Range trees with slack parameter™

Michiel Smid
Maz- Planck-Institut fir Informatik
D-6600 Saarbricken, Germany

Abstract

Range trees with slack parameter were introduced by Mehlhorn as a dynamic
data structure for solving the orthogonal range searching problem. By varying
the slack parameter, this structure gives many trade-offs for the complexity
measures. In this note, a complete analysis is given for this data structure.

1 Introduction

In the orthogonal range searching problem, we are given a set S of n points in d-
space. We have to store these points in a data structure such that range queries
can be solved efficiently. Such a query consists of an axis-parallel hyper-rectangle
[a1 : b1] X ... X [aq : bg], and we have to report all points of S that lie in this rectangle,
i.e., all points p = (p1,...,pq) in S that satisfy a1 < p; < by,...,a4 < pg < by

A well-known data structure for this problem is the range tree, introduced by
Bentley [1] and Lueker [3]. See also Willard and Lueker [7].

Mehlhorn [4, page 44| gives a variation of this data structure, the range tree with
slack parameter. The algorithms and analysis given there are, however, rather com-
pact. Moreover, the analysis of the update algorithm is wrong. In this note, we give
a complete analysis for this data structure.

Let T be a binary search tree. For each node v, let n, denote the number of leaves
in the subtree of v. This tree is called a BB[a]-tree, if a < ny/n, < 1—« for all nodes
v and w such that v is the father of w. Here, « is a constant such that 0 < o < 1/3.

We use BB|a]-trees as leaf-search trees. That is, elements are stored in sorted
order in the leaves. Internal nodes, i.e., non-leaf nodes, contain information to guide
searches.

We assume that no two points in the set S have equal coordinates in any dimension.
Later, we say something about degenerate cases.

*This work was supported by the ESPRIT II Basic Research Actions Program, under contract
No. 3075 (project ALCOM).

Definition 1 Let S be a set of n points in d-space, and let m be a positive integer.
A d-dimensional range tree with slack parameter m for the set S is defined as follows.
If d = 1, then it is a BB[a/-tree storing the elements of S in sorted order in its
leaves. These leaves are linked by pointers, from left to right.
Let d > 1. Then the data structure consists of the following:

e A main tree, which is a BB[a|-tree storing the points of S in its leaves, sorted
by their first coordinates.

e Each internal node in this main tree having a depth that is divisible by m,
contains (a pointer to) an associated structure. Let v be such a node and let
S, be the points of S that are stored in the subtree of v. Then the associated
structure of v is a (d — 1)-dimensional range tree with slack parameter m for the
set .S;, which is obtained from S, by deleting in each point the first coordinate.

2 Solving orthogonal range queries

Let [ay : b1] X ... X [aq : bg] be a query rectangle. The algorithm that finds all points
of § that are in this rectangle works as follows.

If d = 1, then we search in the BB[a]-tree for the smallest value that is at least
equal to a;. Let w be the leaf in which this search ends. (If there is no value at least
equal to a1, the search ends in the rightmost leaf.) Starting in w, we walk to the right,
following the pointers that connect the leaves, until we reach a value that is larger
than b;. All values encountered during this walk lie in [a; : b;] and are reported.

If d > 1, we do the following:

1. We search in the main tree for the leaf that contains the smallest (resp. largest)
value that is at least (resp. at most) equal to a; (resp. b1). Let w, and wy be the
leaves in which the two searches end.

2. If wy is to the left of w,, the algorithm is finished and there are no answers.

3. If w, = wy, we check whether the point that is stored in this leaf lies in the query
rectangle. If it does, we report it.

4. Otherwise, let u be the node at which the search for a; proceeds to the left son
and the search for b; proceeds to the right son. We compute a set M of nodes
in the main tree, as follows.

Consider the path in the subtree of u that leads to a;. All nodes that are right
son of a node v on this path, where v # u and in which the path proceeds to the
left son of v, are put in M. Similarly, all nodes that are left son of a node w,
where w # u is on the right path in the subtree of u, and in which the search
proceeds to the right son of w, are put in M. Finally, we put the two leaves w,
and wy in M.

For each node v in M, we have to find all points in its subtree whose second to
last coordinates are contained in [as : by] X ... X [aq : bg]. Note that in general,
there is no associated structure in v. Therefore, we call the following procedure:

Find(v):
if v is a leaf or v contains an associated structure
then report v and stop

else let v; and v, be the left and right son of v;
Find(v;); Find(v,)

fi

endFind
Let vy,...,v; be the sequence of nodes computed by this procedure. For ¢ =
1,...,%, if v; is a leaf, we report the point in v; if it lies in the query rectangle.

Otherwise, if v; is not a leaf, we do a range query in the associated structure of
v; with query rectangle [ag : bo] X ... X [ag : bg]-

This concludes the query algorithm. We now prove the correctness of this algorithm
and analyze its running time. Let d > 1. It is clear that the algorithm is correct if
case 2 or 3 applies. Therefore, it remains to analyze case 4.

Claim 1 For v a node in the main tree, let S, be the points of S that are stored in
the subtree of v. Then,

{peS:iai<pr <k} = U Sy,

vEM

where the right-hand side is a union of pairwise disjoint sets.

Proof: It is clear that the set on the right-hand side is a subset of that on the left-hand
side. Let p be a point in the set on the left-hand side. Let w be the leaf that contains
p. Consider the path in the main tree that leads to w. This path goes through node
u. Assume w.l.o.g. that w is in the left subtree of u. If w = w,, then p € S,, and
w € M and, hence, p is in the set on the right-hand side. Otherwise, w is to the right
of w,. But then, there must be a node v, in which the path to w, proceeds to the left
son and the path to w proceeds to the right son. Then, p € S, and v € M. Thus, p is
in the set on the right-hand side. This proves that both sets are equal.

Let p be a point in S and suppose that there are nodes v and v’ in M such that
p €S, and p € S,. Let w be the leaf that contains p. Then there are two different
paths from w to the root: One path through v, the other through ¢’. This is a
contradiction. Hence, the sets on the right-hand side are pairwise disjoint. B

Claim 2 Let v be a node in M, and let vq,...,v; be the nodes that are computed by
the procedure Find(v). Then each node v; is either a leaf or it contains an associated

structure. Moreover,
t

Sy = U S’uia

i=1

where the right-hand side is a union of pairwise disjoint sets.

Proof: The proof is similar as that of Claim 1. W

Claim 3 At each level of the main tree, at most two nodes are contained in the set
M \ {wa, wb}.

Proof: The proof is left to the reader. B

Lemma 1 The query algorithm is correct and has a running time that is bounded by
O((2™/m)4(logn)® + k), where k is the number of reported answers.

Proof: It is clear that the query algorithm is correct for d = 1. The correctness for
the higher-dimensional case follows by induction on d, using Claims 1 and 2.

It is clear that for d = 1, the algorithm takes O(logn + k) time. Let d > 1. If case
2 or 3 applies, the algorithm takes O(logn) time and & < 2.

So assume that case 4 applies. Let Q(n, d) denote the query time, where we do not
count the time needed to report the answers. The set M can be computed in O(logn)
time. Let N be the set of nodes that are computed by calls to the procedure Find(v),
where v ranges over M. The set N is computed in O(|N|) time. If w € N is a leaf, we
check the point that is stored in w. If w € N is not a leaf, we do a (d — 1)-dimensional
range query in its associated structure. For w € N, let k, be the number of points
that are reported by w. Then the total query time in the d-dimensional range tree is
bounded by

O (logn + N[+ Y (Q(Sw|,d—1) +kw)) :
we N:w#leaf

Using Claims 1 and 2, it can be shown by induction on d that each point of S that

is contained in the query rectangle is reported exactly once. Furthermore, note that

|Sw| < n. Therefore, the total query time is bounded by O(logn+ |N|Q(n,d—1)+k),

if £ is the total number of reported points.

In the rest of the proof we will show that |[N| = O(2™(logn)/m). Using this upper
bound, the query time follows by induction on d.

For each node w in N, there is a node v in M such that w is computed by Find(v).
How many nodes are computed by the procedure Find(v) for a fixed node v in M?
Let I > 1 and 1 <4 < m be such that v is at level (I — 1)m + 4. Then the procedure
Find(v) delivers at most 2™~ nodes to N.

Now let [> 1 be an integer, and consider all nodes in M \ {w,, w,} that are at one
of the levels (I—1)m+1, (I—1)m+2,...,Im. By Claim 3, each of these levels contains
at most two nodes of M \ {w,, wy}. It follows that these nodes deliver at most

22t 4 2m2 4 4 1) < 2™t

nodes to N.

Since there are O((logn)/m) possible values for I, and since the leaves w, and
wy deliver two nodes to N, we have shown that |N| = O(2 + 2™ (logn)/m) =
0O(2™(logn)/m). This completes the proof. B

3 Building the data structure

We give an algorithm that builds a perfectly balanced range tree with slack parame-
ter m.

The definition gives a straightforward recursive algorithm. Let P(n,d) denote the
running time of this algorithm. Then P(n,1) = O(nlogn). If d > 1 and [> 0 is an
integer such that [= O((logn)/m), then there are at most 2™ associated structures
at level Im. Each such associated structure is a (d — 1)-dimensional range tree for
O(n/2"™) points. The main tree can be built in O(nlogn) time. Therefore,

O((logn)/m) 2lm

P(n,d) = O(nlogn) + Z ZP(n/le, d—1).

This recurrence solves to

md—1

P(n,d) =0 (nlogn +n (log")d> .

We show how presorting can be used to improve the building time. The following
algorithm builds a range tree with slack parameter m. This range tree contains more
information than that of Definition 1. The extra information will be used in the update
algorithm.

The building algorithm: Let S be a set of n points in d-space, where d > 1.

1. In the presorting step, we do the following. For 2 = 1,...,d, we sort the points
of S by their i-th coordinates, and store them in a list S*. For each 1 <1 < d,
we give each point in S* a pointer to its copy in S*!.

2. If d = 1, we store the elements of S in the leaves of a perfectly balanced binary
search tree and link the leaves by pointers. Then, the algorithm is finished.

3. Assume that d > 1.

(a) We build the main tree. That is, we store the points of S' in the leaves
of a perfectly balanced binary search tree. In each node v, we store values
min(v) and maz(v), which are the minimal and maximal first coordinates
of the points that are stored in its subtree.

(b) For I =0,1,2,..., we have to build associated structures for the internal
nodes at level Im. Let vy, vs,... be the internal nodes at level Im, ordered
from left to right. Each node v; has an interval [min; : maz;| associated
with it, where min; = min(v;) and maz; = maz(v;).

In each node v;, we initialize empty lists S}, ..., S%.

We simultaneously walk along the sorted list S* and the sorted sequence
of nodes v;. During this walk, we give each point p a pointer to node v;—
where i is such that the first coordinate of p lies in [min; : maz;]—we store
p at the end of the list S}, and give p in S! a pointer to its copy in S;.

Then we do the following for j = 2,...,d: We walk along the list S7. For
each point p in this list, we follow the pointer to the position of p in S/~
Then we follow the pointer from S7~' to the node v; in whose associated
structure point p belongs. We store p at the end of the list S7, give p in
S7 a pointer to node v; and a pointer to its copy in Sf, and give p in Szj a
pointer to its copy in Sf -1 (This copy in Szj ~! can be found by following
the pointer from p in S9! to p in S77"))

Afterwards, we have at each node v; a sequence of lists Sj j=1,2,...,d.
The j-th list contains the points of S,, sorted by their j-th coordlnates
Moreover, there are pointers from each point in S to its copy in S/,
j1=2,...,d.

We build for each non-leaf v; a (d —1)-dimensional range tree for the points
in S,,, using the same algorithm recursively. Note that the presorting step
is not necessary in recursive calls.

Consider a node v;. If we are in v;, we have access to d binary trees, where
the j-th one contains the points of S,, sorted by their j-th coordinates. (For
j = 0, this is the subtree of the main tree rooted at v;, for j = 1, it is the
main tree of the associated structure of v;, for j = 2, it is the main tree
of the associated structure that is stored with the root of the associated
structure of v;, etc.) We take care that each point in the j-th tree gets a
pointer to its copy in the (j — 1)-th tree, j = 2,...,d. This can be done
during the algorithm.

Lemma 2 The above algorithm builds a d-dimensional range tree with slack parameter
m in O(nlogn + n ((logn)/m)¢1) time.

Proof: The presorting step takes O(nlogn) time. Let P(n,d) denote the time needed
to build the data structure provided we have the sorted lists S, ..., S¢, such that each
p € S’ contains a pointer to its copy in S771, j=2,...,d.

Then, P(n,1) = O(n), because a perfectly balanced tree for a sorted list of elements
can be built in linear time.

Let d > 1. In step 3a, we build the main tree, which takes linear time. Consider
step 3b. For fixed [, this step takes an amount of time that is bounded by

9lm
0 (n—i—ZP(né,d— 1)) :
=1

where n! is the number of points that are stored in the subtree rooted at the i-th
node of level [. The total time for step 3b follows by summing this expression over the
values [=0,1,...,0((logn)/m). Hence,

logn O((logn)/m) 2lm
5 + .

P(n,d) =0 (n Z ZP

Note that 3, nt < n. Using induction on d, it can easily be shown that P(n,d) =
O(n ((logn)/m)?="). m

Lemma 3 A d-dimensional range tree with slack parameter m for a set of n points
has size O(n ((logn)/m)41).

Proof: The size S(n, d) satisfies the same recurrence relation as P(n, d) in the previous
proof. H

4 Inserting and deleting points

Suppose we want to insert or delete point p = (pi,...,pq). Then we search in the
main tree with p; for the position where p has to be inserted or deleted. If d > 1, we
insert or delete the point (po,...,ps) in the associated structures we encounter at the
levels 0, m, 2m, ..., using the same algorithm recursively.

Assume that we have to insert p. Let w be the leaf in which the search ends and
let ¢ be the point that is stored in w. Then we give w two sons, one storing p and the
other storing ¢. (The point with the smallest first coordinate is stored in the left son.)
If d > 1 and w has a depth that is divisible by m, we build an associated structure
for the set {p',¢'} which contains the points p and ¢ without their first coordinates,
and store it in w. In node w, we have access to d binary trees storing the sets S7
j =1,...,d, sorted by their j-th coordinates. We store pointers from p and ¢ in the
tree for S7 to their copies in the tree for Si=1 7 =2 ... d.

A deletion can be handled similarly.

Afterwards, we have to rebalance the main tree. We use the partial rebuilding
technique. That is, we walk back to the root of the main tree and find the highest
node v that does not satisfy the BB[a]-condition. Then we rebalance at node v: We
rebuild the subtree rooted at v as a perfectly balanced range tree with slack parameter
m. Note that in this subtree, we store associated structures at levels im — d,,,im —
dy + m,lm — d, + 2m, ..., where d, is the depth of v in the (entire) main tree and

l=[d,/m].

We bound the time for a rebalancing operation at node v. Let n, be the number
of points that are stored in the subtree of v. By Lemma 2, this rebalancing operation
can be done in O(n,logn, + n,((logn,)/m)4~!) time. The first term is the time for
the presorting step. Note that in the highest associated structures in the subtree of v,
subsets are stored that are ordered already. The next claim shows that we can use
this information to rebuild the subtree of v faster.

Claim 4 A rebalancing operation at node v having n, points in its subtree can be done
in O(ny,) time if d = 1, and in O(nym + ny, ((logn,)/m)?=1) time if d > 1.

Proof: Let S, be the set of points that are stored in the subtree of v. The claim is
clear for d = 1, because the points of S, are stored in sorted order in the subtree of v.

Let d > 1. We saw already that if we have lists S/, 1 < j < d, containing
the points of S, sorted by their j-th coordinates, and if we have pointers from each
p € SJ to its copy in S!7! for j = 2,...,d, then the range subtree can be built in
O(n, (logn,)/m)¢!) time. (In this subtree, associated structures are stored at levels

that differ by a multiple of m. The highest of these levels is not necessarily the level
of the root of the subtree. This does not affect the running time of the building
algorithm.)

Therefore, we only have to show how we can obtain these sorted lists and the
pointers between them in O(n,m) time.

Call the procedure Find(v) that was defined in the query algorithm. This gives a
sequence of nodes vy, ..., v, ordered from left to right, that are either leaves or that
contain an associated structure. By Claim 2, S, = U‘_, S,,, where the sets on the
right-hand side are pairwise disjoint. Note that ¢t < n, and ¢t < 2™. Hence, these
nodes are found in O(t) = O(n,) time.

Each non-leaf v; is root of a subtree of the main tree. This subtree stores the points
of S,, sorted by their first coordinates. Moreover, v; contains a (d — 1)-dimensional
range tree for the set S,,. If we are in v;, then we can obtain the sequences S{,'i,
j=1,...,d, where each S,{'i contains the points of S,, sorted by their j-th coordinates,

and each point in Sgi contains a pointer to its copy in Sj]'i_l for j = 2,...,d. This can
be done in O(3;|S,,|) = O(n,) time.
We give each leaf v; a sequence of lists Siw j =1,...,d, storing the only point

of S,,. We link these lists by pointers. This can be done in O(t) = O(n,) time.
Finally, for j = 1,...,d, we merge the lists S7 ,..., 57 into a sorted list SJ. We
take care that each p € S/ gets a pointer to its copy in S{~', j = 2,...,d. This can
be done in O(n,logt) = O(n,m) time.
We have shown that we can obtain the sorted lists and the pointers between them
in O(n, + n,m) = O(n,m) time. This completes the proof. B

Next, we show that expensive rebalancing operations do not occur too often.

Claim 5 Let v be a node in a BB|aj-tree that is in perfect balance. Let n, be the
number of leaves in the subtree of v at the moment it gets out of balance. Then there
have been at least (1 — 2a)n, — 2 updates in the subtree of v.

Proof: The proof given here is due to Overmars [6]. Let n/, nj, and n/, be the number
of leaves in the subtree of v, the left son of v and the right son of v, respectively, at
the moment that v is in perfect balance. Assume w.l.o.g. that nj, < n! . Clearly,
the fastest way for node v to get out of balance, is by deleting objects from its left
subtree, and by inserting objects into its right subtree. Suppose that at the moment
when v gets out of balance, N; insertions have taken place in the right subtree of v,
and Ny deletions in the left subtree of v. Let n, (resp. ny,) be the number of leaves in
the subtree of v (resp. the left son of v) at the moment v gets out of balance. Then
ny, = nl + N; — Ng and ny,, = nj, — Ng = |n, /2| — Ny4. Since node v is out of balance
at this moment, we have ny,/n, < a. It follows that

n! ! Ny — NZ + Nd Ny — (Nz + Nd)

v nU
anv>nl,,=[?J—Nd>7—1—Nd:#—1—Nd: 5

—1.

Thus, N; + Ny > (1 — 2a)n, — 2, i.e., there have been at least (1 — 2«a)n, — 2 updates
in the subtree of v. B

Now we are ready to bound the amortized update time. Note that the slack
parameter m only makes sense if m = O(logn).

Lemma 4 In a d-dimensional range tree with slack parameter m such that m
O(logn), points can be inserted and deleted in O(logn) amortized time if d =
and O((logn)¢/m 1 + (logn)?/m®3) amortized time if d > 1.

L,

Proof: First we bound the amortized costs for rebalancing operations that are caused
by nodes of the main tree. Consider a node v that is on the search path in the main
tree. By Claims 4 and 5, this node contributes an amount of O(1) to the amortized
rebalancing costs if d = 1, and O(m + ((logn,)/m)* ') = O(m + ((logn)/m)?~1) if
d > 1. Since there are O(logn) such nodes v, it follows that the amortized rebalancing
time for one single update—caused by nodes of the main tree—is bounded by O(logn)
if d =1, and O(mlogn + (logn)¢/m=1) if d > 1.

Let U(n,d) denote the amortized update time. Then U(n,1) = O(logn), because
the update algorithm takes O(logn) time before the rebalancing step, and we just saw
that the amortized time for rebalancing is also bounded by O(logn). For d > 1, we
have

U(n,d) = O(logn + U(n,d — 1)(logn)/m) + O(mlogn + (logn)*/m*'). (1)
We claim that
U(n,d) = O((logn)*/m** + (logn)**/m?3) if d > 2. (2)
Equation (2) holds for d = 2, because (1) implies that
U(n,2) = O(logn+ (logn)?/m+mlogn+ (logn)?/m) = O((logn)?/m+ (logn)/m ™).

The proof for d > 2 can easily be given by induction, using (1) and the fact that
m = O(logn).

5 The final result

Before we give the final result, we say something about degenerate point sets, i.e., sets
where two or more points have the same coordinates in some dimension. If such a set
is stored in the leaves of a binary search tree sorted by, say, their j-th coordinates,
then points with equal j-th coordinates are stored in lexicographical order. The search
information that is stored in an internal node consists of a d-dimensional point instead
of just a j-th coordinate.

The algorithms are only slightly changed. For example, in a query with first interval
[a; : b1], we search for the leftmost leaf that contains a point whose first coordinate is
at least equal to a;. It should be clear that all claims and lemmas still hold.

As a second remark, until now we assumed that the slack parameter m is indepen-
dent of n. What happens if m varies with n? Let f(n) be an integer function, which
will play the role of the slack parameter. Clearly, it only makes sense to consider func-
tions f such that f(n) = O(logn). We assume that f is non-decreasing and smooth,

i.e., f(©(n)) =O(f(n)). Let ng be the number of points at the start of the algorithm.
Then we build the range tree with slack parameter f(ng). After ng/2 updates we
rebuild the entire data structure, taking the slack parameter equal to f(n;), where n,
is the number of points at that moment.

Between two rebuilding operations, the current number n of points always satisfies
no/2 < n < 3ng/2. Hence, f(2n/3) < f(ng) < f(2n).

Since the entire data structure is rebuilt only once every ©(n) updates, it follows
from Lemma 2—or Claim 4—that we have to add O(logn + ((logn)/f(n))% 1) to the
amortized update time. This amount is bounded by the overall amortized update time
bound of Lemma 4. Therefore, Lemma 4 remains valid.

In the next theorem, we state our final result. The proof follows from the previous
sections and from the above remarks.

Theorem 1 Let S be a set of n points in d-space, where d > 2, and let f(n) be a
smooth non-decreasing integer function such that f(n) = O(logn). A range tree with
slack parameter f(n) for the set S

1. has size O(n ((logn)/f(n))¢),
2. can be built in O(nlogn + n ((logn)/f(n))*') time,

3. has a query time of O((2/C™/f(n))*'(logn)? + k), where k is the number of
reported points,

4. has an amortized update time of O((logn)?/f(n)4=t + (logn)4=1/f(n)43).

By choosing different functions f, we get many interesting trade-offs. For example,
for f(n) = 1, we get the well-known result of [3, 7]. (Note that for this case the
query and update times can be improved by using dynamic fractional cascading, see
Mehlhorn and Néher [5].)

If f(n) = [e(logn)/(d—1)], we get a data structure of linear size, in which queries
can be solved in O(n®logn+ k) time, and in which points can be inserted and deleted
in O((logn)?) amortized time.

Particularly interesting is the case f(n) = [e(loglogn)/(d —1)]. For this function,
the range tree has a query time of O((logn)4¢/(loglogn)¢~'+k), an amortized update
time of O((logn)?/(loglogn)?~1) and a size of O(n ((logn)/loglogn)d=1).

Chazelle [2] has shown that any data structure that solves the range searching
problem on a pointer machine with O(polylog(n) + k) query time, must have a size of
Q(n ((logn)/loglogn)?'). Note that our range tree can be implemented on a pointer
machine. It follows that it is optimal for the latter choice of f.

References

[1] J.L. Bentley. Decomposable searching problems. Inform. Proc. Lett. 8 (1979), pp.
244-251.

[2] B. Chazelle. Lower bounds for orthogonal range searching: I. The reporting case.
J. ACM 37 (1990), pp- 200-212.

[3] G.S. Lueker. A data structure for orthogonal range queries. Proc. 19-th Annual
IEEE Symp. on Foundations of Computer Science, 1978, pp. 28-34.

[4] K. Mehlhorn. Data Structures and Algorithms, Volume 3: Multi-Dimensional
Searching and Computational Geometry. Springer-Verlag, Berlin, 1984.

[5] K. Mehlhorn and S. Niher. Dynamic fractional cascading. Algorithmica 5 (1990),
pp- 215-241.

[6] M.H. Overmars. The Design of Dynamic Data Structures. Lecture Notes in Com-
puter Science, Vol. 156, Springer-Verlag, Berlin, 1983.

[7] D.E. Willard and G.S. Lueker. Adding range restriction capability to dynamic data
structures. J. ACM 32 (1985), pp. 597-617.

