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Abstract

Let S be a set of n points in IR? and let ¢ > 1 be a real number. A t-spanner for § is
a directed graph having the points of S as its vertices, such that for any pair p and ¢
of points there is a path from p to q of length at most ¢ times the Euclidean distance
between p and ¢. Such a path is called a t-spanner path. The spanner diameter of
such a spanner is defined as the smallest integer D such that for any pair p and ¢
of points there is a t-spanner path from p to ¢ containing at most D edges.

A randomized algorithm is given for constructing a ¢-spanner that, with high
probability, contains O(n) edges and has spanner diameter O(logn). A data struc-
ture of size O(nlog?n) is given that maintains this t-spanner in O(log?n loglog n)
expected amortized time per insertion and deletion, in the model of random updates,
as introduced by Mulmuley.
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1 Introduction

Given a set S of n points in IR, where d is a constant, and a real number
t > 1, a t-spanner for S is a directed graph on S such that for each pair p and
g of points of S there is a path from p to ¢ having length at most ¢ times the
Euclidean distance between p and ¢q. We call such a path a t-spanner path.

The problem of constructing ¢-spanners has received great attention. Clark-
son [6], and Keil and Gutwin [9] introduced the ©-graph, which was generalized
by Ruppert and Seidel [15] to any fixed dimension d. These authors proved
that for an appropriate choice of @ this graph is a ¢-spanner with O(n) edges.
Moreover, they gave an O(nlog? ™' n) time algorithm to construct it.

In Callahan and Kosaraju [4], Salowe [16] and Vaidya [17], optimal algorithms
are given for constructing t-spanners: For any set S of n points in IR¢, d > 2,
and for any ¢ > 1, a t-spanner for S having O(n) edges can be constructed in
O(nlogn) time.

There are several interesting quantities related to a ¢t-spanner. First, it is clear
that any spanner must have at least n — 1 edges. All spanners referred to
above have O(n) edges, which is optimal. Second, the total length of all edges
in a spanner is always at least equal to the length of a minimum spanning
tree for S. We denote the latter by wt(MST). Das and Narasimhan [7] give
an O(nlog?n) time algorithm for constructing a t-spanner with O(n) edges.
Combining their results with those in Das, Narasimhan and Salowe [8] shows
that the total length of the edges of this spanner is bounded by O(wt(MST)).
This result holds for any fixed dimension d.

For constructing bounded degree spanners, the best result is by Arya and
Smid [3]: They give an O(nlog” n) time algorithm that builds a t-spanner such
that each point has a degree that is bounded by a constant. In fact, a variant
of their algorithm, combined with results of [7,8], produces a bounded degree
t-spanner such that the total length of all edges is bounded by O(wt(MST)).
This variant also has running time O(n log®n).

All spanners referred to above have a disadvantage in comparison with the
complete Euclidean graph. Although the Euclidean lengths of ¢-spanner paths
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are within a constant factor of the Euclidean distance between points, the
number of edges in these paths may generally be as large as Q(n). The resulting
inefficiency of computing spanner paths, storing them, and traversing them is
a significant limitation in their usefulness.

In this paper, we consider the problem of constructing ¢-spanners with O(n)
edges and small spanner diameter. That is, for each pair p and q of points there
is a t-spanner path from p to ¢ consisting of only a small number of edges.
Moreover, it should be possible to compute such a t-spanner path efficiently.
To our knowledge, this natural problem has not been considered before.

A second disadvantage of the known spanners is that they are static. That
is, no efficient algorithms are known for maintaining a ¢-spanner when points
are inserted and/or deleted in the set S. In the second part of this paper, we
consider the problem of designing dynamic data structures for maintaining a
t-spanner.

1.1  Summary of results

Intuitively, our results may be viewed as one way of generalizing skip lists to
higher dimensions. Assume that the points of S are one-dimensional. Consider
a skip list [14] for the points of S. By “flattening” the nodes of the skip list
down to the lowest level, we can regard this data structure as a directed graph
on S. This graph has an expected number of O(n) edges. For each pair p and
g of points, there is a path from p to ¢ having length |p — ¢| and containing
an expected number of O(logn) edges. In fact, even the expected maximum
number of edges on any such path is bounded by O(logn). (See [12].) As a
result, the skip list is a 1-spanner with expected spanner diameter O(logn).
This spanner can be maintained in O(logn) expected time per insertion and
deletion.

In this paper, we generalize this idea to the d-dimensional case, for any fixed
d, by combining the ©-graph of [6,9,15] with skip lists. For any fixed ¢ > 1,
we get a t-spanner, which we call a skip list spanner.

We will show that the skip list spanner has an expected number of O(n) edges,
and its expected spanner diameter is bounded by O(logn). Also, we will show
that the expected maximum time to construct a t-spanner path from any point
of S to any other point of S is bounded by O(logn). These bounds even hold
with high probability. Note that hence the existence of a t-spanner having
O(n) edges and O(logn) spanner diameter has been proven.

For a standard skip list it is relatively easy to show that the expected spanner
diameter is bounded by O(logn). (See [12,14].) For d-dimensional skip list



spanners, however, the proof turns out to be more difficult.

Using range trees [10,13], we can construct the skip list spanner in O(nlog? ! n)
expected time and O(nlog??n) space.

We are not able to give efficient algorithms for maintaining the skip list spanner
under arbitrary insertions and deletions. In the model of random updates,
as introduced by Mulmuley [12], we do get an algorithm that is fast in the
expected sense: Again using range trees, we design a data structure of size
O(nlog® n) that maintains the skip list spanner in O(log®nloglogn) expected
amortized time per random insertion and deletion.

The skip list spanner is a randomized data structure. In [2], deterministic algo-
rithms are given for constructing t-spanners having O(n) edges and O(logn)
spanner diameter. At present, however, no efficient algorithms are known to
update these deterministic spanners.

The rest of this paper is organized as follows. In Section 2, we give the ba-
sic definitions, introduce the ©-graph, prove some basic results about it, and
show how to construct this graph efficiently. Our construction uses a logarith-
mic factor less space than that of [15]. In Section 3, we define the skip list
spanner, give the algorithm to construct a t-spanner path from any point to
any other point, and prove that the expected running time and the expected
spanner diameter are both bounded by O(logn). Section 4 considers the prob-
lem of maintaining the skip list spanner in the model of random insertions
and deletions. Finally, in Section 5, we give some concluding remarks.

2 Spanners, simplicial cones and the ©-graph

Let S be a set of n points in IR%. We consider directed graphs having the points
of S as their vertices. The weight of an edge (p, q) is defined as the Euclidean
distance between p and q. The weight of a path in a graph is defined as the
sum of the weights of all edges on the path. If (p, ¢) is an edge, then p is called
its source and q is called its sink.

Let t > 1. A graph G = (S, E) is called a t-spanner for S if for any pair p and
q of points of S there is a path in G from p to ¢ having weight at most ¢ times
the Euclidean distance between p and ¢. Any path satisfying this condition
is called a t-spanner path from p to ¢q. Given a t-spanner for S, we define a
path query to be a pair (p,q) of points in S. The answer to a path query is a
t-spanner path from p to g. An augmented spanner is a spanner together with
an associated data structure for answering path queries and/or supporting
updates.



The spanner diameter of a t-spanner is defined as the smallest number D
such that for any pair p and ¢ of points there is a t-spanner path from p to
g containing at most D edges. In this paper, we want to construct spanners
with a low spanner diameter.

The Euclidean distance between the points p and ¢ in IR* is denoted by |pq|.

A (simplicial) cone is the intersection of d halfspaces in IR%. The hyperplanes
that bound these halfspaces are assumed to be in general position, in the sense
that their intersection is a point, called the apez of the cone.

Let 6 be a fixed real number such that 0 < 8 < 7. Let C be a collection of
cones such that (i) each cone has its apex at the origin, (ii) each cone has
angular diameter at most #, and (iii) all cones cover IR%. In Yao [18], it is
shown how such a collection C, consisting of O((c/0)%"!) cones for a suitable
constant ¢, can be obtained.

For each cone C € C, let [¢ be a fixed ray that emanates from the origin and
that is contained in C. Let p be any point in IR%. We define Cp=C+p:=
{z+p:2 € C}, ie, C, is the cone obtained by translating C' such that
its apex is at p. Similarly, we define ¢, := lc + p. Hence, l¢, is a ray that
emanates from p and that is contained in the translated cone C,.

In Section 3, we will need the following lemma. Its proof is similar to that of
Lemma 2 in [3] and, therefore, omitted.

Lemma 1 Let k > 8 be an integer, let 0 = 2n/k, let p and q be any two
distinct points in R?, and let C be the cone of C such that q € Cp. Let r be
any point in IR N C, such that the orthogonal projection of r onto the ray lc,
is at least as close to p as the orthogonal projection of q onto lcy,. Then

(1) |pr|cosf < |pq|, and
(2) Irql < lpg| — (cos 6 — sin6)|pr|.

Definition 2 ([6,9,15]) Let £ > 2 be an integer and let § = 27/k. Let S be
a set of points in IR%. The directed graph O(S, k) is defined as follows.

(1) The vertices of ©(S, k) are the points of S.

(2) For each point p of S and each cone C of C such that the translated cone
C, contains points of S\ {p}, there is an edge from p to the point r in
C,N S\ {p} whose orthogonal projection onto I, is closest to p. (If there
are several such points r then we take an arbitrary one.)

See Figure 1 for an illustration in the planar case.

The following lemma was proved in [9] for the case when d = 2 and in [15] for
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Fig. 1. Illustration of the graph ©(S, k) for d = 2.

the case when d > 2.

Lemma 3 ([9,15]) Let k > 8 be an integer, let 0 = 2m/k and let S be a set
of n points in IR®. The graph ©(S, k) is a t-spanner for t = 1/(cosf — sin ).
It contains O((c/0)*"'n) edges, for some constant c.

Next, we consider the problem of constructing the graph ©(S, k). In [9], it is
shown how this problem can be solved in O(nlogn) time using O(n) space for
the case when d = 2. In [15], an algorithm is given that contructs the graph
(S, k) in O(nlog? ' n) time using O(nlog? ' n) space, for any fixed dimen-
sion d > 2. We change the latter solution slightly, resulting in an algorithm
having the same running time but using only O(nlog® 2n) space.

Before we can give the algorithm, we need to introduce some notation. Let
C be any cone of C. Let hq, ho,...,hy be the hyperplanes that bound the
halfspaces defining C, and let Hy, H,, ..., H; be lines through the origin such
that H; is orthogonal to h;, 1 < 1 < d. We give the line H; a direction such
that the cone C lies on the positive side of h; as indicated by the direction of
H;. Let L be the line that contains the ray [o. We give L the same direction
as lc. (See Figure 2 for an illustration in the planar case.)

Let p be any point in IR%. We write the coordinates of p with respect to the
standard coordinate axes as py,pa, ..., pq. For 1 <i < d, we denote by p} the
signed Euclidean distance between the origin and the orthogonal projection
of p onto H;, where the sign is positive or negative according to whether this
projection is to the “right” or “left” of the origin. Similarly, p; ., denotes the
signed Euclidean distance between the origin and the orthogonal projection
of p onto L.

In this way, we can write the cone C as C' = {z € IR? : x> 0,1 <i <d}.
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Fig. 2. The directed lines Hyi, Hy and L, and the translated cone C).

For p € IRY, we can write the translated cone C, with apex p as

Co={zeR*:z}>pl,1<i<d}.

We define —C), := —C +p:={—z +p: 2 € C}. Then we have

—C,={reR%: 2} <pl,1<i<d}.

Let p be a point of S. Computing the edge of ©(S, k) with source p and sink
in the cone C), is equivalent to finding among all points ¢ € S\ {p} such that
g; > pj for all 1 <14 < d, a point with minimal ¢} ,-coordinate.

We define a d-layer data structure having the form of a range tree [10,13] that
will be used to construct the graph ©(S, k). This data structure depends on
the cone C.

There is a balanced binary search tree storing the points of S in its leaves,
sorted by their ¢j-coordinates. For each node v of this tree, let S, be the subset
of S that is stored in the subtree of v. Then v contains a pointer to the root of
a balanced binary search tree storing the points of .S, in its leaves, sorted by
their gh-coordinates. Each node w of this tree contains a pointer to the root
of a balanced binary search tree storing the points of w’s subtree in its leaves,
sorted by their gi-coordinates, etc. At the d-th layer, there is a balanced binary
search tree storing a subset of S in its leaves, sorted by their ¢/-coordinates.
The binary tree that stores points sorted by their g/-coordinates is called a
layer-i tree.

With each node u of any layer-d tree, we store the following additional infor-
mation. Consider the subset of S that is stored in the subtree of u. We store
with v the point of this subset whose g ,-coordinate is minimal.

Given this data structure, we can compute the edges (p, ¢) of ©(S, k) such that
q € C,: Consider any point p € IR®. We compute a set of O(log?n) canonical
nodes of layer-d trees, such that all subsets stored in the subtrees of these



nodes partition the set of all points of S\ {p} that are contained in the cone
Cp. With each of these nodes u, we have stored a point g, such that q;,dﬂ is
minimal in the subtree of u. Let ¢ be a point such that g, 4., is minimal over
all canonical nodes u. Then (p, ¢) is an edge in O(S, k).

The following lemma gives the complexity of the data structure. The proof
is exactly the same as that for a standard range tree. For details, we refer
the reader to Lueker [10]. We remark that the additional information—the
minimal g, ;-coordinates stored in the nodes of the layer-d trees—can be
computed in O(nlog? ™ n) time by a bottom-up procedure.

Lemma 4 Let S be a set of n points in IR¢, and let C be a cone of C. The above
d-layered data structure has size O(nlog® * n) and can be built in O(nlog® ' n)
time. We can maintain this data structure in O(log®n) amortized time per
insertion and deletion. Given any point p € IR%, we can compute in O(logd n)
time a point q in C, NS\ {p} for which ¢, is minimal, or determine that
such a point does not exist.

Hence, we can construct the graph ©(S, k) in O(nlog®n) time by building the
above data structure for each cone C separately and by querying it with each
point of S. We can save a factor of logn by observing that all query points are
known in advance; these are precisely the points of S. Again, we consider each
cone C' separately. We sort the points of S by their p)-coordinates. Then we
sweep over them in decreasing order. All visited points are maintained in the
data structure of Lemma 4, by taking only the final d coordinates p5, ..., p), 4
into account. (That is, we apply Lemma 4 for dimension d — 1.)

If the sweep line encounters a new point p, then we query the data structure
and find a point ¢ such that ¢; > p; for all 2 < ¢ < d, and for which ¢, is
minimal. Since at this moment, the data structure contains exactly all points
r of S having a first coordinate 7] which is at least equal to p|, we know that
q is in fact a point of S such that ¢; > p} for all 1 < i < d, and for which
¢y, is minimal. Hence, (p,q) is an edge of ©(S, k). We now insert the point
(Phs - .., Djy,) into the data structure and the sweep line moves to the next
point of S.

It is clear that this algorithm correctly constructs the graph ©(S, k). We sum-
marize our result:

Theorem 5 Let k > 8 be an integer, let 0 = 2n/k, and let S be a set of
n points in R®. The graph O(S,k) is a t-spanner for t = 1/(cos — sin ).
It contains O((c/0)%'n) edges, for some constant c. Using O((c/0)%'n +
nlog® 2 n) space, this graph can be constructed in time O((c/0)* *nlog® ' n).



3 The skip list spanner

We have seen that the graph (S, k) is a t-spanner for ¢ = 1/(cos@ — sin ).
Suppose that all points of S lie on a line. Then, O(S, k) can be seen as a
list containing the points of S in the order in which they occur on this line.
Clearly, this graph has spanner diameter n — 1.

In this section, we construct a t-spanner whose spanner diameter is bounded
by O(logn) with high probability. The basic idea is to generalize skip lists [14].

Let S be a set of n points in IR?. We construct a sequence of subsets, as follows:
Let S; = S. Let 7 > 1 and assume that we already have constructed the subset
S;. For each point of S;, we flip a fair coin. (All coin flips are independent.) The
set S;11 is defined as the set of all points of S; whose coin flip produced heads.
The construction stops if S;;1 = (. Let h denote the number of iterations of
this construction. Then we have sets

D=51CShCSh1CSh2C...C8HCS =S8

Definition 6 Let £ > 2 be an integer and let § = 27 /k. Let S be a set of n
points in IR?. Consider the subsets S;, 1 < i < h, that are constructed by the
given coin flipping process. The skip list spanner, SLS(S, k), for S is defined
as follows.

(1) For each 1 < i < h, there is a list L; storing the points of S; (in no
particular order). We say that the points of S; are at level i of the data
structure.

(2) For each 1 <4 < h, there is a graph O(S;, k).

(3) For each 1 < i < h, there is a reversed graph ©'(S;, k), which is obtained
from ©(S;, k) by reversing the direction of each edge.

(4) For each 1 < i < h and each p € S;, the occurrence of p in L; contains a
pointer to its occurrence in L;_;.

(5) For each 1 <i < h and each p € S;;1, the occurrence of p in L; contains
a pointer to its occurrence in L;, .

Note that if all points of S lie on a line, we get a standard skip list. We will
regard SLS(S, k) as a directed graph with vertex set S and edge set the union
of the edge sets of the graphs O(S;, k) and ©'(S;, k).

Lemma 7 Let k > 8 be an integer, let 6 = 2nw/k and let S be a set of n
points in IRY. The skip list spanner SLS(S, k) is a t-spanner fort = 1/(cos —
sinf). It contains O((c/0)4 1n) edges, for some constant c. Also with high
probability, this graph can be constructed in time O((c/0)* 'nlog® ' n) using
O((c/0)*'n + nlog®*n) space.



Proof: The skip list spanner contains ©(S, k), which, by Theorem 5, is a ¢-
spanner. Therefore, SLS(S, k) is also a t-spanner. Also, by Theorem 5, the
number of edges of SLS(S, k) is bounded by O(3"_,(c/0)%'|S;|). Using stan-
dard results for skip lists, see [12], this summation is, with high probability,
bounded by O((c/0)¢~'n). If the number of edges is larger, then we repeat the
construction until SLS(S, k) contains O((c/0)?'n) edges. The bounds on the
space requirement and the construction time follow in a similar way. O

Now we give the algorithm for solving path queries. That is, given points p
and ¢ of S, we show how to construct a t-spanner path from p to ¢. Of course,
we can construct such a path by using only edges of O(S, k). In order to reduce
the number of edges on the path, however, we do the following.

We start in the occurrence of p at level one of the skip list spanner and
construct a path from p towards g. Suppose we have already constructed a
path from p to z. If z = ¢, then we have reached our destination. Assume that
x # q. We check if = occurs at level two. Assume this is not the case. Then
we extend the path as follows. Let C' be the cone of C such that ¢ € C,. Let
z' be the point of C; N Sy such that (z,z’) is an edge of ©(Sy, k). Then z’ is
the next point on the path from p towards g, i.e., we set z := z’. We keep on
growing this path until x = ¢ or the point = occurs at level two of the skip
list spanner. If z occurs at level two, we start growing a path from ¢ towards
x. Suppose we have already constructed a path from ¢ to y. We stop growing
this path if y is equal to one of the points on the path from p to z, or y occurs
at level two. If y is equal to the point, say, p’ on the path from p to z, then we
report the path in ©(S1, k) from p to p/, followed by the reverse of the path in
O(S1, k) from ¢ to p'. (Note that the latter is a path in ©'(S, k) and, hence,
in SLS(S, k).) Otherwise, if y occurs at level two, then we move with = and
y to the second level of the skip list spanner and use the same procedure to
construct a path from z to y. The formal algorithm is given in Figure 3.

Lemma 8 Let k > 8 and 0 = 2n/k. For any pair p and q of points in S,
algorithm walk(p, q) constructs a t-spanner path in SLS(S, k) from p to q, for
t=1/(cos@ —sinf).

Proof: In this proof, we use the notation of the algorithm in Figure 3. Consider
the paths py = p,p1,pe,... and ¢y = ¢, q1, ¢o, . .. that are constructed by the
algorithm. First note that if p, # ¢, and p, & S;;1, then p,,1 exists, i.e., as
long as the two paths do not meet and the last point on the p-path does not
occur at level ¢ + 1, the p-path can always move to a next point. A similar
observation shows that the ¢g-path can always be extended.

The proof of the lemma is by induction on the number of levels of the skip list

spanner. To prove the base case, assume that SLS(S, k) consists of only one
level. Consider what happens during the first iteration of the outer while-loop.
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Algorithm walk(p, q)
(* p and ¢ are points of S; the algorithm constructs a t-spanner path in the
skip list spanner SLS(S, k) from p to ¢ *)
begin
Po:=p;q:=q a:=0;b:=0;r:=0; s:=0;1:=1;
(* Po =D, D1+ Prs-- - Pa a0d Qo = ¢, q1,- -, s, - - -, Gy ALE
paths in SLS(S, k), r = min{j : p; € S;}, s = min{j : ¢; € S;}, and
PryPrits- -3 Pas Qs Qst1y - - 5 G € S *)
stop = false;
while stop = false
do while Da 7é b and Pa ¢ Si+1
do C := cone of C such that ¢, € C,;
Pa+1 := point of Cp, N S; such that (pg, pat1) is an edge of O(S;, k);
a:=a+1
od;
(* Pa = @b OF Py € Siy1 *)
while g, & {pr,pr41,...,Pa} and g5 & Sit1
do C := cone of C such that p, € C,;
@v+1 := point of Cy, N S; such that (gp, gp41) is an edge of O(S;, k);
b:=b+1
od;
(* @» € {PryPri1,---,Pa} OF both p, and g, occur in S;; 1 *)
if Gy € {prapH—la - apa}
then [ := index such that g, = p;;
output the path po,p1,..., P, gp—1,9-2,- - -, qo;
stop = true
elsei:=i14+1;r:=a;s:=b
fi
od
end

Fig. 3. Constructing a t-spanner path from p to q in the skip list spanner.

In the first inner while-loop, a path py = p, p1, p2, . . . is constructed. This inner
while-loop terminates iff the last point on this path is equal to g.

Let @ > 0 and consider the points p, and p,y1. Then p, # ¢q. Let C be the
cone such that g € C,,. It follows from the algorithm that (p,, pe+1) is an edge
of the skip list spanner, p,1 € Cp,, and the projection of p,.; onto the ray
lcp, is at least as close to p, as the projection of ¢ onto l¢p,. Therefore, by
Lemma 1, we have

1Pat1q| < [pag| — (cos O — sin 0) |papat1] < [pagl- (1)

11



This proves that during each iteration of the first inner while-loop, the dis-
tance between p, and ¢ becomes strictly smaller. As a result, this while-loop
terminates. Let z be the number of iterations made. Then the algorithm has
constructed a path py = p, p1, pa, - .., p, = q. The second inner while-loop does
not make any iterations. Since the points pg, p1,...,p, are pairwise distinct,
the variable [ in the else-case has value z. Hence, the algorithm reports the
path po = p,p1,ps,...,p, = ¢q and terminates. The weight of this path is
bounded by

z2—1 z—1
> Pabasi] <D (|pat| — 1Patral) = t(|pod| — |p2al) = tlpal.
a=0 a=0

Hence, the algorithm has constructed a t-spanner path from p to ¢q. This proves
the base case of the induction.

Let A > 1, and consider a skip list spanner consisting of A levels. Assume the
lemma holds for all skip list spanners with less than A levels.

Consider again the first iteration of the outer while-loop. During the first
inner while-loop, a path py = p, p1, pa, ..., P, is constructed such that p, = ¢
or p, € Sy. Also, (1) holds for all 0 < a < z — 1.

If p, = q, then the path pg = p,p1,p2,...,p, is reported and the algorithm
terminates. In exactly the same way as above, it follows that this path is a
t-spanner path from p to q.

Assume that p, # ¢. Then p, € S;. Note that the points pg, p1,...,p, are
pairwise distinct. During the second inner while-loop, a path ¢y = ¢, q1,¢2, - . .
is constructed. Using Lemma 1, it follows that

|@b1+102| < |qsp2| — (cos @ — sin 0)[gsgs11| < |gsp-|- (2)

This second inner while-loop terminates iff the last point on the g-path is
equal to one of the p;’s or occurs at level two of the skip list spanner. Since
during each iteration, the distance between ¢, and p, becomes strictly smaller,
this while-loop terminates. Let y be the number of iterations made. Then the
algorithm has constructed a path ¢ = ¢,¢1,¢,.-.,¢q,. It follows from (2)
that the points on this path are pairwise distinct. Then, it follows from the
termination condition that all points po, p1,. .., Pz, G0, ¢1, - - -, Gy—1 are pairwise
distinct. There are two possible cases.

First assume that ¢, € {po,p1,...,p,}. Let | be such that ¢, = p;. Then the

algorithm reports the path py = p,p1,....,m1 = @y, qy—1,.-.,9 = ¢, having
weight
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-1 y—1
> |Papasi] + Y |aqpi1]
a=0 b=0

z—1 y—1
<Y [Pabasi| + Y lasas41]
a=0 b=0
z—1 y—1
<t > (|pad| = IPat19]) + Y (Jasp2| — o102
a=0 b=0
=t(|pogq| — p2q| + |qopz| — |gyp2])
=1t(|pq| — lgyp-|)
<tlpq|.

Hence, in this case the algorithm has constructed a t-spanner path from p to
q.

Next assume that ¢, & {po,p1,...,p.}. Then ¢, € Sy and the algorithm moves
to level two of the skip list spanner. Note that the rest of the algorithm “takes
place” at levels 2, ..., h. These levels constitute a skip list spanner SLS(Ss, k)
consisting of A — 1 levels. Therefore, by the induction hypothesis, a t-spanner
path from p, to g, is constructed during the rest of the algorithm. At termi-
nation, the algorithm reports the concatenation of the path py,p1,...,p,, the
t-spanner path from p, to g, and the path g, g,—1,..., . The weight of this
path is bounded by

z—1 y—1

> |PaPati] + tlpaay| + D lavap1]

a=0 b=0
z—1 y—1

<t > (|pag| = [Pat19]) + tlp2gy] + D (|@sp2| — |@b+1P2])
a=0 b=0

=t(|pog| — |p.4q| + [P2qy| + |90p:| — |@yp2|)

=t|pq|-

Hence, also in this case the algorithm has constructed a ¢-spanner path from
p to g. This completes the proof. O

Remark 9 Consider the ¢-spanner path p = pg, p1,. -, 21 = @b, Qo—1,-- -, Go =
g that is computed by algorithm walk(p,q). It follows from the proof of
Lemma 8 that for each fixed i, all p-points and all g-points that are added
during the iteration of the outer while-loop that takes place at level ¢ are
pairwise distinct.

In the rest of this section, we analyze the expected behavior of algorithm walk.
Let p and ¢ be two fixed points of S. Let 7' and N denote the running time
of algorithm walk(p, q) and the number of edges on the t-spanner path from
p to g that is constructed by this algorithm, respectively. Note that 7" and N
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are random variables.

For each point p,,1 added to the p-path, we have to find the cone C such that
g € Cp,. Similarly, for each point ¢, added to the g-path, we have to find
the cone C” such that p, € Cj,. We solve this problem as follows:

Recall that each cone of C is defined by d hyperplanes. We store the arrange-
ment of all these m := d|C| hyperplanes in the data structure of [5]. With
each face of the arrangement we store the name of one cone that contains this
face. This structure has size O(m?) and allows to locate any point in O(logm)
time. Note that m = O((¢/0)%1).

To find a cone C such that ¢, € C,,, we locate the point ¢, — p, in the
arrangement. The cone that is reported is the one we are looking for.

It follows that 7= O(N log(1/0) + h). Therefore, E(T) = O(E(N)log(1/0) +
E(h)) = O(E(N)log(1/0) +1logn). Hence, it suffices to estimate the expected
value of N. Note that we use an extra amount of O((c/0)441) space.

Consider again the paths py = p,p1,p2,... and ¢ = ¢q,q1,qe, ... that are
constructed by the algorithm. Let 7, 1 < ¢ < h, be fixed. We estimate the
expected number of points that are added to the paths at level ¢ of the skip
list spanner.

Intuitively, the expected number of points added at level ¢ is bounded by a
constant. During the first inner while-loop, the p-path is extended until it
meets the ¢g-path or the last point on it occurs at level 7 + 1. Since each point
of S; occurs at level i + 1 with probability 1/2, we expect that—at level i—at
most a constant number of points are added to the p-path. During the second
inner while-loop, the ¢-path is extended. By a similar argument, we expect
that—at level i—at most a constant number of points are added to this path.

To make this rigorous, we have to show that each point added to one of these
paths indeed occurs at level ¢ + 1 with probability 1/2. In particular, we have
to show that it is not the case that the coin flips that are used to build the
skip list spanner cause the algorithm to visit points at level ¢ for which it is
more likely that they do not occur at level 7 + 1.

Fix the sets S1,Ss,...,.S;. Let r and s be the minimal indices such that p, € S;
and g, € S;, respectively. Note that r and s are completely determined once
p, ¢ and Sy, ..., S; are fixed.

For the sake of analysis, assume that we have not yet flipped our coin for
determining the set S;;;. Consider the path p|. = p,,pi 1, P10, P = G5
that the algorithm would have constructed if all points of .S; did not occur at
level ¢ + 1. (It follows from the proof of Lemma 8 that the algorithm indeed
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would have constructed a path from p, to ¢;. Moreover, the points on this path
are pairwise distinct.) Now let z be the number of points that are added—
at level +—to the p-path by the actual algorithm. Note that z is a random
variable.

Let [ > 0 and assume that z = [. It is easy to see that p. = p,,p.,, =
Dri1y--->Pyy = Drys- It follows from the actual algorithm that pj, & S for
all a, r < a <r—+1— 1. Therefore,

Pr(z = 1) < Pr (TH/\_I@; #500).

a=r

Since the path p!,p;.,,...,p., is completely determined by the points p and ¢
and the sets 51, ..., S;, each of the points on this path is contained in S;,; with
probability 1/2. Therefore, using the fact that all coin flips are independent,
it follows that Pr(z = 1) < II"Z"' Pr(p), & S;11) = (1/2)'. That is, the random
variable z has a geometric distribution with parameter 1/2.

Again, for the sake of analysis, consider the following experiment. We assume
that we have not yet flipped our coin for determining the set S;, 1. Now we flip
the coin for the points p), pl. ., P9, .., in this order, stopping as soon as we
obtain heads or after having obtained m — r times tails. Clearly, the number
of times we obtain tails has the same distribution as the random variable z
above.

Let I, 0 <1 < m —r, be fixed and assume that z = [. If | = m — r, then
the p-path constructed by the actual algorithm has reached point ¢, and the
algorithm terminates. So assume that [ < m — r. Then, at this moment, we
know that pl,p;.,,...,p._; do not occur at level i 4 1, p;.., occurs at level
i + 1, and for all points of S} := S; \ {p},P,.1,-..,p.;} we have not yet
flipped the coin. Let ¢; = ¢s, 4,1, ;.9 - .. be the path that would have been
constructed during the second inner while-loop if all points of S; did not occur
at level 7 + 1. Let y be the number of points of S; that are added—at level
1—+t0 the ¢g-path by the actual algorithm. Then, y is a random variable.

Let ¢ > 0 and assume that y = ¢t. Then, ¢, = ¢5,¢\11 = @st15---, Qs =
¢s+¢- By Remark 9, all points pl,pi 1, ..., Drips Qos Qopys - - - Qopy_y TE Pairwise
distinct. In particular, ¢; € S] for all b, s < b < s+t—1. As a result, we can say
that in the actual skip list spanner, each ¢ occurs at level i+ 1 independently
with probability 1/2. Since ¢ & S;+1 for all b, s < b < s+t —1, it follows that

s+t—1 ) s+t—1

Prty =) <Pr (A 652 50)) =TT Dol # 500) = (1/2)

b=s b=s

To summarize, conditional on fixed subsets Sy, Ss,...,S; and a fixed value of
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the random variable z, the random variable y has a geometric distribution
with parameter 1/2. Since this distribution does not depend on z, y also has
a geometric distribution conditional on Sy, ..., .S; only.

Altogether, conditional on fixed subsets Si,5s,...,95;, the random variables
that count the number of points that are added—at level i—to the p- and
g-paths both have a geometric distribution with parameter 1/2. Since both
distributions do not depend on Sy, ...,.S;, this statement also holds uncondi-
tionally.

Now we can analyze the expected behavior of algorithm walk(p, ¢) in exactly
the same way as for standard skip lists. (See e.g. Section 1.4 in Mulmuley [12].)
Recall that 7" and N denote the running time of algorithm walk(p, ¢) and the
number of edges on the t-spanner path computed by this algorithm, respec-
tively. We saw already that T = O(N log(1/60) + h).

For 1 < i < h, let M; (resp. N;) denote the number of edges that are added
at level i to the p-path (resp. g-path). Then N = ¥ (M; + N;). Moreover,
My, Ny, My, Ny, ..., My, N, are random variables, and each one is distributed
according to a geometric distribution with parameter 1/2. Each of these vari-
ables is independent of the ones that come later in the given enumeration.
Using the Chernoff bound and the fact that h = O(logn) with high proba-
bility, it follows that N = O(logn) with high probability. (See e.g. [12].) This
implies that the running time 7 is bounded by O(log(1/6)logn) with high
probability.

These bounds hold for fixed points p and ¢ of S. Since there are only a
quadratic number of such pairs, it follows that the maximum running time
of algorithm walk, and the maximum number of edges on any ¢-spanner path
computed by this algorithm are bounded by O(log(1/6)logn) and O(logn),
respectively, both with high probability. (See Observation 1.3.1 on page 10
of [12].) That is, with high probability, the skip list spanner has spanner di-
ameter O(logn). In particular, this proves that there ezists a t-spanner for S
having O(n) edges and O(logn) spanner diameter.

Theorem 10 Let k > 8 be an integer, let = 2w /k and let S be a set of n
points in IR%.

(1) The skip list spanner SLS(S, k) is a t-spanner fort = 1/(cosf —sin ). It
contains an expected number of O((c/0)*'n) edges, for some constant c.

(2) Using O((c/0)*'n + nlog® ?n) expected space, this graph can be con-
structed in expected time O((c/6)* 'nlog® ' n).

(8) The expected mazimum time to construct a t-spanner path from any point
of S to any other point of S is bounded by O(log(1/8)logn).

(4) The expected spanner diameter of the skip list spanner is bounded by
O(logn).
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(5) In all these bounds, the expectation is taken over all coin flips that are
used to build the skip list spanner. Moreover, all bounds hold with high
probability.

4 Maintaining the skip list spanner

In this section, we consider the problem of maintaining the skip list spanner
under insertions and deletions of points. Unfortunately, it is not possible—for
our spanner—to achieve polylogarithmic update time for arbitrary insertions
and deletions. Since there may be points in ©(S, k) having Q(n) in-degree, the
worst-case update time is doomed to be Q(n). We will see, however, that in
the model of random insertions and deletions (see [12]), we can obtain poly-
logarithmic expected update time. We recall the main properties of random
updates. (For a detailed description, see [12].)

Consider a set V' of n points, and a sequence of insertions and deletions in-
volving only points of V. Let p; denote the point of V' that is involved in the
i-th update, let V; denote the set of points in V' that are “present” at the start
of the i-th update, and let n; denote the size of V;. This sequence is random,
if (i) each p; is a random point of V', and (ii) each V; is a random subset of V'
of size n;.

We first show how to maintain the graph ©(S, k) under insertions and dele-
tions. If we insert a point ¢ into S, then we have to compute all edges in
©(S U {q}, k) having ¢ as a source or a sink. Also, some edges have to be
removed from the graph. The edges with source ¢ can be found using the data
structure of Lemma 4. The following observation indicates how the edges with
sink ¢ can be found.

Claim 11 Let g € R*\ S, and let C be a cone of C. Let p be any point of S
such that g € C, or, equivalently, p € —C|,.

(1) If
(a) there is no edge (p,r) in ©(S, k) such that r € C,, or
(b) there is an edge (p,r) in ©(S, k) such that r € C, and the projection

of g onto lcy s closer to p than the projection of r onto lc,y,
then the graph ©(S U {q}, k) contains an edge from p to q.

(2) If there is an edge (p,r) in ©(S, k) such that r € C, and the projection of
T onto lcy s closer to p than the projection of g onto lc,, then the graph
©(S U{q}, k) does not contain an edge from p to q.

(83) If there is an edge (p,r) in O(S, k) such that r € C, and the projections
of ¢ and r onto lcy are at the same distance from p, then there is no need
to add an edge from p to q when q is inserted into S.
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Similarly, if we delete a point ¢ from S, then we have to delete all edges having
g as a source or a sink. Deleting the edges with source ¢ does not cause any
problems. For any deleted edge (p, ¢)—having ¢ as its sink—however, we have
to find a new edge (p,r) such that r € C,, C being the cone such that ¢ € C,.

This discussion suggests the following data structure for maintaining the graph

o(S, k).

(1)

We store the graph G = ©O(S, k). With each point p of S, we store a

dictionary containing all points ¢ of S, such that (p,q) is an edge of G,

and a dictionary containing all points 7 of S such that (r,p) is an edge

of G. (The elements in these dictionaries are sorted by any ordering, e.g.

by their names.)

For each cone C of C, we store the data structure T of Lemma 4 for the

points of S.

For each cone C of C, we store a (d + 1)-layer data structure 7/, for the

points of S, which is defined as follows. (See Figure 4.)

Recall the coordinates p',p5,...,p),, that we defined in Section 2.
(These coordinates depend on C.)

We store the points of S in a (d + 1)-layer data structure Tf,, where
each layer-j tree stores points sorted by their pg-—coordinates, 1 <5 <d.
With each node u of each layer-d tree, we store the following additional
information. Let S* be the subset of S that is stored in the subtree of .
We store with u two layer-(d + 1) trees:

(a) a balanced binary search tree T storing all points p of S* such
that ©(S, k) does not contain an edge with source p and sink in C,,.
These points are stored in the leaves of the tree, sorted by their p); ;-
coordinates. (In fact, any ordering can be taken, because we only use
T} as a dictionary.)

(b) a balanced binary search tree T4 for the points in the set

{rP e C,NS:pe S*and O(S, k) contains the edge (p,r?)}.

These points are stored in the leaves of the tree, sorted by their
(rP)!,1-coordinates. Moreover, the leaves are linked by pointers.

Having defined the data structure, we can give the update algorithms. We
only give the deletion algorithm. The insertion algorithm is similar and left to
the reader. Suppose we want to delete a point ¢ from S.

Step 1: We delete all edges from G having ¢ as its source. (Note that each
such edge is stored twice, see item 1 of the definition of the data structure.)

Step 2: For each cone C of C, we do the following:

(1)

We delete g from 7.
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P no points of S q

Fig. 4. Illustration of the (d + 1)-layered data structure T/, for the case d = 2.

(2) We search for ¢ in the first d layers of T;,. For each node u on the search
path that belongs to a layer-d tree,
e if g is contained in the tree 77, then we delete it,
e otherwise, we delete ¢ from the tree T7'.
Finally, we delete ¢ from all layer-j trees of T(,, 1 < j < d, in which it
occurs and, if necessary, rebalance the data structure.

Step 3: We delete all edges from G having ¢ as its sink. For each such edge
(p, q), let C be the cone such that ¢ € C,. Then we do the following:

(1) We use the data structure T and compute a point ¢’ in C, NS whose
projection onto ¢, is closest to p. If ¢’ exists, then we insert the edge
(p,q') into G.

(2) We search for p in the first d layers of T(,. For each node v on the search
path that belongs to a layer-d tree,

e if ¢’ does not exist, then we insert p into the tree 77 and delete ¢g—being
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the old point r’—from 77,
e if ¢/ exists, then we replace the occurrence of ¢ in 735 —being the old
point rP»—by ¢’~—which is the new point r?.

It is not difficult to see that this algorithm correctly maintains the graph
©(S, k) and the corresponding data structures T and Tj,. The complete data
structure has size O((c/0)% 'nlog®n).

Let D denote the in-degree of ¢ in the graph ©(S, k). Using Lemma 4, and
dynamic fractional cascading [11], it follows that the amortized time of the
deletion algorithm is bounded by

0 <((c/0)d_1 + D) log® nloglog n) :

By a similar argument, the amortized insertion time is bounded by the same
quantity, now D being the in-degree of the new point ¢ in the graph ©(S U
{q}, k). Note that these update times hold for any update. In the worst-case,
the value of D can be n — 1. The following lemma shows that for a random
update, the expected value of D is small.

Lemma 12 Let V be a set of points in R? and let S be a random subset of
V' of size n. Let q be a random point of V.. Then the expected in-degree of q in
the graph ©(S U {q}, k) is at most equal to the number of cones in C.

Proof: Let m denote the number of cones and let n’ denote the size of SU{q}.
Note that n’ is equal to n or n+ 1. The graph ©(SU{q}, k) contains at most
mn' edges. Hence, the average in-degree in this graph is at most m. Since q is
a random point in S U {q}, the claim follows. O

Consider a random sequence of updates. If S is the set of points at the start
of the i-th update operation, then S is a random subset of V. Also, if ¢ is the
point involved in the i-th update, then ¢ is a random point of V. Hence the
expected value of D is at most equal to the number of cones in C. This proves:

Lemma 13 Using a data structure of size O((c/0)* 'nlog®n), we can main-
tain the graph ©(S,k) in O((c/0)% ' log®nloglogn) expected amortized time
per random update.

Recall that the skip list spanner, SLS(S, k), consists of ©-graphs at levels,
1 < i < h. For each level i of SLS(S, k), we maintain the data structure
described above for the points of S;. (By a trivial extension, we do not only
maintain the graph ©(S;, k), but also its reverse ©'(S;, k).)

To insert a point ¢, we flip our coin and determine the number of levels into
which ¢ has to be inserted. If this number is [, then we use the insertion
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algorithm given above to insert ¢ into the augmented ©-graphs corresponding
to the levels 1,2,...,1.

To delete a point ¢, we use the deletion algorithm given above to delete ¢ from
all augmented ©-graphs in which it occurs.

To analyze the update time, suppose we update the augmented ©-graph of
level i. Since S; is a random subset of S, which in turn is a random subset of
V', Lemma 12 also holds for the graph that is stored at level . Also, note that
during an update, we update a constant expected number of levels. Therefore,
Lemma 13 implies that the expected amortized update time of the augmented
skip list spanner is bounded by O((c/8)% *log® nloglogn) per random update.

We have proved our final result:

Theorem 14 Let k > 8 be an integer, let 6 = 2n/k and let S be a set of
n points in RY. Using a data structure of expected size O((c/0)* *nlog®n),
we can maintain the skip list spanner SLS(S, k) under random insertions and
deletions, in an amount of O((c/6)* *log®nloglogn) expected amortized time
per random update. Here, the expectation is taken over all coin flips that are
used to build the skip list spanner and to determine the update sequence.

5 Concluding remarks

We have presented randomized algorithms for constructing a ¢-spanner with
an expected number of O(n) edges and O(logn) expected spanner diameter.
This spanner can be constructed in O(n log?™" n) expected time. For any pair p
and ¢ of points, a t-spanner path from p to ¢, containing an expected number
of O(logn) edges, can be constructed in O(logn) expected time. All these
bounds hold with high probability.

After augmenting this spanner with a data structure of size O(nlog®n), we can
maintain it in the model of random updates, in O(log? nloglogn) expected
amortized time per random insertion and deletion.

In [2], we give a deterministic construction for a t-spanner of O(logn) spanner
diameter that is based on the well-separated pair decompositions of [4]. It
is not known, however, how to maintain this spanner under insertions and
deletions.

After the first version of this paper was written, Arya et al. [1] gave a deter-
ministic algorithm for constructing a ¢-spanner with O(n) edges and spanner
diameter O(a(n)) (the inverse Ackermann function). Again, it is not known
how to maintain this spanner.
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We leave open the problem of providing dynamic spanners that can be effi-
ciently updated for arbitrary updates.
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