Sigma-Local Graphs

Prosenjit Bose ! Sébastien Collette? Stefan Langerman?

Anil Maheshwari! Pat Morin* Michiel Smid!

[jit,maheshwa,morin,michiel|@scs.carleton.ca
School of Computer Science, Carleton University, Canada

[sebastien.collette,stefan.langerman|@ulb.ac.be
Computer Science Department, Université Libre de Bruzxelles, Belgium

Abstract

We introduce and analyze o-local graphs, based on a definition of locality by Erick-
son [12]. We present two algorithms to construct such graphs, for any real number
o > 1 and any set S of n points. These algorithms run in time O(0%n + nlogn) for
sets in R? and O(nlog®nloglogn + k) for sets in the plane, where k is the size of
the output.

For sets in the plane, algorithms to find the minimum or maximum ¢ such that the
corresponding graph has properties such as connectivity, planarity, and no-isolated
vertex are presented, with complexities in O(n logO(l) n). These algorithms can also
be used to efficiently construct the corresponding graphs.

1 Introduction

We consider here prozimity graphs [15], also called neighborhood graphs. Such
graphs are defined on a finite set S of points in R? (where the dimension
d is constant) used as the vertices of the graph and there exists an edge
between any two vertices if they are close in some sense. The proximity can
be measured for instance by the Euclidean distance between these vertices,
the distance to other vertices of the graph, or the number of other vertices in
a given neighborhood.

I Partially supported by NSERC.
2 Chargé de recherches du F.R.S.-FNRS.
3 Maitre de recherches du F.R.S.-FNRS.

Preprint submitted to Elsevier 8 October 2008

A graph is o-local [12] if for every edge, there exists a ball around each of
its endpoints not containing any other vertex. If the distance between the
endpoints of an edge is denoted by d, the balls must have a radius of at
least d/o. We introduce a new parameterized family of proximity graphs: a
o-local graph on a given set of points is the maximal graph fulfilling the o-local
property for all its edges. We define this formally in the next section.

Proximity graphs are well studied; a survey of Jaromczyk and Toussaint [15]
discusses many of them, such as relative neighborhood graphs [15], 2], Gabriel
graphs [I3], [-skeletons [I7], and rectangular influence graphs [14]. The ©-
graphs [16, 24] and ~-neighborhood graphs [23] are other examples. Among
these, some definitions encompass families of proximity graphs. For instance,
the [-skeletons form a parameterized family, in which the proximity definition
depends on a parameter (3.

Previous work on proximity graphs traditionally consisted in the introduction
of one or more graph families, followed by different contributions analyzing
their properties and applications. For instance, in [I§] the properties of the
Gabriel graphs were used to analyze geographical data sets; in [7], the authors
analyze the spanning ratio of some proximity graphs. The natural opposite
approach does not seem to have been widely investigated: to try to find a
practical method which, given desired graph properties, constructs a corre-
sponding proximity graph. A first step towards the definition of customizable
proximity graphs given a list of desirable properties was proposed in [9].

The aim of this work is to find a family of graphs which is easy to define, and
where the choice of the parameter o leads to different interesting properties,
such as planarity, connectivity, etc. o-local graphs fulfill these requirements
nicely for different reasons: first their definition seems natural, because when
o = 1, o-local graphs are equivalent to nearest neighbor graphs [11]; we will
prove that finding the extremal values of o for which the aforementioned
properties are present can be achieved in O(nlogo(l) n) tim; and moreover,
we will show that they can be constructed efficiently.

Related Works

Originally, Erickson [12] introduced this definition of o-locality as a realistic
input model for non-convex polyhedra. In general, collision detection for non-
convex polyhedra, as well as Boolean operations on these polyhedra are costly
operations. By enforcing the input to be o-local, Erickson showed that Boolean

4 The exponent is a small constant. For instance, checking if a graph is connected
can be achieved in O(nlog” n) time.

combinations of two (o-local) polyhedra defined by n vertices in R? can be
performed in O(nlogn) time.

We provide the first approaches to find the extremal values of o ensuring some
properties, which can be used to simplify the input. Having a lower value for
o is important in practice, because the complexities in Erickson’s work are
actually heavily influenced by o (which, in [12], is used as a constant, and
thus hidden in the O()-notation).

This work is of course strongly related to the tremendous literature on proxim-
ity graphs. And, as mentioned above, it is related in particular to the approach
initiated with empty region graphs [9], which consists in defining the proxim-
ity constraint based on properties we want for the resulting graph. The main
difference between empty region graphs and o-local graphs is that the formers
ensure that a proximity constraint will guarantee a property for every set of
vertices; while here we propose algorithms to determine the extremal value of
o for the given property to be satisfied on a given set of vertices.

If this work might resemble previous works on geometric graphs, we think that
the motivation here is different. The abundance of knowledge on proximity
graphs has a drawback: if, for some application, one wants to find a family
of graphs with a given list of required properties, all the literature must be
reviewed to check what property is guaranteed by what graph family. Our
work aims at simplifying this process.

Outline

In Section 2 we formally define o-local graphs and give examples. Section 3
presents algorithms to construct o-local graphs for a given o. Different ap-
proaches are proposed depending on the value of ¢ and on the dimension.

Section 4 presents different algorithms to test if, given a set of points and a
parameter o, the corresponding o-local graph contains isolated vertices, if it
is connected, and if it is plane when the edges are embedded as straight line
segments. We provide algorithms which actually find the optimal o, i.e., the
minimum or maximum value ensuring these properties.

2 Definitions

The following definition was proposed by Jeff Erickson [12]. Let N(v) denote
the set of neighbors of a vertex v in the graph G. We denote the Euclidean
distance between two points p and ¢ by |pq|.

Definition 1 A geometric graph G(S, E) is o-local if its local stretch o(G)
is less than a fived parameter o and its global stretch ¥(G) is bounded from
above by a fixed polynomial in the number of vertices, where

max_|uv

u€N (v)
o(v) = —/——"——

min _|uv|
ueS\{v}

o(G) = max a(v)

max |uv|

Z(G) _ uwveFE
min |uv|
wek

Intuitively, this means that in every o-local graph, there exists an edge between
a pair of vertices (p, q) only if the two balls centered at p and ¢ with radius
Ipg|/o are empty, and the maximum ratio between the length of any pair
of edges is bounded. This is equivalent to requiring that all edges pq satisfy

Ipq| < o -min(W,, W,), where the weight W, of a point p is the distance to its
nearest neighbor; see Figure 1.

- ~ ° -

s’ N / \

/ \ . / q |
/ \ [pg| < o - min (W, Wy) |
/ \

\ \ /
1 P \ \ \Wq /
! ! ° \ ¢
\ I ~ >
/ S - =

\ , /
\ / /

\ S Wy /

N 7/

N / Ve
</ - .

Fig. 1. Restriction in o-local graphs.

Erickson used this definition of o-locality as a realistic input model. The poly-
nomial bound on ¥(S) is needed for the analysis of complexities in [12], we
will not consider it here.

We propose a new family of proximity graphs using the same definition of
locality:

Definition 2 Let S be a set of n points in RY, and let o > 1 be a real number.
The o-local graph of S, denoted by G,(.5), is defined to be the graph with vertex
set S and edge set E, where (p,q) is in E if and only if

(1) the ball with center p and radius |pq|/o does not contain any point of
S\ Ap, q} in its interior, and

Fig. 2. o-local graphs for parameters 1 and 2.

(2) the ball with center q and radius |pq|/o does not contain any point of
S\ {p,q} in its interior.

This corresponds to a proximity graph using the pair of balls centered at p
and g with radius |pg|/o as an exclusion region [9] for the edge pg: there exists
an edge if and only if the exclusion region is empty. Some examples of o-local
graphs are given by Figure 2.

3 Construction of G,(S5)

In this section we show how to efficiently construct the corresponding o-local
graph given a set of vertices and a value o.

We can easily construct o-local graphs as follows: using Vaidya’s algo-
rithm [22], we compute, for each point p in S, its weight W, (the distance
to its nearest neighbor). This can be done in O(nlogn) time in any constant
dimension. Then, we can test all possible edges in O(n?) time, and keep only
the ones satisfying the o-local condition. In the remainder of this section, we
propose two sub-quadratic algorithms: one whose complexity depends on o,
and a second whose complexity depends on the size of the graph.

The main idea is to avoid to test all edges. In the first algorithm, we use the
well-separated pair decomposition to rapidly find candidate edges, and in the
second one we combine circular range queries and an ad-hoc data-structure to
get an efficient algorithm.

Note that we do not consider the case where ¢ = 1, as this has been studied
before in the context of nearest neighbor graphs [11].

3.1 Fized o

The first algorithm we present is valid for any real number ¢ > 1 and in any
(constant) dimension d. However the running time is interesting only if ¢ is
much smaller than n. We propose a more efficient solution for the other case
in the next subsection, but only for sets of points in the plane.

Given a separation ratio «, two point sets are well-separated if they can be
enclosed in two spheres of radius p such that the distance between the two
spheres is at least pa. Given a set S of n points in R?, a well-separated pair
decomposition [8] is a set of m = O(an) pairs of sets of points {A;, B;} such
that:

e For all p and ¢ in S, there exists a unique value of 1 < ¢ < m for which
p€ A; and q € B;.

e For 1 <i <m, A; and B; are well-separated (and in particular, A; and B;
are disjoint sets for every i).

Let ¢ > 1 and consider a well-separated pair decomposition {A4;, B;} with
separation ratio 20. We obtain the following lemma:

Lemma 3 Let (p,q) be an edge in G,(S), and let i be the index such that
p € A; and g € B;. Then both A; and B; are singleton seteE].

PROOF. Assume that A; contains a point r of S with r # p. Since the
sets A; and B; are well-separated, there exist balls C' and C” having the same
radius p, such that A; C C, B; C ', and the distance between C' and " is at
least 20p. Since p and r are both contained in C, we have |pr| < 2p. On the
other hand, since p € C and ¢ € C’, we have |pq| > 20p. By combining these
inequalities, it follows that |pr| < |pg|/o, contradicting the fact that (p,q) is
an edge in the o-local graph G,(S5). O

Theorem 4 The o-local graph G,(S) for a point set S in R containing n
points and a given o can be constructed in O(c?n + nlogn) time.

PROOF. As described above, using Vaidya’s algorithm [22], we compute, for
each point p in S, its weight W), (the distance to its nearest neighbor). This
can be done in O(nlogn) time in any constant dimension.

Using Callahan and Kosaraju’s algorithm [8], we compute a well-separated
pair decomposition {A4;, B;}, 1 < i < m, for S, with separation ratio 20,

5 Note that the converse of this lemma is, in general, not true.

where m = O(o?n). This is achieved in O(nlogn + o%n) time.

Then, we compute the index set I consisting of all indices ¢ such that both A;
and B, are singleton sets, in O(a%n) time.

We initialize an empty edge set E. For each i € I, let p; and ¢; be the points

of S such that A; = {p;} and B; = {¢;}. We add the edge (p;,¢;) to E if and
only if both W, and W,, are at most |p;q;|/o. This step takes O(cn) time.

The algorithm finishes by returning the graph G' = (S, F), which, by Lemma 3
is the o-local graph G,(S). O

This also shows that the o-local graph of S contains O(o%n) edges. This upper
bound is only meaningful if o = o(n).

3.2 Large Fixed o and d = 2

We present here an algorithm which is efficient for point sets in the plane.

Theorem 5 The o-local graph G,(S) for a point set S in R* containing n
points and a given o can be constructed in O(nlog® nloglogn+k) time, where
k is the number of edges in the resulting graph.

PROQOF. For each point p € S, we want to compute all ¢ € S, such that

(1) oW, > |pq|, and
(2) oW, > |pq|.

That is, for each point p we want to find all points ¢ such that the balls of
radius |pg|/o around both p and ¢ are empty. In this way, we obtain all edges
(p,q) that are incident on p. Let p = (p1, p2) and ¢ = (q1,¢2). We denote by
Sp< and S, - the sets of points {q € S|W, < W,} and {q € S|W, > W, },
respectively. We have to analyze two subproblems:

(1) Given p, find the points ¢ in S, -~ such that oW, > |pq.
(2) Given p, find the points ¢ in S, < such that oW, > |pq|.

However, since the graph is undirected we do not have to consider both cases.
For every edge pg in G,(S), W, > W, or W, < W,. Thus, an edge will be
constructed when we consider its endpoint with lower weight and we only have
to solve subproblem (1).

We store the points of S at the leaves of a balanced binary search tree, sorted
by their weights. At each node u of this tree, we store a secondary data struc-
ture as outlined below. The depth of the tree is O(logn), and at each level,
the canonical sets represent exactly n vertices divided into disjoint sets.

O(logn)

Fig. 3. Binary tree associated to the point set.

Given a query point p, we want to find all ¢ € S,~ such that oW, > |pq|.
We search in the tree for p. The search path partitions the set of all ¢ with
W, < W, into O(logn) canonical nodes. (These are the right children of nodes
on the path in which the path moves to the left child, see Figure 3.)

For each canonical node u, we want to find all points ¢ in the subtree of u for
which ¢W),, > |pq|. These are all points ¢ that are in the circle with center p
and radius cW),. So we store at u a data structure that supports these queries.
Thus, given the data structure, the time to construct the o-local graph is
O(nlogn) times the time for answering circular range reporting queries.

Aggarwal, Hansen, and Leighton [3] provide a data-structure that supports
circular range reporting queries in O(logn + k) time where k is the number
of items reported. The structure can be built in O(nlog®nloglogn) time and
uses O(nlogn) space.

Since the primary tree has O(logn) levels, and since the secondary data struc-
tures are disjoint and each level encompasses a linear number of nodes, the
total time complexity to construct G,(S) is thus O(nlog® nloglogn + k). O

4 Testing Properties of G,(S)

In this section, we test properties of o-local graphs for a given value of o and
point set S. We also propose algorithms to find the threshold value of that
parameter to satisfy the given property on that particular set.

4.1 No Isolated Vertex

A natural question when we want to analyze a graph is to determine if vertices
are always part of connected components, or if they are isolated. Given a set
of vertices, another view of the problem is to find the smallest o such that the
corresponding graph contains no isolated vertex.

Theorem 6 Given a set S of n points in R?, the o-local graph G,(S) with
lowest o such that G,(S) contains no isolated vertex can be constructed in
O(nlog®n) time.

PROOQOF. To find the smallest value of o, we look at all the vertices and
determine which value of o connects them to another vertex in the graph. As
we want to check if some vertex is isolated, we must consider both ends of each
edge and not only the endpoint with lowest weight as we did in Theorem 5.

We describe the solution in three phases. First we show the preprocessing
phase, in which we construct a data structure which will let us check if a
point is isolated for a given 0. Second, we give a parallel algorithm using that
data structure and answering queries for a fixed o, and third we show how to
derive an algorithm finding the optimal o.

Preprocessing phase, in O(n log? n) time. As in Theorem 5, we use a
balanced binary search tree T' to store the vertices according to their weights.
We associate to each internal node the Voronoi diagram of the set it represents.
The depth of the tree is O(log n), and at each level, the canonical sets represent
exactly n vertices divided in disjoint sets.

As the Voronoi diagram of n points can be computed in O(nlogn) time, the
total complexity to construct the n Voronoi diagrams associated to the internal
nodes is thus O(n log® n): for each level in the tree, the complexity is bounded
by O(nlogn), and there are O(logn) levels.

Using the data structure created in this preprocessing phase, we can easily
check if each point p connects to a point with higher weight: for the vertices in
Sp,>, the vertex ¢ leading to the lowest o is the closest from p, because o only
depends on the distance |pg| and W,. Given a Voronoi diagram of the point
set Sy, finding the point ¢ leading to lowest o is a point location problem:
by definition it is the point whose Voronoi cell contains p.

For every point p, we follow the path from the root to the leaf of the tree
representing that point. The union of all the sets corresponding to the right
children of nodes on that path constitutes the set S,~. Thus we need to
perform a query in O(logn) Voronoi diagrams, and each query costs O(logn)

time. This gives us O(logn) candidates for the closest point, and a linear
search gives us the minimum o.

So at the end of this phase, we have, for every point p, the minimum value of
o for which it would connect to a point in S ~.

Parallel algorithm for a fixed o, in O(nlog®n) time. To check if there
is no isolated vertex when the graph is built using a given o, we start by the
preprocessing phase. For the vertices p that are not connected to a point in
Sp,> using that value of o, we still have to check that they are not connected
to a point in 5, .

Therefore, we use the following approach: we look for a vertex ¢ € S, - such
that the edge (p,) is compatible with the value of o. The vertex p is connected
to the vertex ¢ if and only if vl

pq

w, =7
We lift the problem to R?® by mapping each vertex ¢ € S, < to a plane P, given
by

Pi=2qr+2@py+z=q¢+q¢G—o W,

where ¢; and ¢y are respectively the first and the second coordinate of the point
q. Thus the edge will appear for the value o if the point (py, ps, —p? — p3) is
below F,:

pq
lw‘ <o = 2ap1+2@pp+ (P —3) =G+ ¢ — P W
q

< (p1,p2. —p; — p3) is below P,

By computing the upper envelope of all the planes corresponding to the set
Sp,<, we can check if p is connected to any point of that set. We proceed as
follows:

(1) For each node v of T in parallel, we use the parallel 3D convex hull
algorithm of Amato and Chow [4], to compute the upper envelope of the
planes defined by points in the subtree rooted at v. This can be achieved
using O(nlogn) processors in O(log®n) time.

(2) For each node v of T in parallel, we use the parallel algorithm of Reif
and Sen [21] to build a point location structure for the upper envelope
computed in Step 1 - achieved with O(nlogn) processors in O(logn)
time.

(3) For each point p in parallel, we locate p in each of its O(logn) relevant
point location structures to determine whether, for the current value of

10

o, the point p is connected to a point of lower weight. We use O(nlogn)
processors, and O(logn) time.

(4) For each point p, it is not isolated if it is connected to a point of lower
weight, or if o is greater than the value for p computed in the prepro-
cessing phase. Using O(n) processors, it takes O(logn) time.

In conclusion, we have a parallel algorithm running in O(nlog®n) total time
which checks if there is no isolated vertex for a fixed o.

Note that if we are just interested in a sequential algorithm for a fixed o, we
can easily derive a O(nlog?n) time algorithm using the same approach as for
the parallel algorithm, as we can use an optimal 3D convex hull algorithm,
which does not need to be parallel.

Algorithm finding the lowest o, in O(nlog’n) time. To find the lowest
o, we use the parametric search technique of Megiddo [19] which transforms
a decision algorithm into an optimization algorithm efficiently.

We denote by T, the running time of a sequential decision algorithm A. If
A, is an equivalent parallel algorithm running in 7}, parallel steps using P
processors, Megiddo proved that the total running time of the optimization
algorithm using his technique is O(PT, + T,,T;log P). By applying this to
our decision algorithm for a fixed o described above, we get, if we run it on
P = nlogn processors, that O(nlog®n + log®n - nlog®n - log(nlogn)), which
evaluates to O(nlog® n) total time. O

4.2 Connectedness

Next we consider the problem of finding the minimum value of o such that
G,(S) is connected. For this, we apply ideas used in Boruvka’s algorithm [6], 20]
for finding the minimum spanning tree.

Theorem 7 Given a set S of n points in R?, the connected o-local graph with
minimum o can be constructed in O(nlog’ n) time.

PROOQOF. The algorithm iteratively groups vertices into components, as o
grows, up to the point where there is a single component. We start with
components of size one, i.e., every vertex is isolated. We put every vertex in
the leaves of a binary tree, sorted by component number; the internal nodes of
that tree represents (sub-)sets of components. Each internal node represents a
set of vertices for which we create a secondary data structure as described in
Subsection 4.1, with Voronoi diagrams and support for circular range queries,

11

to be able to check if any vertex in any of the components represented by one
internal node is isolated.

In the binary tree, we can easily find sets covering every vertex in all com-
ponents but one: from the root of the binary tree, there is a left-most and a
right-most path (see Figure 4), leading respectively to the first and the last leaf
of a component. The left (right resp.) children of the internal nodes on the left-
(right- resp.) most path represent covering sets for all the other components.

O(logn)

Fig. 4. Binary tree associated to the components.

Then we find the smallest 0 which connects one component to any other
component by running the no-isolated vertex algorithm for every point in
that component on the points in the other components.

This reduces the number of components by a factor of (at least) two, as every
time we scan the whole set of points, every component gets connected to one
other. We continue up to the point where there is only one component; we can
then return the lowest o.

As the number of components is reduced each time by a factor of two, we repeat
the no-isolated vertex algorithm O(logn) times, on O(log n) sets covering every
component but the current one.

The time to initially construct and maintain the structure is dominated by
the search of the optimum value; the complexity is thus O(nlog'n). O

4.3 Planar Embedding

The last property we analyze is whether the o-local graph obtained is a planar
embeddin@. The following algorithm allows us to find the largest value of o

6 We only consider straight-line drawings, i.e., an edge is a line segment between
two vertices.

12

for which this is the case, and also constructs the corresponding graph in the
meantime.

Theorem 8 Given a set S of n points in R?, the plane o-local graph with
mazimum o can be constructed in O(nlog® n) time.

To prove this Theorem, we will first need a technical lemma, which will be
used later to construct graphs with more than a given number of edges:

Lemma 9 Given a point set S in R?, we can find the smallest real number o
such that G,(S) has nlog®nloglogn edges in O(nlog®M n) time.

PROQOF. First we consider the following decision problem: Given the set .S,
and given o, decide if G,(S) contains at least K edges. For this, we could
simply execute the algorithm used for Theorem 5 and stop as soon as we have
enough edges. But, since we will later use the parametric search technique [19],
we want to make sure that the algorithm can be run in the PRAM model, so
we propose the following alternative approach.

The circular range reporting query in two dimensions corresponds to a half-
space query in 3D [I]. Let S” be the 3D set corresponding to S; the procedure
described hereunder allows us to perform half-space queries on 5.

Let T be a balanced tree that stores the points of S’ at its leaves, in an arbitrary
order. With each node u of T, we store the Dobkin-Kirkpatrick hierarchy [10]
of the convex hull of all points in the subtree of w.

To answer a query, we are given a plane P in R® and want all points of S’
that are below P. We start at the root of 7. Using the Dobkin-Kirkpatrick
hierarchy, we can decide in O(logn) time if the convex polyhedron stored at
the root

(1) is completely above P: in this case, the query algorithm terminates,

(2) is completely below P: in this case, we report all points stored in the tree
and terminate,

(3) intersects P: in this case, we recursively query both subtrees of the root.

Let k be the number of points that are below P. The number of nodes of
T that are visited by the query algorithm is O(klogn). At each node, the
algorithm spends O(logn) time. Of course, the algorithm can terminate as
soon as K edges have been reported.

These queries can be solved in parallel: in case 3 of the query algorithm, we
use two processors. In other words, each time we branch in the tree, we use

13

an additional processor|” |

The decision problem (does G,(S) have at least K edges?) can be solved se-
quentially, in O((n+K)log? n) time; it can be solved in parallel in O(log®™" n)
time, using n + 2K processors and only algebraic predicates.

This immediately allows us to use the parametric search technique of
Megiddo [19] to find the smallest o such that G,(S) contains at least
K = nlog®nloglogn edges in time O(n logo(l) n). O

The choice of K in the previous proof might sound arbitrary, but is based
on a precise evaluation of the log factors in the complexity of the algorithm:
the algorithm runs in O(nlog® nloglogn + 2K) time. However, as the exact
complexity is not needed in the remainder of the paper, we left the details.

PROOF. [Theorem 8] Using Lemma 9, we can construct in O(nlog®" n)
time a graph containing more than 3n — 6 edges. We sort these edges by
increasing values of o in O(n logP™ n) tim and keep the 3n — 6 first ones.
This gives us an upper bound on the value of o, as a planar graph has 3n — 6
edges or less.

Given a set of n line segments in R?, the algorithm proposed by Bentley and
Ottmann [5] returns all pairs of segments intersecting each other in O((n +
k)logn) time, where k is the number of intersections in the set. The same
algorithm can be used to check if at least one segment intersects with any
other, by stopping as soon as it finds one intersection; this can be achieved in
O(nlogn) time.

We do a binary search on the size s of the set of edges (initialized to 3n — 6),
using Bentley-Ottmann to check if the first s edges in sorted order intersect or
not. This gives a time complexity of O(nlog? n) to determine the maximum
value of ¢ corresponding to a planar o-local graph. O

7 We might actually create a branch on a new processor that will not generate an
answer and will terminate after one level; thus, to find one answer, we need two
processors, hence the 2K appearing later.

8 In other words, we sort the edges by their order of appearance as the value of o
grows.

14

5 Future Work

We gave algorithms to construct and check different properties of o-local
graphs. Other properties that we would like to study include checking whether
the resulting graph is a triangulation (or contains a triangulation as subgraph)
for a given o, and what is the minimum value of ¢ for this to be true.

Generalization to the k™" order, where there is an edge between two vertices if
there are less than k other points of the set in each influence ball seems feasible
by determining the k' nearest neighbor of each vertex and using the distance
to that point as weight. Note however that some care must be taken with our
different proofs: for instance Lemma 3 does not hold anymore, as A; and B;
could contain k items, and every k? pairs of items should be considered.

Acknowledgments

This work was initiated during the Carleton-Eindhoven Workshop on Compu-
tational Geometry 2005 organized by Prosenjit Bose and Mark de Berg. We
would like to thank all participants who contributed in one way or another to
the completion of this work.

We also thank the anonymous referees whose comments helped us to improve
the presentation of the results.

References

[1] P. Agarwal. Range searching. In J. E. Goodman and J. O’Rourke, editors,
Handbook of Discrete and Computational Geometry, chapter 36, pages
809-837. CRC Press LLC, Boca Raton, FL, 2004.

[2] P. Agarwal and J. Matousek. Relative neighborhood graphs in three
dimensions. Computational Geometry: Theory and Applications, 2:1-14,
1992.

3] A. Aggarwal, M. Hansen, and T. Leighton. Solving query-retrieval prob-
lems by compacting Voronoi diagrams. In STOC "90: Proceedings of the
twenty-second annual ACM symposium on Theory of computing, pages
331-340, New York, NY, USA, 1990. ACM Press.

[4] N. M. Amato and F. P. Preparata. A time-optimal parallel algorithm for
three-dimensional convex hulls. Algorithmica, 14(2):169-182, 1995.

[5] J. L. Bentley and T. A. Ottmann. Algorithms for reporting and counting
geometric intersections. IEEE Transactions on Computers, C-28(9):643—
647, 1979.

15

[6]

[22]
23]

[24]

O. Boruvka. O jistem problemu minimalnim. Prace Moravske
Prirodovedecke Spolecnosti 3, pages 37-58, 1926.

P. Bose, L. Devroye, W. Evans, and D. Kirkpatrick. On the spanning
ratio of Gabriel graphs and [-skeleton. 20(2):412-427, 2006.

P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional
point sets with applications to k-nearest-neighbors and n-body potential
fields. Journal of the ACM, 42(1):67-90, 1995.

J. Cardinal, S. Collette, and S. Langerman. Region counting graphs.
In Proceedings of the Furopean Workshop on Computational Geometry
(EWCG05), 2005.

D. Dobkin and D. Kirkpatrick. Fast detection of poyhedral intersection.
Theoretical Computer Science, 27:241-253, 1983.

D. Eppstein, M. Paterson, and F. Yao. On nearest-neighbor graphs. Dis-
crete and Computational Geometry, 17:263-282, 1997.

J. Erickson. Local polyhedra and geometric graphs. Computational Ge-
ometry: Theory and Applications, 31(1-2):101-125, 2005.

K. Gabriel and R. Sokal. A new statistical approach to geographic vari-
ation analysis. Systematic Zoology, 18:259-278, 1969.

M. Ichino and J. Sklansky. The relative neighborhood graph for mixed
feature variables. Pattern Recognition, 18:161-167, 1985.

J. Jaromezyk and G. Toussaint. Relative neighborhood graphs and their
relatives. Proceedings of the IEEE, 80(9):1502-1571, 1992.

J. Keil and C. Gutwin. Classes of graphs which approximate the com-
plete Euclidean graph. Discrete and Computational Geometry, 7(1):13—
28, 1992.

D. Kirkpatrick and J. Radke. A framework for computational morphol-
ogy. Computational Geometry, pages 217248, 1985.

D. Matula and R. Sokal. Properties of Gabriel graphs relevant to ge-
ographic variation research and the clustering of points in the plane.
Geographical Analysis, 12:205-222, 1980.

N. Megiddo. Applying parallel computation algorithms in the design of
serial algorithms. J. ACM, 30(4):852-865, 1983.

R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge Uni-
versity Press, 1995.

J. H. Reif and S. Sen. Optimal parallel randomized algorithms for three-
dimensional convex hulls and related problems. SIAM Journal on Com-
puting, 21(3):466-485, 1992.

P. M. Vaidya. An O(nlogn) algorithm for the all-nearest neighbors prob-
lem. Discrete & Computational Geometry, 4:101-115, 1989.

R. Veltkamp. The 7y-neighbourhood graph. Computational Geometry:
Theory and Applications, 1:227-246, 1992.

A. Yao. On constructing minimum spanning trees in k-dimensional spaces

and related problems. SIAM Journal on Computing, 11(4):721-736, 1982.

16

	Introduction
	Definitions
	Construction of G(S)
	Fixed
	Large Fixed and d=2

	Testing Properties of G(S)
	No Isolated Vertex
	Connectedness
	Planar Embedding

	Future Work

