Approximating the stretch factor of Euclidean
paths, cycles and trees

Giri Narasimhan* Michiel Smidf

April 23, 1999

Abstract

Given a set S of n points in R?, and a graph G having the points
of S as its vertices, the stretch factor t* of G is defined as the maximal
value |pq|c/|pq|, where p,q € S, p # q, |pq|c is the length of a shortest
path in G between p and ¢, and |pg| is the Euclidean distance between
p and q. We consider the problem of designing algorithms that, for an
arbitrary constant ¢ > 0, compute an e-approximation to this stretch
factor, i.e., a value ¢t such that t < ¢t* < (1 + €)t. We give efficient
solutions for the cases when G is a path, cycle, or tree. The main idea
used in all the algorithms is to use well-separated pair decompositions
to speed up the computations.

1 Introduction

Let S be a set of n points in R¢, where d > 1 is a small constant, and let
GG be an undirected connected graph having the points of S as its vertices.
The length of any edge (p,q) of G is defined as the Euclidean distance |pg|
between the two vertices p and ¢q. The length of a path in G is defined as the
sum of the lengths of all edges on this path. For any two vertices p and ¢ of
G, we denote by |pg|g the distance in G between them, i.e., the length of a
shortest path connecting p and q.

Let t > 1 be a real constant. We say that G is a t-spanner for S, if for
each pair of points p,q € S, p # ¢, we have |pg|¢ < t-|pqg|, i.e., there exists a

*Department of Mathematical Sciences, The University of Memphis, Memphis TN
38152. E-mail: giri@msci.memphis.edu. Research supported by NSF Grant CCR-940-
9752, and a grant by Cadence Design Systems.

tDepartment of Computer Science, University of Magdeburg, D-39106 Magdeburg,
Germany. E-mail: michiel@isg.cs.uni-magdeburg.de.

path in G between p and ¢ of length at most ¢ times the Euclidean distance
between these two points.

The smallest t such that GG is a t-spanner for S is called the stretch factor
of G. We will denote the stretch factor by ¢*. Note that

t* = max {|pgla/Ipq| : p,q € S,p # ¢}

Let € > 0. We call ¢t an e-approzimate stretch factorif t < t* < (1 + €)t.

Let G be a planar graph with n vertices. Frederickson [11] has shown
that the distances in G’ between all pairs p and ¢ of vertices can be computed
in O(n?) total time. Therefore, the ezact stretch factor of a planar graph can
be computed in O(n?) time. In general, the time complexity of solving the
All-Pairs-Shortest-Path problem is an upper bound on the time complexity
of computing the exact stretch factor of a graph. We are not aware of any
algorithms that compute the exact stretch factor in subquadratic time, for
any class of connected Euclidean graphs.

Spanners have applications in network design, robotics, distributed al-
gorithms, and many other areas, and have been the subject of considerable
research [1, 3, 7, 8, 14]. More recently, spanners have received a lot of at-
tention by researchers with the discovery of new applications for them in the
design of approximation algorithms for problems such as the traveling sales-
person problem [2, 15]. Most of the earlier research considered the problem
of constructing or analyzing geometric ¢-spanners. In this paper, we consider
the interesting dual problem, i.e., the problem of finding the value of ¢ for
which a given geometric graph is a t-spanner. There has been some research
in this general direction. Some interesting papers in this direction include
papers by Dobkin et al. [9], and Keil and Gutwin [13], who showed that the
Delaunay triangulation has a stretch factor bounded by a small constant,
and a paper by Eppstein [10] who showed that a certain class of geometric
graphs (called beta-skeletons) can have arbitrarily large stretch factors. The
current paper represents the first attempt at devising algorithms to efficiently
compute the stretch factors for larger classes of graphs.

If the graph represents, say, a network of highways, then the stretch fac-
tor (also referred to as dilation or distortion in the literature) is a measure of
the maximum percentage increase in driving distance for using the network
of highways over the direct “as-the-crow-flies” distance. Our algorithm also
determines the two vertices for which this increase is (approximately) max-
imized. In this sense, our algorithm helps to identify the “weakest” part of
the network in terms of distances.

The techniques used in this paper are particularly interesting. Here we
present an elegant way to use the well-separated pair decomposition devised

by Callahan and Kosaraju [4, 6], thus adding to the list of applications of
this powerful method. For other applications of the decomposition, see [3,
5, 6]. Although we have not been successful so far, we believe that our
techniques can be generalized to solve the same problem for more general
classes of graphs. We also believe that these techniques can be used to
solve related problems such as approximating the stretch factors for arbitrary
pairs of vertices, and efficiently computing approximate shortest path lengths
between arbitrary pair of vertices.

The results of this paper are as follows. Let S be a set of n points in R¢,
let G be a connected graph on the points of S, and let € > 0 be a constant.
We show that an e-approximate stretch factor of G can be computed

1. in O(nlogn) time, if G is a path,
2. in O(nlogn) time, if G is a cycle,

3. in O(nlog®n) time, if G is a tree.

2 Well-separated pairs

Our algorithms use the well-separated pair decomposition devised by Callahan
and Kosaraju [4, 6].

Definition 1 Let s > 0 be a real number, and let A and B be two finite sets
of points in RY. We say that A and B are well-separated w.r.t. s, if there
are two disjoint d-dimensional balls Cy and Cpg, having the same radius,
such that (i) Ca contains the points of A, (it) Cg contains B, and (iii) the
distance between C'4 and Cpg is at least equal to s times the radius of C4.

See Figure 1 for an illustration. In this paper, s will always be a constant,
called the separation constant.
The following lemma follows easily from Definition 1.

Lemma 1 Let A and B be two sets of points that are well-separated w.r.t.
s, let a and x be points of A, and let b and y be points of B. Then

1. |abl < (1 +4/s)|zy|, and

2. |ab] < (14 2/s)|ay|.

Figure 1: Two planar point sets A and B that are well-separated w.r.t. s.
Both circles have radius p; their distance is at least sp.

Definition 2 ([4, 6]) Let S be a set of n points in R, and s > 0 a real
number. A well-separated pair decomposition (WSPD) for S (w.r.t. s) is a
sequence of pairs of non-empty subsets of S,

{Ala Bl}a {A27 BQ}; ceey {Ama Bm}a
such that
1. AANnB;=0, foralli=1,2,...,m,

2. for each unordered pair {p,q} of distinct points of S, there is exactly
one pair {A;, B;} in the sequence, such that

(a) p € A; and q € B;, or
(b) pEBZ G’I’LdQEA“

3. A; and B; are well-separated w.r.t. s, for alli=1,2,...,m.

The integer m is called the size of the WSPD.

Callahan and Kosaraju show how such a WSPD of size m = O(n) can be
computed using a binary tree T', called the split tree. We briefly describe the

4

main ideas. The split tree is similar to a kd-tree. They start by computing the
bounding box of the points of S, which is successively split by d-dimensional
hyperplanes, each of which is orthogonal to one of the axes. If a box is split,
they take care that each of the two resulting boxes contains at least one point
of S. As soon as a box contains exactly one point, the process stops (for this
box).

The resulting binary tree 7' stores the points of S at its leaves; one leaf
per point. Also, each node of T is associated with a subset of S. We denote
this subset by S,; it is the set of all points of S that are stored in the subtree
of u.

The split tree T can be computed in O(nlogn) time. Callahan and
Kosaraju show that, given T, a WSPD of size m = O(n) can be computed
in O(n) time. Each pair {A;, B;} in this WSPD is represented by two nodes
u; and v; of T. That is, we have A; = S,, and B; = S,,.

In [4], Callahan also showed that, given the split tree 7', a WSPD of size
m = O(nlogn) can be computed, such that each pair {A;, B;} contains at
least one singleton set. Again, each pair is represented by two nodes of 7.
The running time of this algorithm is bounded by O(nlogn).

Theorem 1 ([4, 6]) Let S be a set of n points in R¢, and s > 0 a separation
constant.

1. In O(nlogn) time, we can compute a WSPD for S of size O(n).

2. In O(nlogn) time, we can compute a WSPD for S of size O(nlogn),
in which each pair {A;, B;} contains at least one singleton set.

3 The general approach

Let S be a set of n points in R?, let G be a connected Euclidean graph
having the points of S as its vertices, and let € be a positive constant. The
algorithms in this paper are based on the general algorithm A described in
Figure 2. The following lemma proves the correctness of this algorithm.

Lemma 2 The value of t reported by algorithm A is an e-approrimate stretch

factor of G.

Proof. Let t* be the stretch factor of the graph G. We will show that
t <t* < (14 e)t. Since t can be written as |pg|c/|pg| for some points p and
g in S, p # q, it is clear that ¢t < ¢*.

General Algorithm A

Step 1: Using separation constant s = 4/¢, compute a split tree
for S and compute a corresponding WSPD

{Ala Bl}a {A21 BQ}a ey {Ama Bm}

Step 2: For each i, 1 < ¢ < m, compute two points a; and b;,
where a; € A; and b; € B;, such that

laibi|¢ = pemax pqc-

Let ti = \aZbZ|G/|a,bZ\
Step 3: Report the value of ¢, defined as ¢ := max(t1, 2, ..., tm)-

Figure 2: The general algorithm for approximating the stretch factor.

To prove the second inequality, let © and y be two points of S such that
t* = |zy|e/|zy|. Let i be the (unique) index such that (i) z € A; and y € B;,
or (ii) z € B; and y € A;. Assume w.l.o.g. that (i) holds.

Consider the points a; € A; and b; € B; that were chosen in Step 2
of the algorithm. Clearly, |zy|g < |a;b;|c. By Lemma 1, we have |a;b;| <
(1+4/s)|zy| = (1 + €)|zy|. This gives

lzyla _ labila

tr = <
|y |y
laibi|c
< (I+e =(1+e)t;
(1+¢) ab] (1+ o)t
< (14 e)t.
This completes the proof. |

Remark 1 If the WSPD has the property that each pair {A;, B;} contains
at least one singleton set, then we can take the separation constant s = 2/e.
See Lemma 1.

4 Approximating the stretch factor of a sim-
ple path

Let the graph G be a simple path (pg,p1,...,ps_1) on the points of the set
S, and let € > 0 be a constant.

Following our general algorithm A of Section 3, we start by computing a
split tree T" and a corresponding WSPD

{Alu Bl}7 {A27 BQ}a LRI {Am7 Bm}

for S, with separation constant s = 4/e. By Theorem 1, we can compute
such a WSPD with m = O(n), in O(nlogn) time.

Recall that each pair {A;, B;} is represented by two nodes u; and v; in
the split tree T" such that their subtrees contain exactly the points of A; and
B; in their leaves, respectively.

By a simple post order traversal of 1", we store with each node u of T the
smallest and largest indices of all points that are stored at the leaves of the
subtree of wu.

Step 2 of our algorithm is implemented as follows.

First, we traverse the path, and compute for each vertex p;, 0 < j < n,
the distance |popj|¢. Using this information, we can compute for any 0 <
Jj < k < n, the distance |p;pi|¢ in constant time, as the difference between
[Popk|c and |pop;e-

Then, for each i, 1 < ¢ < m, consider the nodes u; and v;. Let j and j' be
the smallest and largest indices that are stored with u;. Similarly, let k£ and
k' be the smallest and largest indices that are stored with v;. We compute
\pipr|c and |p;jpk|c. Finally, we compute

t; *= max { |pjpk’|G’ |pj’pk|G} '
pjpw| " Py k]

It is easy to see that this correctly implements Step 2. Clearly, the running
time of the entire algorithm is bounded by O(nlogn).

Theorem 2 Let S be a set of n points in R?, let G be a simple path on
the points of S, and let € be a positive constant. In O(nlogn) time, we can
compute an e-approrimate stretch factor of G.

5 Approximating the stretch factor of a cycle

Let the graph G be a cycle (po, p1,---,Pn_1,P0) on the points of the set S,
and let € > 0 be a constant.

We preprocess G in O(n) time, such that the distance in G between any
two points of S can be computed in O(1) time.
We compute a split tree 7" and a corresponding WSPD

{Ala Bl}a {A27 B2}a R {Ama Bm}

for S, with separation constant s = 2/¢, such that each set A; is a singleton,
say A; = {a;}. Note that m = O(nlogn). With each point p;, we store all
indices %, 1 <4 < m, such that a; = p;.

Let L be the total length of the cycle, ie., L = ZJ".:_& |pjpjt1|, where
indices are to be read modulo n.

By walking around the cycle, we compute for each j, 0 < j < n, the index
k such that

PiDjr1| + [Pjrpjae| + -+ Pr—2pr—1| < L/2,
and
pipj1| + |Pjripjael + -+ |Pr—1pr| > L/2.
Then define h; := py.

Let 1 <7 < m, and consider the point a;. Let j be the index such that
a; = p;. Let b; be the point in B; such that

la;bi|¢ = max{|a;q|c : ¢ € B;}.

Let x be the first point of B; that is encountered when walking along G' from
h; towards p; in one direction. Similarly, let y be the first point of B; that is
encountered when walking along G' from h; towards p; in the other direction.
It is easy to see that b; € {z,y}.

Hence, we can solve the problem of computing an e-approximate stretch
of G, if we can solve m queries of the form: given a point A and an index ¢,
find the first point of B; that is encountered when walking from A along the
cycle in a given direction.

We will show how a batch of m such queries can be solved in O(m) total
time. Consider the split tree 7. Recall that each set B; is represented by a
node, say v;, of T', i.e., B; = S,,.

The algorithm that solves the batch of queries traverses the nodes of 7" in
postorder. If u is the node of T' that is currently visited, then the algorithm
has a data structure DS(u) that stores all points of S that are in the subtree
of u. This data structure supports the following two operations. First, we
can insert a point into DS(u). Second, we can answer queries of the form:
given a point h of S and a direction (+ or —), find the first point of the set
S, that is encountered when walking from h along the cycle G' in the given
direction. This data structure will be specified below. The algorithm is given
below.

TRAVERSE(u,T): (* u is a node of T x)
if u is a leaf
then build a data structure DS(u) storing the index
of the point stored at u;
x := point stored at u;
for each i such that B; = {z}
do t; := |a;z|g/|aiz|
endfor;
else v’ := left child of u;
u" := right child of u;
TRAVERSE(u/, T);
TRAVERSE(u", T);
if ‘Su’| S ‘Su”‘
then insert each element of DS(u') into DS(u");
DS(u) := DS (u");
discard DS (u')
else insert each element of DS(u") into DS (u');
DS (u) :== DS(u');
discard DS (u")

endif;
for each i such that B; = S,
do p; :=q;

z := point returned by querying DS(u) with the point h;
and direction +;

y := point returned by querying DS (u) with the point h;
and direction —;

if |a;x|e > |aiy|c

then ¢; := |a;x|¢/|a;z|
else t; := |a;y|c/|a:y|
endif

endfor

endif

How do we implement the data structure DS? 'This structure stores a
subset of the points of S. Clearly, it suffices to store the indices of these
points. These indices define a set of pairwise disjoint intervals whose union
is [0...n — 1]. An insertion can be viewed as splitting such an interval into
two disjoint intervals. In a query, we basically want to find the endpoints
of the interval that contains the query point. Hence, we have to solve the
interval split-find problem. Imai and Asano [12] have shown that this problem
can be solved in O(1) amortized time per operation. Since the number of

queries is m = O(nlogn), we spend O(nlogn) time for solving them all. How
many insertions are performed? Note that DS(u) is obtained by inserting the
points from the child’s structure whose subtree is smaller, into the structure
of the other child. The following lemma shows that each point of S is inserted
at most logn times. Since there are n points, the total number of insertions
is therefore bounded by O(nlogn). This will prove that the total time for
the insertions is O(n logn).

Lemma 3 Let T be a binary tree with n leaves, and let £ be an arbitrary leaf
of T. Let k be the number of proper ancestors u of £ such that the number
of leaves in the subtree that contains ¢ and that is rooted at a child of u is
less than or equal to the number of leaves in the subtree that is rooted at the
other child of u. Then k < logn.

Proof. Let wuy,us,...,u; be the nodes that satisfy the hypothesis, sorted
along the path from the root to £. (Hence, u; is closest to the root.) For
each i, 1 <7 < k, let m; be the number of leaves in the subtree that contains
¢ and that is rooted at a child of u;.

Clearly, m; < n/2, and my > 1. Let i be such that 1 < 7 < k. Since
(i) the number of leaves in the subtree of wu; is at least 2m;, and (ii) u; is
in the subtree that contains £ and that is rooted at a child of u;_;, we have
m;_1 > 2m,;. Therefore,

n/2 > my > 2mg > 2°mg > ... > 2F7im, > 2871
This implies that £ < logn. |
We summarize the result of this section.

Theorem 3 Let S be a set of n points in R?, let G be a cycle on the points
of S, and let € be a positive constant. In O(nlogn) time, we can compute an
e-approximate stretch factor of G.

6 Approximating the stretch factor of a tree

It is well known that in any tree G having n vertices, there is a vertex
v, whose removal gives two graphs G| and G, each having at most 2n/3
vertices. Moreover, such a vertex v can be found in O(n) time. Each of the
two graphs G is a forest of trees. We will call v a centroid vertez of G. Each
of the graphs G := G| U {v} and G5 := G, U{v} is connected and, hence, a
tree again.

10

Let S be a set of n points in R?, and let G be an arbitrary tree having the
points of S as its vertices. We will identify the vertices of G with the points
of S. Let ¢ > 0 be a constant. The following recursive algorithm, which
is inspired by the general algorithm A, computes an e-approximate stretch
factor of G.

Step 1: Compute a centroid vertex v of G, and the corresponding decom-
position into trees G; and G5. Note that v is a vertex of both these trees.
Traverse each tree in preorder, and store with each vertex p the distance
|pv|g between p and the centroid vertex v.

Step 2: Use the same algorithm to compute an e-approximate stretch factor
t; of G, and an e-approximate stretch factor ¢y of Gs.

Step 3: Let s := 4/e. Compute a split tree 7" and a corresponding WSPD
{A1: Bl}a {A27 B2}7) {Ama Bm}

for the points of S, with separation constant s, having size m = O(n).

Step 4: For each node u of the split tree, denote by S, the set of points of
S that are stored in the subtree of u. Traverse T" in postorder, and compute
for each of its nodes u the values

dist1(u) = max{|qv|g : ¢ € Sy N G1,q # v}, (1)

dists(u) = max{|qv|g : ¢ € Sy N Ga,q # v}. (2

)
(Here, we define the maximal element of the empty set as —oo.) If dist;(u) #
—00, then we store with u a point ¢; € S, NGy, ¢1 # v, for which dist;(u) =
|q1v| . Similarly, if diste(u) # —oo, then we store with u a point go € S,NGo,
g2 # v, for which disto(u) = |gov|g. In other words, each node of T" also stores
the vertices in S, NG and S, NG5 that are farthest from the centroid vertex,
along with the corresponding distances; these vertices will help determine the
approximate stretch factor between vertices in a well-separated pair of the
decomposition.

Step 5: For each i, 1 < 7 < m, we do the following. Consider the pair
{A;, B;} in our WSPD, and the nodes u; and v; in the split tree such that
A; = S,, and B; = S,,, respectively.

If dist1(u;) = —oo or diste(v;) = —oo, then set ¢} ;= —oo. Otherwise,
consider the point ¢; € A; N Gy, ¢1 # v, for which dist;(u;) = |q1v|g, and
the point ¢ € B; N Gy, g2 # v, for which dista(v;) = |gu|g. Set t; =
919216/ 191G2]-

Symmetrically, if diste(u;) = —o0 or dist;(v;) = —o0, then set ¢ := —o0.
Otherwise, consider the point ¢; € B; N Gy, ¢1 # v, for which dist;(v;) =

11

|g1v|@, and the point ¢y € A; N Gy, g2 # v, for which dista(u;) = |gav|g. Set
t = |lagele/ |0l

Note that |g1¢2|¢ can be easily computed as the sum of |¢;v|¢ and |g2v|g,
both of which have been computed in Step 1.

Step 6: The last step is to compute

t:=max(t1, to, B, by, ..., th t ty, oo T).
Once again, the correctness of the above algorithm is proved in the following
lemma.

Lemma 4 The above algorithm computes an e-approzimate stretch factor of
the graph G.

Proof. The proof is by induction. The algorithm trivially computes the
stretch factor (precisely) when the graph has only one vertex. Assume that
the above algorithm correctly computes an e-approximate stretch factor of
all graphs with fewer vertices than G. Let t* be the exact stretch factor of G.
Since each of ty,to, ti,t,, ...t , t],t5, ... t! is either —oo or has the form
Ipg|c/|pg| for some points p and ¢, p # ¢, we clearly have ¢ < ¢*. It remains
to show that t* < (1 + €)t.

Let z and y be two points of S, x # y, such that t* = |zy|g/|zy|.
Case 1: x and y are both vertices in G, or both vertices in Gs.

Assume w.l.o.g. that = and y are vertices in GG;. Let] be the exact
stretch factor of the tree G;. Then, by the inductive assumption, we have
17 < (14 €)ty. Also, it is easy to see that ¢} = t*. This implies

=t <(1+e)t < (1+e€).

Case 2: x and y are in different trees.

Assume w.l.o.g. that x is a vertex in GG; and y is a vertex in G,. Let ¢
be the index such that (i) x € A; and y € B;, or (ii) z € B; and y € A;.
Assume w.l.o.g. that (i) holds. Consider the nodes u; and v; of the split tree
such that A; = 5,, and B; = 5,,.

Since x € A; N Gy, we know that dist;(u;) # —oo. Let ¢; € A; N G such
that dist1(u;) = |q1v|g. Then |zv|e < |q1v]g-

Similarly, since y € B; N Gy, disty(v;) # —oo. Let go € B; NG9 such that
dista(v;) = |gav|g. Then |yv|g < |gv]g-

We have

_ lzyle _ lavle + vyle _ |lawvle + lvgele _ l@igele

= = < = .
|\zy| |\zy| |zy| zy|

12

By Lemma 1, we have
1] < (1+4/s)|xy| = (1 + €)|xyl.
It follows that

|Q1Q2|G

"< (1+e) 0]

=(1+4et; < (1+e)t.
This completes the proof. |

To prove the time complexity, let 7(n) denote the running time of our
algorithm on an input tree having n vertices. Then

T(n) =0(nlogn) + T (n1) + T (ns),

where n; and ny are positive integers such that n; < 2n/3, ny, < 2n/3, and
ny + ny = n + 1. This recurrence relation solves to 7 (n) = O(nlog®n).

Theorem 4 Let S be a set of n points in R?, let G be a tree having the
points of S as its vertices, and let € > 0 be a constant. In O(n log? n) time,
we can compute an e-approrimate stretch factor of G.

7 Concluding remarks

This is the first attempt to study the interesting problem of computing stretch
factors of given geometric graphs. We provide efficient algorithms to solve
the problem on special classes of graphs such as paths, cycles and trees. The
problem of finding efficient algorithms for broader classes of graphs remains
open. More specifically, the problem of efficiently determining the stretch
factor of planar graphs is an interesting open problem. The main tool that
we employ, namely, the method of using well-separated pair decompositions
seems particularly noteworthy.

References

[1] I. Althéfer, G. Das, D. P. Dobkin, D. Joseph, and J. Soares. On sparse
spanners of weighted graphs. Discrete Comput. Geom., 9:81-100, 1993.

[2] Sanjeev Arora, Michelangelo Grigni, David Karger, Philip Klein, and
Andrzej Woloszyn. A polynomial-time approximation scheme for
weighted planar graph TSP. In Proc. 9th ACM-SIAM Sympos. Discrete
Algorithms, pages 33-41, 1998.

13

3]

[4]

[5]

[6]

7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

S. Arya, G. Das, D. M. Mount, J. S. Salowe, and M. Smid. Euclidean
spanners: short, thin, and lanky. In Proc. 27th Annu. ACM Sympos.
Theory Comput., pages 489-498, 1995.

P. B. Callahan. Dealing with higher dimensions: the well-separated pair
decomposition and its applications. Ph.D. thesis, Dept. Comput. Sci.,
Johns Hopkins University, Baltimore, Maryland, 1995.

P. B. Callahan and S. R. Kosaraju. Faster algorithms for some geometric
graph problems in higher dimensions. In Proc. 4th ACM-SIAM Sympos.
Discrete Algorithms, pages 291-300, 1993.

P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional
point sets with applications to k-nearest-neighbors and n-body potential
fields. J. ACM, 42:67-90, 1995.

B. Chandra, G. Das, G. Narasimhan, and J. Soares. New sparseness
results on graph spanners. Internat. J. Comput. Geom. Appl., 5:125-
144, 1995.

G. Das and G. Narasimhan. A fast algorithm for constructing sparse
Euclidean spanners. Internat. J. Comput. Geom. Appl., 7:297-315, 1997.

D. P. Dobkin, S. J. Friedman, and K. J. Supowit. Delaunay graphs are

almost as good as complete graphs. Discrete Comput. Geom., 5:399-407,
1990.

David Eppstein. Beta-skeletons have unbounded dilation. Technical Re-
port 96-15, Univ. of California, Irvine, Dept. of Information & Computer
Science, Irvine, CA, 92697-3425, USA, 1996.

G. N. Frederickson. Fast algorithms for shortest paths in planar graphs,
with applications. SIAM J. Comput., 16:1004-1022, 1987.

H. Imai and Ta. Asano. Dynamic orthogonal segment intersection
search. J. Algorithms, 8:1-18, 1987.

J. M. Keil and C. A. Gutwin. Classes of graphs which approximate the
complete Euclidean graph. Discrete Comput. Geom., 7:13-28, 1992.

C. Levcopoulos, G. Narasimhan, and M. Smid. Efficient algorithms
for constructing fault-tolerant geometric spanners. In Proc. 30th Annu.
ACM Sympos. Theory Comput., pages 186-195, 1998.

14

[15] S. Rao and W. D. Smith. Approximating geometrical graphs via “span-
ners” and “banyans”. In Proc. 30th Annu. ACM Sympos. Theory Com-
put., pages 540-550, 1998.

15

