.
Let 0 < i < d—1, and let ¢ € G be the inverse of a’. Hence, ga’ = 1.
If 2 = 0, then ¢ = 1, which is contained in H. So we may assume that
1<i<d-1. Since 1 = a¢ = a® " = q?*a, it follows that g = a® *. Since
1<d—1i<d-—1,it follows that g € H. [|

We can use Lemma 4.10 to give an alternative proof of Theorem 4.3.
So let p be a prime number and let a be an integer such that p { a. Let
1 <b<p-—1be such that a = b mod p. Let G be the multiplicative group
(Zp)*. Then G contains p— 1 elements, b being one of them. By Lemma 4.10,
b*~! =1 mod p. It follows that a? ! = 1 mod p.

17

4.4 Finite fields

Let p be a prime number and let d > 1 be an integer. The ring Z, is a field
having p elements. Let h(x) be an irreducible polynomial of degree d in the
ring Z,[z]. That is, there are no polynomials a(z) and b(z) in Z,[z] that both
have a degree that is less than d and for which a(x)b(z) = h(x) in Z,[x].
The residue class ring Z,[z]/(h(x)) consists of all polynomials in Z,[z] of
degree less than d, where addition and multiplication are done modulo A(z).

Lemma 4.11 The residue class ring F := Zy[z]/(h(z)) is a field with p?
elements.

Proof. Since there are exactly p® polynomials in Z,[z] of degree less than d, it
is clear that F has size p?. We will only prove that each non-zero polynomial
f(z) in F has a multiplicative inverse in F'. Since the degree of f(z) is less
than d, and since h(z) is irreducible, we have ged(f(z), h(x)) = 1. Using the
extended Euclidean algorithm, we obtain two polynomials a(x) and b(z) in
Zy|x] such that

a(z)f(xz) +b(z)h(z) =1

holds in Z,[z]. Hence, a(z) mod h(z) is the multiplicative inverse of f(z). W

Lemma 4.12 Let F be a field, let f(z) be a polynomial in F[x], and let d
be the degree of f(x). Assume that d > 1.

o There are at most d elements o € F' such that f(«) = 0.

e There are unique irreducible polynomials g1(x),. .., gm(x) in Flz], for
some positive integer m, such that f(zx) =[]~ g:().

Proof. See the book by Lidl and Niederreiter [8]. [
Lemma 4.12 does not hold if F' is a ring. For example, in Zg|z|, the
polynomial f(z) = z? has three roots & = 0,3, and 6, and f(z) = zz =

(x — 3)(z — 6).

Lemma 4.13 The multiplicative group F* of any finite field F' is cyclic.

18

Proof. Let q denote the number of elements of F. We may assume that
g >3. Let h:=q—1 and let h = p{'...pI™ be the prime factorization of A.

For each 1 < i < m, the polynomial z"/? — 1 has at most h/p; roots in
F; see Lemma 4.12. Hence, since h/p; < h, there exists an element a; in

F* such that af/m #+ 1. Let b; := af/p"i. Since, by Lemma 4.10, a? = 1,

we have bf"l = af = 1. Let ¢; be the multiplicative order of b; in F. Then
e; | p;’. Since p; is a prime number, we have e; = p;* for some 0 < s; < 7.

7;—1

Assume that s; < r; — 1. Then bf"z = 1. On the other hand, we have

ri—1
B = alPi £ 1. Therefore, s; = r; and e; = p}’.

Let b := biby...b,,, and let e be the multiplicative order of b in F'. We
claim that b is a generator of F*, i.e., that e = h. Assume that this is not
the case. Since b" = 1, we have e | h. Since e is a proper divisor of h, there
is an index 1 < i < m such that e divides h/p;. We may assume w.l.o.g. that
i = 1. Since b¢ = 1, we have b"?1 = 1. Observe that

b = by e

. "
Consider any 2 < j < m. Then p;’ divides h/p;. Since b? = 1, it follows
that b?/pl = 1. Hence,

1= o = pp/mphien | phfe = /e

r1—1_ 7o

It follows that e; divides h/p;. Since e; = pi' and h/p; = pi*~ py?...por,
this is a contradiction. |

Lemma 4.14 Let p be a prime number and let f(z) be a polynomial in Zy|x].
Then the equation

fz?) = (f(=))"
holds in Z,[z].

Proof. The proof is by induction on the degree d of f(z). If d = 0, then
f(z) = a for some a € Z,. The claim follows from Lemma 4.2.

Let d > 1, and assume the claim is true for all polynomials in Z,[z] having
degree less than d. We can write f(z) = az® + g(x), where a € Z, and g(z)

19

is a polynomial in Z,[z] of degree less than d. We have
(f(2))F = (a2’ +g(x))

= > (D)at ot

i=0
= (g9(2))" + aPa™,

where the last equality follows from Lemma 4.1. Since a” = a mod p and, by
the induction hypothesis, (g(z))? = g(«P), it follows that

(f(@))" = g(a?) + a(a?)" = f(a?).

Lemma 4.15 Let p and r be two distinct prime numbers, and let d be the

multiplicative order of p mod r. Ewvery irreducible polynomial in Zy|x] that
divides (z" —1)/(x — 1) has degree d.

Proof. Let h(z) be an irreducible polynomial in Z,[z] that divides (2" —
1)/(z—1), and let & be the degree of h(x). We will show that k | d and d | k.
This will prove that k£ = d.

Since h(z) is irreducible, Z,[z]/(h(x)) is a field of size p*. Let g(z) be a
generator of the multiplicative group of Z,[z]/(h(z)). Hence, the multiplica-
tive order of g(z) in this group is equal to p* — 1. By Lemma 4.14, we have
(9(x))? = g(2P) in Z,[z]. Applying this equation repeatedly yields

(9())" = g(=")

in Z,[z]. Since p? = 1 mod r, there is an integer k > 1 such that p® = 1+ kr.
Let f(z) be the polynomial in Z,[z] such that f(z)h(z) = 2" — 1. Then the
following holds in Z,[x]:

2P = 22" = 2(1 + f(z)h(r))* = 2 mod h(x).

Hence, we obtain the following equation in Z,[z]:

d

(9(2))” = g(x) mod h(z).

20

Since g(z) is a generator, g(x) # 1 mod h(z). Hence, g(x) has an inverse in
the field Z,[z]/(h(z)), which implies that

(9(z))”" "' = 1 mod h(z).

Since the multiplicative order of g(z) is equal to p*—1, it follows that (pF—1) |
(p® —1). Then, by Lemma 4.4, k | d.

Since h(z) divides z" — 1 in Zy[z], we have 2" = 1 mod h(z). This,
together with the fact that r is a prime number, implies that, in the field
Zy|z])/(h(x)), the order of the polynomial z is equal to . On the other hand,
since the multiplicative group of Z,[z]/(h(x)) has size p* — 1, we have (by
Lemma 4.10) 2¢~1 = 1mod h(z). Then it follows that r | (p¥ — 1) or,
equivalently, p* = 1 mod r. Since be the multiplicative order of p mod r is
equal to d, it follows that d | . [|

4.5 Algorithms in number theory

In this section, we present some number-theoretic algorithms. The running
time of algorithms will be expressed as a function of the total number of
bits in the input; time refers to the number of bit operations made by the
algorithm.

4.5.1 Some elementary results

We start by considering some elementary problems, such as integer multipli-
cation, division, exponentiation, and computing the largest prime factor of
an integer. For each one, we show how they can be solved, even though we
do not give the fastest known algorithm. For the purpose of these notes, the
results in this section are sufficient.

Lemma 4.16 Let a, b, and n be integers such that 1 < a < b<n.

1. The product ab can be computed in O(log®n) time.
2. The integer |b/a| can be computed in O(log’ n) time.
3. The integer b mod a can be computed in O(log®n) time.

4. The greatest common divisor of a and b can be computed in O(log®n)
time.

21

Proof. The first three claims follow by using the “school method” to com-
pute ab, |b/a|, and b mod a. A proof of the third claim can be found in the
book by Cormen, Leiserson, Rivest, and Stein [5]. [|

b

Lemma 4.17 Let a > 2 and b > 1 be integers. The power n := a° can be

computed in O(log® nloglogn) time.

Proof. The following algorithm computes a®, for any two positive integers
a and b.

Input: Positive integers a and b.
Output: a’.
ri=a;y:=0b; z:=1;
while y # 0
do if y is even
then y :=y/2; x =2z
elsey:=y—1; z:=zx
endif
endwhile;
return z

2

The correctness of the algorithm follows from the fact that it maintains
the invariant zz¥ = ab. Assume that @ > 2. The number of iterations of the
while-loop is O(logb), which is O(loglogn), because n = a® > 2. Since, by
Lemma 4.16, one iteration takes O(log?n) time, the entire algorithm takes
O(log” nloglogn) time. [|

Lemma 4.18 Leta > 2,b> 1, andr > 2 be integers. The value of a® mod r
can be computed in O(log’n + logblog®r) time, where n = max(a,r).

Proof. We use the same algorithm as in the proof of Lemma 4.17, except that
we initialize x as @ mod r, and in the while-loop, we update z and z as = :=
22 mod r and z := zx mod r, respectively. Hence, at any moment during the
algorithm, z and z are integers in the range [0,7 — 1]. By Lemma 4.16, the
initialization of = takes O(log”n) time, where n = max(a,r). The number of
iterations of the while-loop is O(logb) and, by Lemma 4.16, each one takes
O(log® r) time. [

22

Lemma 4.19 Let n, r, and a be integers with 2 < r <n and 1 < a < n.
The r coefficients of the polynomial (x — a)™ mod (2" — 1) in Z,[z] can be
computed in O(r*log®n) time.

Proof. The algorithm is as follows.

Input: Integers n, r, and a with 2 <r <nand 1 <a <n.
Output: All coefficients of the polynomial (z — @)™ mod (2" — 1) in
the ring Z,[z].

f(@) =1 9(z) =z —a y:=mn
while y # 0
do if y is even
then y := y/2; h(z) := g(z)g(z);
9(x) := h(z) mod (z" — 1)
else y :=y —1; h(z) := f(z)g(z
f(@) := h(z) mod (a7 — 1)
endif
endwhile;
return f(x)

)i

It is assumed that in all operations involving f(z), ¢g(z), and h(x), the
coefficients are reduced modulo n. The algorithm maintains the invariant

f(@)g(z)! = (x — a)" mod (2" — 1) in Zj,[x].

First observe that at any moment during the algorithm, the degree of both
f(z) and g(z) is less than or equal to r — 1. Therefore, the degree of h(z) is
always less than or equal to 2r — 2.

The assignment h(z) := g(z)g(x) takes O(r?) multiplications mod n. Each
such multiplication is on two integers in the range [0,n — 1]. Hence, by
Lemma 4.16, h(x) can be computed in O(r?log?n) time. The same time
bound holds for the assignment h(z) := f(z)g(z).

We can write h(z) as h(z) = Y-7% hia?, where each coefficient h; is an
integer in the range [0,n — 1]. Then

r—2
h(z) mod (z" —1) = ((hi + hyys) mod n)z* + hy_yz"".
i=0
Hence, reducing h(z) modulo 2" — 1 takes O(rlogn) time.
Since the algorithm makes O(logn) iterations, the proof is complete. B

23

Lemma 4.20 Let n > 2 be an integer. There is an algorithm that decides
in O(y/nlog?n) time whether n is a prime number.

Proof. The algorithm is as follows.

Input: Integer n > 2.
Output: YES if n is a prime number, and NO otherwise.
ri=2;s:=4; (x s =12 %)
while s < n
do if nmodr =0
then return NO
elser:=r+1;s:=s+2r—1 (x s =172 %)
endif
endwhile;
return YES

The correctness proof follows from the fact that n is not a prime number
if and only if there is an integer r < \/n that divides n. The while-loop
makes at most /7 iterations, each one taking O(log® n) time. [

Lemma 4.21 Let n > 2 be an integer. There is an algorithm that computes
the largest prime factor of n in O(y/nlog’n) time.

Proof. Consider the following algorithm.

Input: Integer n > 2.
Output: The largest prime factor of n.
f=1r=2;2:=mn;
while z # 1
do while x mod r =0
doz:=z/r; f:=7
endwhile;
r=r-+1
endwhile;
return f

To see the correctness of this algorithm, consider the prime factorization
n = pFpk2 . pkn where p; < py < ... < Py, are the prime factors of n. In

24

the outer while-loop, the value of r is first increased from 2 to p;. Then, in the
inner while-loop, the k; factors of p; are “removed” from n, and the largest
prime factor found so far is stored in the variable f. Then, r is increased
from p; to po, the ky factors of p, are removed, and the largest prime factor
found so far is stored in the variable f. The algorithm continues until all
prime factors have been removed.

During the algorithm, the value of x mod r is computed

(Ppm—1)+ ki +ka+...+kn <n+logn

times. Similarly, the integer quotient z/r is computed ki +ko+. . .4+, < logn
times. Therefore, the algorithm takes O(nlog®n) time.
We now change the algorithm as follows.

Input: Integer n > 2.
Output: The largest prime factor of n.
f=Lr:=22:=n;
whilez #1 and r2 < n
do while x mod r =0
doz:=z/r; f:=r
endwhile;
ri=r+1
endwhile;
if x =1 then return f else return = endif

The correctness proof of this modified algorithm is left to the reader.
Since the outer while-loop makes at most /n iterations, the running time is

O(y/nlog?n). [

4.5.2 Testing if n is a perfect power

Let n > 2 be an integer. In this section, we consider the problem of deciding
if n is a perfect power, i.e., if there exist integers a > 2 and b > 2 such that
n = ab. Since b cannot be larger than log n, this problem reduces to deciding,
for every 2 < b < logn, if there exists an integer a > 2 with n = a®.

For any fixed integer b > 2, we give an algorithm that computes the

integer g := |n'/®|. Then, n is a perfect b-th power if and only if ¢* = n. The

25

Algorithm power(n, b)

Input: Integers n > 2 and b > 2.

Output: |[n!'/].

To := any integer such that z% > n;

1:=0;

while z¢ > n

do 2,1 == [((b— 1)a; +n/x71)/b];
1:=1+1

endwhile;

return z;

Figure 2: The algorithm that computes |n'/®].

algorithm for computing ¢ is an integer-arithmetic version of the Newton-
Raphson algorithm for computing the root of the function z° — n. The
algorithm, which is denoted by power(n, b), is given in Figure 2.

Lemma 4.22 For all i > 0 for which x; exists, we have x; > q.

Proof. Since g is an integer and z} > n, it is clear that 2y > ¢q. Consider

the function
f(z) = (b—1)z® — 2>t +n.

Observe that
f'(z) =b(b—1)z"2(z — n*) >0

for all z > n'/*. Therefore, for all with z® > n, we have f(z) > f(n'/*) = 0.
The latter inequality is equivalent to

((b— 1)z +n/zb"") /b > n'/b.
Hence, if 22 > n, then z;,, exists and

ziv1 = [((b— Dag +n/a} 1)/b] = 0] = ¢

Lemma 4.23 The integers x;, 1 > 0, are decreasing.

26

Proof. If 2 > n, then x;,, exists and
ginn < ((b=V)a; +n/z;™") /b.

Since 22 > n, the right-hand side is less than z;. |

Lemma 4.24 Algorithm power(n,b) computes |n'/®].

Proof. It follows from Lemma 4.23 that the while-loop terminates. The
output is the first x; for which xf < n. Since z; < n'/* and z; is an integer,
we have z; < ¢q. By Lemma 4.22, we have x; > q. Therefore, the output of
the algorithm is equal to gq. |

Observe that algorithm power(n, b) computes |n'/®| for any choice of the
start value zg, as long as 2% > n. To obtain a good upper bound on the
number of iterations made by algorithm power(n, b), we have to choose x4 in
a careful way.

Lemma 4.25 Let m be the integer such that 20D < n < 27 and let
xg :=2™. Then

1. 2% > n (and, hence, algorithm power(n,b) computes ¢ = [n'/*|, and
2. g < zy <2t
Proof. We have z§ = 2™ > n, and

g=|ntt] <t <M =gy =2-2""1 < 2t

Lemma 4.26 Let i > 0 be such that n'/* < z; < 2n'/*. Then x,,, emists,
and

b—1
gy -t < 221

Proof. We have

Tig1 — 0P < ((b—1)z; +n/zt™) /b — nl/b,

27

The right-hand side is less than or equal to ((b—1)/(b+ 1))(z; —n'/?) if and
only if
(b— 1)z — 26n**2>=" + (b+ 1)n < 0.

Consider the function
g(z) = (b— 1)z — 260> + (b + 1)n.
Observe that
g(z) =b(b—1)2>%(z — 2n*) <0

for all z with n'/® < z < 2n'/*. Therefore, for all z with n'/* < z < 2n'/®,
we have g(z) < g(n'/*) = 0. |

Lemma 4.27 Let b be an integer with 2 < b < logn, and let xq be as
in Lemma 4.25. The while-loop of algorithm power(n,b) makes O(logn)
iterations, where the constant in the Big-Oh bound does not depend on b.

Proof. Denote the number of iterations by /. We may assume that ¢ > 2.
It follows from algorithm power(n, b) and Lemmas 4.23 and 4.25 that

Ty < nl/® Xy 1 < Tpog<...<xp < 2nt/b.

By applying Lemma 4.26 repeatedly, it follows that

b—1\2 b—1\2
To_9 — N (b 1) (:Eo n) (b 1) n

Since n'/? < x4 < Z¢—o, and since xy,_; and xy_o are integers, we have

Ts o —n'/? > 1. Tt follows that

b—]_ -2
1 S 176,
< (b—i—l) "

-1
0<(£-=2)log (Z;_i_—1> + logn'/®

Taking logarithms yields

and, hence,
logn'/®

2 g+ /G- D)

28

It follows that the number ¢ of iterations is less than
o4 logn!/® _0 < logn) .
log((b+1)/(b—1)) blog((b+1)/(b—1))

If b is bounded from above by a constant, then this is clearly O(logn). Ob-

serve that
b+1\" e 2 bt 1y 2
b—1) b—1 b—1

converges to e? if b — oo, where e is Euler’s number. Therefore, if b is larger
than some constant by, we have ((b+1)/(b—1))* > e, i.e., blog((b+1)/(b—
1)) > loge. This proves that for all b with by < b < logn, the number of
iterations is O(logn). [

Lemma 4.28 Let n and b be integers with 2 < b < logn. Algorithm
power(n, b), with xq as in Lemma 4.25, computes |n'/*| in O(log® nloglogn)
time, where the constant in the Big-Oh bound does not depend on b.

Proof. Observe that, by Lemmas 4.23 and 4.25,

2P < b < 2'n < n?
for all ¢ for which z; exists. Given x;, the powers x;’_l and 2 can be computed
in O(log” nloglogn) time by Lemma 4.17. Given these powers, ;1 can be

computed as

(b—1)zb +n
which takes O(log® n) time by Lemma 4.16. This, together with Lemma 4.27,
implies the lemma. |

Lemma 4.29 Let n > 2 be an integer. There is an algorithm that decides
mn O(log4 nloglogn) time whether there exist integers a > 2 and b > 2 such

that n = a®.

Proof. If n = a’ for integers @ > 2 and b > 2, then b must be less than

or equal to logn. By Lemma 4.28, we can compute g, := |n'/*| for all
2 < b < logn, in O(log* nloglogn) total time. If ¢ = n for at least one such
b, then n is of the form a®. [

29

5 Further reading

The primality testing algorithm is due to Agrawal, Kayal, and Saxena [1]. My
notes are based on the original paper and on notes by Radhakrishnan [10].
For an alternative description of the primality testing algorithm, see Bern-
stein [3].

For Section 4, I used the books by Cormen, Leiserson, Rivest, and Stein [5],
and Lidl and Niederreiter [8]. For Section 4.5.2, I used the book by Cohen [4].
Faster algorithms that test if an integer n is a perfect power are given by
Bernstein [2]. For a recent and thorough overview of algorithms in number
theory, see the book by Crandall and Pomerance [6].

Recent news about polynomial-time primality testing algorithms can be
found at

http : //fatphil.org/maths/AKS/

Acknowledgements

The author thanks Rose de Guzman for helpful discussions, and Isabel Logie
for giving comments on an earlier version of these notes and for providing
the proof of Lemma 3.1.

References

[1] M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P.
http://www.cse.iitk.ac.in/users/manindra/index.html, 2002.

[2] D. J. Bernstein. Detecting perfect powers in essentially linear time.
Mathematics of Computation, 67:1253-1283, 1998.

[3] D. J. Bernstein. An exposition of the Agrawal-Kayal-Saxena primality-
proving theorem. http://cr.yp.to/papers.html, 2002.

[4] H. Cohen. A Course in Computational Algebraic Number Theory.
Springer-Verlag, 1993.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. MIT Press, Cambridge, MA, 2nd edition, 2001.

30

[6] R. Crandall and C. Pomerance. Prime Numbers, a Computational Per-
spective. Springer-Verlag, 2001.

[7] E. Fouvry. Théoréme de Brun-Titchmarsh; application au théoreme de
Fermat. Invent. Math., 79:383-407, 1985.

[8] R. Lidl and H. Niederreiter. Introduction to Finite Fields and Their
Applications. Cambridge University Press, 1986.

[9] M. Nair. On Chebyshev-type inequalities for primes. American Mathe-
matical Monthly, 89:126-129, 1982.

[10] J. Radhakrishnan. News from India, Primes is in P. Bulletin of the
EATCS, 78:61-65, 2002.

31

