Computing the width of a three-dimensional point
set: an experimental study

Jorg Schwerdt, Michiel Smid

University of Magdeburg, Magdeburg, Germany

and

Jayanth Majhi

Mentor Graphics Corporation, Wilsonville, OR, U.S.A.
and

Ravi Janardan

University of Minnesota, Minneapolis, MN, U.S.A.

We describe a robust, exact, and efficient implementation of an algorithm that computes the width
of a three-dimensional point set. The algorithm is based on efficient solutions to problems that are
at the heart of computational geometry: three-dimensional convex hulls, point location in planar
graphs, and computing intersections between line segments. The latter two problems have to be
solved for planar graphs and segments on the unit sphere, rather than in the two-dimensional
plane. The implementation is based on LEDA, and the geometric objects are represented using
exact rational arithmetic.

Categories and Subject Descriptors: F.2.2 [Nonnumerical Algorithms and Problems]: Ge-
ometrical problems and computations; J.6 [Computer-Aided Engineering]|: Computer-aided
manufacturing (CAM)

General Terms: Computational Geometry, Layered Manufacturing

Additional Key Words and Phrases: Implementation, spherical geometry

This work was funded in part by a joint research grant by DAAD and by NSF. Research of JM
and RJ also supported in part by NSF grant CCR-9712226.

Address: Jorg Schwerdt, Michiel Smid. Department of Computer Science, University of Magde-
burg, D-39106 Magdeburg, Germany. E-mail: {schwerdt,michiel}@isg.cs.uni-magdeburg.de.
Jayanth Majhi. Mentor Graphics Corporation, 8005 S.W. Boeckman Road, Wilsonville, OR
97070, U.S.A. E-mail: jayanth majhi@mentorg.com. Ravi Janardan. Department of Computer
Science and Engineering, University of Minnesota, Minneapolis, MN 55455, U.S.A. E-mail:
janardan@cs.umn.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, to redistribute to lists, or to use any component of this work in other works, requires prior
specific permission and/or a fee. Permissions may be requested from Publications Dept, ACM
Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

2 . Schwerdt, Smid, Majhi, Janardan

1. INTRODUCTION

In this paper, we study a geometric problem motivated by applications in an emerg-
ing technology called Layered Manufacturing. This technology makes it possible to
rapidly build physical models of computer designed three-dimensional models. A
specific process of Layered Manufacturing which is in wide use is StereoLithogra-
phy (see the book by Jacobs [Jacobs 1992]). The input to the process is a surface
triangulation of the CAD model in a format called STL.! The triangulated model is
sliced by horizontal planes into layers, and then built layer by layer in the positive
z-direction, as follows. The StereoLithography apparatus consists of a vat of pho-
tocurable liquid resin, a platform, and a laser. Initially, the platform is below the
surface of the resin at a depth equal to the layer thickness. The laser traces out the
contour of the first slice on the surface and then hatches the interior, which hardens
to a depth equal to the layer thickness. In this way, the first layer is created, which
rests on the platform. Next, the platform is lowered by the layer thickness and the
just-vacated region is re-coated with resin. The next layers are then built in the
same way.

It may happen that the current layer overhangs the previous one. Since this
leads to instabilities during the process, so-called support structures are generated
to prop up the portions of the current layer that overhang the previous layer. These
support structures are computed before the process starts. They are also sliced into
layers, and built simultaneously with the actual object. After the object has been
built, the supports are removed. Finally, the object is postprocessed in order to
remove residual traces of the supports.

An important issue in this process is choosing an orientation of the model so that
it can be built in the vertical direction. Equivalently, we can keep the model fixed,
and choose a direction in which the model is built layer by layer. This direction is
called the build direction. It affects the number of layers, the amount of support
structures used, and the parts of the object that are in contact with supports.

In our recent papers [Majhi et al. 1999a; Majhi et al. 1999b; Majhi et al. 1998],
we have considered the problem of computing a build direction which optimizes
design criteria (or combinations of criteria), including number of layers, volume of
support structures, area of contact between supports and part, and surface finish.
We have also studied, in [Schwerdt et al. 1999; Schwerdt et al. 2000], the problem
of choosing a build direction which protects prescribed facets from being in contact
with supports.

In this paper, we discuss an implementation and experimental results of an algo-
rithm that computes all build directions that minimize the number of layers. This
problem turns out to be equivalent to computing the width of a polyhedron [Agar-
wal and Sharir 1996; Chazelle et al. 1993; Houle and Toussaint 1988], and it leads
to problems that are at the heart of computational geometry: three-dimensional
convex hulls, point location in planar graphs, and computing intersections between
line segments. The latter two problems, however, have to be solved for planar
graphs and segments (more precisely, great arcs) on the unit sphere rather than in
the two-dimensional plane.

I Thus the input to the process is polyhedral even if the original model is composed of arbitrary
freeform surfaces.

Computing the width of a three-dimensional point set . 3

1.1 The width problem

Throughout this paper, P denotes a polyhedron, possibly with holes, and n denotes
the number of its facets. The unit sphere, i.e., the boundary of the three-dimensional
ball centered at the origin and having radius one, is denoted by S2. The upper
hemisphere is defined as

Si =82n{(z,y,2) € R® : 2 > 0}.
Similarly, we define the lower hemisphere as
S? :=82n{(z,y,2) € R® : 2 < 0}.

Finally, the equator is the intersection of S? with the plane z = 0. We consider
directions as points—or unit vectors—on S2.

Often, layer thickness in the Layered Manufacturing process is measured in thou-
sandths of an inch. As a result, the number of layers needed to build a model can
run into the thousands if the part is oriented along its longest dimension. If the
layer thickness is fixed, then the number of layers for a given build direction d is
proportional to the smallest distance between two parallel planes that are normal
to d, and which enclose P. We call this smallest distance the width of P in direction
d, and denote it by w(d). Note that w(d) = w(—d).

The width W (P) of the polyhedron P is defined as the minimum distance between
any two parallel planes that enclose P, i.e.,

W(P) = min{w(d) : d € S%}.

In this paper, we will consider the following problem: Given the three-dimensional
polyhedron P, compute all build directions d for which w(d) = W (P). Houle and
Toussaint [Houle and Toussaint 1988] gave an algorithm which solves this problem.
We have implemented a variant of their algorithm. Our implementation is written in
C++ and uses LEDA 3.7 [Mehlhorn and Ndher 1999]. In particular, we use efficient
data structures from the LEDA library, such as planar maps and dictionaries. Also,
we use LEDA’s rational arithmetic to solve geometric predicates ezactly. Hence,
our implementation solves the problem exactly, and is robust, in the sense that it
is correct even for a degenerate polyhedron (e.g., several neighboring facets can be
co-planar). As far as we know, this is the first exact and robust implementation of
an algorithm for computing the width of a three-dimensional polyhedron.

Why do we want to solve predicates exactly? Our implementation uses data
structures such as balanced binary search trees, that are based on non-trivial or-
dering relations. The order of two objects is determined by one or more orientation
tests of the form “on which side of a three-dimensional plane is a given point”. Solv-
ing these tests exactly guarantees that our compare functions define “real” ordering
relations, i.e., they are reflexive, anti-symmetric, and transitive. As a result, data
structures whose correctness heavily depends on properties of an ordering relation
can use these compare functions without having to worry about rounding errors.

The rest of this paper is organized as follows. In Section 2, we describe the algo-
rithm. Section 3 discusses the implementation, especially the primitive operations
where two objects on the unit sphere are compared. In Section 4, we present the
results of our experiments on real-world polyhedral models obtained from Strata-
sys, Inc.—a Minnesota-based world leader in Layered Manufacturing. The largest

4 . Schwerdt, Smid, Majhi, Janardan

model we tested has about 200,000 facets; our program computed its width within
ten minutes. We also present test results on randomly generated point sets of size
up to 100,000. We conclude in Section 5 with directions for future work.

2. THE ALGORITHM

The asymptotically fastest known algorithm for computing the width of a three-
dimensional point set is due to Agarwal and Sharir [Agarwal and Sharir 1996]; its
expected running time is roughly O(n!®). Our implementation is based on the
algorithm of Houle and Toussaint [Houle and Toussaint 1988], which has O(n?)
running time in the worst case. The reason we implemented the latter algorithm
is that (i) it is much simpler, (ii) in practice, the running time is much less than
quadratic, as our experiments show (Tables 1-4), and (iii) it finds all directions
that minimize the width. (Finding all optimal directions has applications when
computing a build direction that minimizes a multi-criteria function, see [Majhi
et al. 1998].)

To compute the width of the polyhedron P, we do the following. First, we
compute the convex hull CH(P) of (the vertices of) P. It is clear that the set
of directions that minimize the width of P is equal to the set of directions that
minimize the width of CH (P).

Let V be a vertex and F a facet of CH(P). We call (V, F) an antipodal vertez-
facet pair (or VF-pair), if the two parallel planes containing V' and F', respectively,
enclose CH(P). (Note that these two planes are unique.) We say that these parallel
planes support CH(P).

Similarly, two non-parallel edges ey and e; of CH(P) are called an antipodal
edge-edge pair (or EE-pair), if the two (unique) parallel planes containing e and
e1, respectively, enclose CH(P). Again, we say that these parallel planes support
CH(P).

In [Houle and Toussaint 1988], it is shown that any direction minimizing the
width of P is perpendicular to the parallel planes associated with some VF'- or FE-
pair. Therefore, we compute all VF- and FE-pairs, and for each of them compute
the distance between the corresponding supporting parallel planes. The smallest
distance found is the width W (P) of the polyhedron P.

We now describe how the VF'- and EE-pairs can be computed. The dual graph G
of CH(P) is the planar graph on the unit sphere S? that is defined as follows. The
vertices of G are the unit outer normals of the facets of CH(P), and two vertices
are connected by an edge in G, if the corresponding facets of CH (P) share an edge.
Note that edges of this dual graph are great arcs on S2. Moreover, edges (resp.
faces) of G are in one-to-one correspondence with edges (resp. vertices) of CH (P).

We transform G into a planar graph G’ on S?, by cutting all edges that cross the
equator, and “adding” the equator to it. Hence, G' contains all vertices of G, and
all edges of G that do not cross the equator. Additionally, each edge e of G that
crosses the equator is represented in G’ by two edges that are obtained by cutting e
at the equator. Moreover, by following edges of G', we can completely walk around
the equator. Note that edges of G that are on the equator are also edges in G'.
(Adding the equator is not really necessary—in fact, in our implementation, we do
not even add it. Adding the equator makes the description of the algorithm cleaner,
because all faces of the graphs that are defined below are bounded by “real” edges.)

Computing the width of a three-dimensional point set . 5

Let G!, be the subgraph of G' containing all vertices and edges that are in the
upper hemisphere S3. Let GY be the subgraph of G' containing all vertices and
edges that are in the lower hemisphere S?. (Hence, all edges and vertices of G’
that are on the equator belong to both G, and G}.) Finally, let G} be the inverse
image of G?, i.e., the graph obtained by mapping each vertex v in G? to the vertex
—v. Note that both graphs G, and G are in the upper hemisphere Si.

2.1 Computing VF-pairs

Consider a vertex V and a facet F' of CH(P) that form a VF-pair. Let fy be the
face of G that corresponds to V', and let dz be the vertex of G that corresponds to
F. We distinguish two cases.

Case 1: dr is on or above the equator. Then dr is a vertex of G.,. Let f‘g be the
face of G? that is contained in fy. (Face fy is completely or partially contained
in the lower hemisphere. If fy was not cut when we transformed G into G', then
Y = fy. Otherwise, f{ is that part of fy that is in the lower hemisphere.) Let
fi be the face of G} that corresponds to f{,. Since the unique planes that support
CH(P) at V and F are parallel, vertex dr of G, is contained in face fi, of Gj.

Case 2: d is strictly below the equator. Then dp is a vertex of GY, and —dp is
a vertex of Gj. Let fi, be the face of G, that is contained in fy. Since the unique
planes that support CH(P) at V and F are parallel, vertex —dr of G| is contained
in face fi, of Gl,.

It follows that we can find all VF-pairs, by performing a point location query
with each vertex of G}, in the graph G}, and performing a point location query with
each vertex of G in the graph G’,. Note that in these point location problems, all
query points are known in advance.

We consider some special cases for Case 1. (The analogous special cases for
Case 2 can be treated in a similar way.)

First assume that dp is strictly above the equator, and is in the interior of an
edge of G} bounding f{,. Let g’ be the other face of G that has this edge on its
boundary, and let g be the face of GY that corresponds to g'. Let W be the vertex of
CH (P) that corresponds to g. Then the distance between V' and the plane through
F' is the same as the distance between W and the plane through F. Therefore,
when locating vertex dr in Gj, it does not matter if we get V' or W as answer.

Next assume that dr is on the equator, and is in the interior of an edge bounding
fi/- Since G| is considered as a graph in the upper hemisphere, the face of Gj
containing dr is uniquely defined.

Finally, consider the case when dp coincides with a vertex dy of f{,. Let g # fy,
be an arbitrary face of G} having dy as a vertex on its boundary. Let W be the
vertex of CH(P) that corresponds to g. Then the distance between V and the
plane through F' is the same as the distance between W and the plane though F.
Therefore, when locating vertex dr in G}, it does not matter if we get V or W as
answer.

6 . Schwerdt, Smid, Majhi, Janardan

2.2 Computing EE-pairs

Consider two edges eq and e; of CH(P) that form an EE-pair. Recall that these
edges are not parallel. Let go and g; be the edges of G that correspond to eg and
e1, respectively. Then gg and g; are not both on the equator, and they can have at
most one point in common.

Assume w.l.o.g. that g is (completely or partially) contained in the upper hemi-
sphere. Then g; is (again, completely or partially) contained in the lower hemi-
sphere. Let gj be the part of go that is contained in S3. Then gf is an edge of G,.
Let g9 be the part of g; that is contained in §2, and let g} be its inverse image.
Then g} is an edge of G}. Since the unique planes that support CH(P) at ey and
ey are parallel, the edges g} and g; intersect.

Again, we consider some special cases. Assume that one endpoint, say do, of g;
coincides with one endpoint, say di, of g;. Note that dy = d; is a vertex in both
G, and Gj. If it is also a vertex in G, then dy and d; correspond to two facets Fp
and Fy of CH(P). In this case, the distance between the planes containing Fy and
Fy is equal to the distance between the parallel planes through ey and e;. Let V
be any vertex of F;. Then we have found the direction dy already because of the
VF-pair (V, Fy). Hence, we do not have to worry about intersections of this type.
So assume that dg is not a vertex of G. Then it is on the equator. In this case, we
have to find the intersection between g and g .

Next consider the case when one endpoint, say dg of g{, is in the interior of g;.
Assume that dg is a vertex of G. Let F be the facet of CH(P) that corresponds
to dp. Also, let V' be one of the endpoints of edge e;. Then the distance between
V and the plane through F' is equal to the distance between the parallel planes
through e¢ and e;. Hence, we have found this distance already because of the VF-
pair (V, F). So assume that dy is not a vertex of G. Then dg is on the equator,
and ¢ is also on the equator. In this case the edge e; is orthogonal to the plane
z = 0, and we have to find the intersection between gj, and gj.

Hence, we can find all necessary EFE-pairs, by computing all edge pairs (g4, 91)
such that (i) gg is an edge of G, (ii) g1 is an edge of G}, and (iii) g and g] intersect
in their interiors or the common point of g and g; is on the equator.

2.3 The running time of the algorithm

Houle and Toussaint show in [Houle and Toussaint 1988] that the entire algorithm
can be implemented such that the worst-case running time is bounded by O(n?).
Moreover, they show that the number of directions minimizing the width can be as
large as ©(n?).

In order to get a better understanding of the performance of our implementation,
we express the running time as a function of (i) the number n of facets of P, (ii)
the number h of facets of CH(P), and (iii) the number k of intersections between
edges of G!, and edges of G.

We compute the convex hull of P using the LEDA function D3_HULL. According
to the LEDA user manual [Mehlhorn et al.], this convex hull computation takes
O(n?) time in the worst case, but O(nlogn) time for most inputs.

The graphs G!, and G) have total size O(h). For each of the vertices in one of
these graphs, we have to find the face of the other graph that contains the vertex.

Computing the width of a three-dimensional point set . 7

We can do this using a sweep algorithm—adapted to the unit sphere—in O(hlog h)
time. Hence, given the convex hull of P, the total time for computing all VF-pairs
is bounded by O(hlogh).

We compute the intersections between edges of G, with edges of G} in O(hlog h+
klogh) time, using a variant of the implementation of Bartuschka et al. [Bar-
tuschka et al. 1997] of the Bentley—Ottmann algorithm [Bentley and Ottmann 1979],
adapted to great arcs on the unit sphere. This gives all EE-pairs.

The overall worst-case running time of our algorithm is thus bounded by

O(n® + klogh) = O(n?logn).

REMARK 1. We have reduced the problem of computing the width to prob-
lems on the upper hemisphere. Alternatively, we could have used central projec-
tion [Preparata and Shamos 1988] to map points and great arcs on S? to points
and line segments in the plane, respectively. The problem with this approach is
that points on the equator are projected to points at infinity. As a result, we need
compare functions that determine the order of different points at infinity. Stolfi’s
oriented projective geometry [Stolfi 1991] can be used for this, by computing the
circular order of points on the “infinite circle”. We chose the approach of solving
the problems on the upper hemisphere, because all functions that are needed for
this are available in LEDA.

3. THE IMPLEMENTATION

In this section, we give some details about the implementation. (The complete pro-
gram has been documented using noweb [Ramsey 1994], and can be found in [Schw-
erdt and Smid 1999].)

As mentioned already, the program is written in C++ and uses LEDA 3.7 and
its rational arithmetic to solve geometric predicates exactly. The program takes as
input a set S of three-dimensional points (which are the vertices of the polyhedron
P). The coordinates of these points are represented using exact rational numbers
(d3_rat_point) from LEDA.

First, we use LEDA’s D3_HULL, which implements an incremental space sweep
algorithm that computes the convex hull of the points of S. Given this convex hull,
we compute an implicit representation of the graph G. Recall that each vertex
v of G is a unit outer normal vector of a hull facet, and is a point on the unit
sphere. This point can be computed from the cross product of three of the vertices
of the hull facet. Instead of normalizing this point v, we represent it as a non-
zero vector having the same direction as the ray from the origin through v. That
is, this vector does not necessarily have length one. In this way, we avoid using
expensive and inexact arithmetic operations such as square roots. Moreover, all our
geometric primitives—which actually operate on unit vectors—can be implemented
using these vectors.

The graph G is stored as a planar_map from LEDA. Given G, the graphs G), and
G| can easily be computed. Again, the vertices of these two graphs are represented
as vectors that do not necessarily have length one.

As explained before, we can now compute all width-minimizing directions, by (i)
locating all vertices of G, in G} and vice versa, and (ii) computing intersections
between edges of G, with edges of Gj.

8 . Schwerdt, Smid, Majhi, Janardan

Fig. 1. Sweeping on the upper hemisphere.

We solve both (i) and (ii) using algorithms in the style of Bentley—Ottmann.
Recall that this algorithm is based on the plane sweep paradigm. Because our
objects are on the unit sphere, however, we have to adapt this algorithm.

In a plane sweep algorithm for two-dimensional objects, we solve the problem
at hand by sweeping a vertical line from left to right over the scene. Sweeping on
the upper hemisphere can be thought of as follows. (See Figure 1.) We move a
half-circle from the left part of the equator, along the upper hemisphere to the right
part of the equator, while keeping the two endpoints of the half-circle on the y-axis.
Since we represent points on S as non-zero vectors having arbitrary lengths, we can
also regard this as rotating a half-plane around the y-axis. It suffices to implement
two types of compare functions.

3.1 Comparing two points

We are given two non-zero vectors u and v, which represent points on the unit
sphere, and want to decide which vector is visited first when rotating a half-plane
around the y-axis clockwise by 360 degrees, starting from the negative z-axis. As-
sume u and v are visited simultaneously, and let H be the corresponding half-plane.
That is, H is the half-plane that contains the y-axis, and the vectors u and v. Then
the order of u and v is determined by rotating a ray in H—starting at the negative
y-axis—around the origin. Note that this is equivalent to rotating a half-plane that
is orthogonal to H and that contains this ray.

To compute the VF- and EFE-pairs, it suffices to be able to compare two vectors
that are on or above the equator. For completeness, however, we define our compare
function for any two non-zero vectors u and v.

Note that vectors that represent the directions (0, —1,0) and (0, 1,0) are always
contained in the rotating half-plane. It is natural to define (0, —1,0) as the minimum
of all directions, and (0,1,0) as the maximum of all directions.

The basic tool used when comparing two vectors is an orientation test, i.e., de-
ciding whether a point is to the left, on, or to the right of a three-dimensional
plane. The complete code for the compare function can be found at the end of this
paper. (See also [Schwerdt and Smid 1999, pages 11-16].) We now briefly discuss

Computing the width of a three-dimensional point set . 9

this code. A non-zero vector u is given as an instance u of type sphere_point.
This point has homogeneous coordinates u.X(), u.Y(), u.Z(), and u.W(), which
are of LEDA-type integer. The value of u.W() is always positive.

Consider the two sphere_pointsu and v. First, it is tested if one of u and v is
the minimal or maximal direction. If this is not the case, then we compute sweep,
which is a plane of LEDA-type d3_rat_plane containing u and the y-axis. The
normal vector sweep.normal () of this plane is “in the sweep direction”. Assume
that u.Z() is positive. Using LEDA’s orientation test sweep.side_of (v), we find
the position of v w.r.t. the plane sweep.

Case 1: sweep.side_of(v) is positive. Then u comes before v in the sweep
process.

Case 2: sweep.side_of (v) is zero. Then v is contained in the plane sweep.
Case 2.1: v.Z() is positive. We compute sp, which is a point of LEDA-type
d3_rat_point having the same coordinates as u. Then, we compute Nsweep, which
is the plane through the origin and sp, and that is orthogonal to the plane sweep.
The result of the comparison follows from the position of v w.r.t. Nsweep.

Case 2.2: v.Z() is less than or equal to zero. Since v is not the minimal or
maximal direction, and sweep is not the plane z = 0, point v is below the plane
z =0, i.e., v.Z() is negative. Hence, u comes before v in the sweep process.

Case 3: sweep.side_of (v) is negative. In this case, the result of the comparison
follows from the position of v w.r.t. the plane z = 0.

The cases when u.Z() is negative or zero are treated in a similar way.

3.2 Comparing two edges

Here, we are given two edges s; and s», which represent great arcs on the upper
hemisphere. Each edge is specified by its two endpoints, which are given as instances
of type sphere_point. Both these edges have at least one point in common with
the sweep half-circle, and at least one of their endpoints is on the sweep half-circle.
We want to determine the order of s; and s, along the sweep half-circle.

The implementation of this compare function is based on the corresponding func-
tion in [Bartuschka et al. 1997]. It uses orientation tests, and the compare function
of Section 3.1.

Our implementations of the batched point location algorithm and the spherical
segment intersection algorithm use the above compare functions, and closely follow
that of Bartuschka et al. [Bartuschka et al. 1997]. Since the latter implementation
works for line segments in the plane, we had to re-code it.

4. EXPERIMENTAL RESULTS

In this section, we report on the experiments we did on a SUN Ultra (300 MHz,
512 MByte RAM).

First, we tested our implementation on real-world polyhedral models obtained
from Stratasys, Inc. Each model is given as an STL-file. Such a file contains the
facets of the triangulated polyhedron, where each facet is specified by three vertices
and an outer normal, given to 7 decimal digits of precision. Table 1 gives the test
results for ten models, which were chosen to encompass different geometries. For

10 . Schwerdt, Smid, Majhi, Janardan

Fig. 2. The model eaton_sp.stl in its origi- Fig. 3. The same model in its width-realizing

nal orientation. orientation. The coordinate system is as fol-
lows: The z-axis is increasing rightwards, the
y-axis is increasing upwards, and the z-axis is
increasing out of the paper. The optimal di-
rection is along the y-axis.

example, tod21.stl is a bracket, consisting of a hollow quarter-cylinder, with two
flanges at the ends, and a through-hole drilled in one of the flanges. This model
has 1,128 facets. The model mj.stl is an anvil shaped like a pistol with a square
barrel. This model has 2,832 facets. The model eaton_sp.stl, which has 41,318
facets, is depicted in its original orientation in Figure 2. Figure 3 shows the optimal
orientation for this part as found by our algorithm. The largest model tested is
fishb.stl, which has 213,384 facets. Our program computed the width of the
latter model within ten minutes. As can be seen in Table 1, the actual running
time of the program heavily depends on the number, h, of facets of the convex hull.
This is not surprising, because our compare functions are fairly complex. For each
model that we tested, the value of h is much smaller than the number, n, of facets
of the model.

Since we only have a limited number of polyhedral models, we also tested our
implementation on random point sets. First, we used LEDA’s point generator
random_d3_rat_points_in_cube to generate points whose coordinates are inte-

| model | n | h | k | time |
tod21.stl 1,128 87 20 13
mj.stl 2,832 356 29 31
triadi.stl 11,352 | 3,874 | 3,769 | 504
daikin_trt321.stl 19,402 | 1,638 | 3,036 155
impller.stl 30,900 414 288 42
eaton_sp.stl 41,318 | 1,065 | 1,207 114
4501005.st1 50,626 | 2,306 | 2,063 165
frame_29.stl 67,070 388 312 31
sa600280.st1 74,350 | 3,899 | 2,669 375
fishb.stl 213,384 | 5,459 | 5,845 566

Table 1. Performance of our implementation on some polyhedral models. n denotes the number
of facets of the model; h and k denote the number of convex hull facets, and the number of
FEE-pairs, respectively; time denotes the time in seconds.

Computing the width of a three-dimensional point set . 11

N | h | k | min | max | average | variance |
1,000 | 133 67 2.1 3.0 2.5 0.870
5,000 | 205 97 3.2 5.0 4.1 0.266
10,000 | 239 | 110 4.0 5.2 4.8 0.144
20,000 | 254 | 120 4.8 6.4 5.4 0.177
30,000 | 269 | 119 5.0 6.9 6.0 0.300
40,000 | 265 | 121 5.3 7.3 6.1 0.384
50,000 | 269 | 121 6.0 7.7 6.5 0.293
60,000 | 267 | 113 5.9 7.3 6.6 0.167
70,000 | 280 | 123 6.4 8.8 7.2 0.620
80,000 | 266 | 115 5.8 8.3 7.1 0.459
90,000 | 268 | 117 6.0 8.8 7.4 0.819

100,000 | 274 | 118 7.2 8.6 7.8 0.213

Table 2. Performance of our implementation for points randomly chosen in a cube. For each value
of N, we randomly generated ten point sets of size N. h and k denote the average number of
convex hull facets, and the average number of EE-pairs, respectively. Although k could be ©(h?),
this table shows that in practice, it is slightly less than h/2. min, max, average, and variance
denote the minimum, maximum, and average time in seconds, respectively, and the variance.

gers, from a uniform distribution in the cube [—1000,1000]3. For each value of

N € {103,...,10%}, we generated ten point sets of size N. We measured the time

of our program after these points were generated. Table 2 shows the minimum,

maximum, and average running time in seconds, as well as the variance. This

variance was computed using the formula [Graham et al. 1989, Section 8.2]
B+t +.. 2 (tittet...+ty)?

m—1 m(m — 1)

)

where t; denotes the time of the i-th run, and m denotes the total number of
generated point sets (which is ten in our case).

Also in Table 2, the average values of h (the number of facets of the convex
hull), and k£ (the number of FE-pairs) are given. Note that for this distribution,
the expected value of h is bounded by O(log” N), see Section 4.1 in [Preparata and
Shamos 1988].

Although the worst-case running time of the algorithm is @(N2?log N), our ex-
perimental results show that on random inputs, the algorithm is much faster. As
we saw before, the actual worst-case performance is bounded by O(N? + klogh).
As we can see in Table 2, the value of A is much smaller than N. Also, the value
of k—which could be as large as ©(h%)—is in fact slightly less than h/2. Table 2
shows that in practice, the running time is not proportional to N?: otherwise, dou-
bling N would increase the running time by at least a factor of four. This implies
that the constant factor corresponding to the term klogh is large, and this term
basically determines the running time in practice.

Next, we generated points with integer coordinates from a uniform distribution
in the ball centered at the origin and having radius 1000, using LEDA’s point
generator random_d3_rat_points_in_ball. For each value of N € {10%,...,10°},
we generated ten point sets of size N, and measured the time after these points
were generated. The results are given in Table 3. For this distribution, the expected
value of h is bounded by O(v/N), see Section 4.1 in [Preparata and Shamos 1988].
In this case, the value of k is slightly larger than h/2. Again, the running time in

12 . Schwerdt, Smid, Majhi, Janardan

| N | h | k | min | max | average | variance
1,000 258 141 4.9 5.9 5.3 0.870
5,000 607 325 | 12.2 | 14.7 13.4 0.694
10,000 884 477 | 19.2 | 20.7 20.0 0.188
20,000 | 1256 673 | 28.4 | 34.9 30.1 3.407
30,000 | 1535 818 | 34.6 | 39.9 37.5 1.815
40,000 | 1782 962 | 43.4 | 46.4 44.1 0.808
50,000 | 1976 | 1053 | 47.1 | 52.5 50.2 2.493
60,000 | 2165 | 1161 | 53.3 | 56.9 55.5 1.338
70,000 | 2346 | 1254 | 59.4 | 64.4 61.4 2.192
80,000 | 2528 | 1356 | 64.7 | 68.0 66.3 1.352
90,000 | 2677 | 1440 | 68.3 | 72.7 70.3 1.773
100,000 | 2810 | 1501 | 72.0 | 79.0 75.0 5.323

Table 3. Performance of our implementation for points randomly chosen in a ball. For each value
of N, we randomly generated ten point sets of size N. h and k denote the average number of
convex hull facets, and the average number of EE-pairs, respectively. In this case, the value of k
is slightly larger than h/2. min, max, average, and variance denote the minimum, maximum, and
average time in seconds, respectively, and the variance.

practice is not proportional to N2, but is determined by the term klogh, which
has a large constant.

Finally, we generated random point sets with integer coordinates that are close to
the sphere centered at the origin and having radius 1000, using LEDA’s point gen-
erator random_d3_rat_points_on_sphere. For each value of N € {10%,...,10%},
we generated ten point sets of size N, and measured the time after these points
were generated. The results are given in Table 4. For this distribution, (almost)
all points are on the convex hull. (Recall that h denotes the number of convex
hull facets.) In this case, the value of k is about 2h/3. By doubling the number
of points, the running time in practice increases by a factor that is slightly larger
than two.

| N | h] k | min | max | average | variance |
100 196 122 5.8 6.3 6.0 0.021
500 996 635 34.6 36.2 35.3 0.293
1,000 1,996 1,277 73.8 80.7 76.4 4.715
2,000 3,995 2,638 | 156.6 | 162.6 158.2 3.089
3,000 5,992 3,809 | 239.7 | 245.2 242.5 3.584
4,000 7,982 5,072 | 325.0 | 334.9 330.3 9.343

5,000 9,968 6,315 | 409.5 | 424.2 416.0 20.160
6,000 | 11,962 7,549 | 496.7 | 533.6 504.1 121.824
7,000 | 13,933 8,788 | 583.4 | 635.0 596.6 320.541
8,000 | 15,899 9,997 | 660.0 | 696.5 677.7 108.740
9,000 | 17,882 | 11,226 | 740.9 | 822.4 768.6 443.838
10,000 | 19,814 | 12,400 | 842.2 | 934.6 864.3 850.981

Table 4. Performance of our implementation for points randomly chosen close to a sphere. For
each value of N, we randomly generated ten point sets of size N. h and k denote the average
number of convex hull facets, and the average number of EE-pairs, respectively. In this case, the
value of k is about 2h/3. min, max, average, and variance denote the minimum, maximum, and
average time in seconds, respectively, and the variance.

Computing the width of a three-dimensional point set . 13

5. CONCLUDING REMARKS

We have given a robust, exact and efficient implementation of an algorithm that
solves an important problem in computational geometry. This problem has appli-
cations to Layered Manufacturing and motion planning.

Determining a good build direction in Layered Manufacturing leads to several
other problems for objects on the unit sphere. For example, in [Majhi et al. 1998], we
show how spherical Voronoi diagrams can be used to compute among all directions
that minimize the width, a direction for which the so-called stair-step error is
minimum. We plan to implement these Voronoi diagrams, again by implicitly
representing points on S? as vectors.

Recently, we implemented an algorithm that computes a description of all build
directions for which a prescribed facet of the polyhedral model is not in contact
with support structures. This leads to the problems of computing spherical convex
hulls and the union of spherical polygons. For details, see [Schwerdt et al. 1999;
Schwerdt et al. 2000].

The ideas presented in this paper can be used to solve problems involving line
segments in the plane that are possibly unbounded (e.g., point location queries in a
Voronoi diagram). If we solve such a problem directly in the plane, then we have to
deal with different types of points at infinity. Therefore, a better approach may be
to use the inverse central projection, which maps the line segments to great arcs on
the upper hemisphere. Then, we can apply our techniques for solving the problem
at hand on the unit sphere.

In [Mehlhorn et al. 1999], Mehlhorn et al. argue that program checking should
be used when implementing geometric algorithms. We leave open the problem of
designing a fast algorithm that checks whether the output of a width-minimizing
algorithm is correct.

Acknowledgements

We thank Stratasys, Inc. for allowing us to test our implementation on their poly-
hedral models.

REFERENCES

AGARWAL, P. K. AND SHARIR, M. 1996. Efficient randomized algorithms for some geometric
optimization problems. Discrete Comput. Geom. 16, 317-337.

BARTUSCHKA, U., MEHLHORN, K., AND NAHER, S. 1997. A robust and efficient implemen-
tation of a sweep line algorithm for the straight line segment intersection problem. In Proc.
Workshop on Algorithm Engineering (Venice, Italy, 1997), pp. 124-135.

BENTLEY, J. L. AND OTTMANN, T. A. 1979. Algorithms for reporting and counting geomet-
ric intersections. IEEFE Trans. Comput. C-28, 643—647.

CHAZELLE, B., EDELSBRUNNER, H., GUIiBAS, L. J., AND SHARIR, M. 1993. Diameter, width,
closest line pair and parametric searching. Discrete Comput. Geom. 10, 183-196.

GRAHAM, R. L., KNUTH, D. E., AND PATASHNIK, O. 1989. Concrete Mathematics. Addison-
Wesley, Reading, MA.

HourLe, M. E. AND ToussaINT, G. T. 1988. Computing the width of a set. IEEE Trans.
Pattern Anal. Mach. Intell. PAMI-10, 761-765.

Jacoss, P. F. 1992. Rapid Prototyping € Manufacturing: Fundamentals of StereoLithog-
raphy. McGraw-Hill, New York.

MAJHI, J., JANARDAN, R., SCHWERDT, J., SMID, M., AND GUPTA, P. 1999a. Minimizing
support structures and trapped area in two-dimensional layered manufacturing. Comput.

14

. Schwerdt, Smid, Majhi, Janardan

Geom. Theory Appl. 12, 241-267.

MaJjHI, J.; JANARDAN, R., SMID, M., AND GUPTA, P. 1999b. On some geometric optimiza-
tion problems in layered manufacturing. Comput. Geom. Theory Appl. 12, 219-239.

MAJHI, J., JANARDAN, R., SMID, M., AND SCHWERDT, J. 1998. Multi-criteria geometric op-
timization problems in layered manufacturing. In Proc. 14th Annu. ACM Sympos. Comput.
Geom. (1998), pp. 19-28.

MEHLHORN, K. AND NAHER, S. 1999. LEDA: A Platform for Combinatorial and Geometric
Computing. Cambridge University Press, Cambridge, U.K.

MEHLHORN, K., NAHER, S., SEEL, M., SEIDEL, R., ScHiLz, T., SCHIRRA, S., AND UHRIG,
C. 1999. Checking geometric programs or verification of geometric structures. Comput.
Geom. Theory Appl. 12, 85-103.

MEHLHORN, K., NAHER, S., SEEL, M., AND UHRIG, C. The LEDA wuser manual.
http://www.mpi-sb.mpg.de/LEDA/MANUAL/MANUAL .html: Max-Planck-Institute for Com-
puter Science.

PREPARATA, F. P. AND SHAMOS, M. I. 1988. Computational Geometry: An Introduction.
Springer-Verlag, New York, NY.

RAMSEY, N. 1994. Literate programming simplified. IEEE Software 11, 97-105.

SCHWERDT, J. AND SMID, M. 1999. Computing the width of a three-dimensional point set:
documentation. Report 4, Department of Computer Science, University of Magdeburg,
Magdeburg, Germany. http://isgwww.cs.uni-magdeburg.de/~schwerdt/Cwidth.ps.

SCHWERDT, J., SMID, M., JANARDAN, R.; AND JOHNSON, E. 2000. Protecting critical facets
in layered manufacturing: implementation and experimental results. In Proc. 2nd Workshop
on Algorithm Engineering and Ezperiments (2000), pp. 43-57.

SCHWERDT, J., SMID, M., JANARDAN, R., JOHNSON, E., AND MayH1, J. 1999. Protecting
facets in layered manufacturing. In Proc. 19th Conf. Found. Softw. Tech. Theoret. Comput.
Sci., Volume 1738 of Lecture Notes Comput. Sci. (1999), pp. 281-292. Springer-Verlag.

StoLFl, J. 1991. Oriented Projective Geometry: A Framework for Geometric Computa-
tions. Academic Press, New York, NY.

Computing the width of a three-dimensional point set

int compare(const sphere_point& u, const sphere_point& v)

{
if(u.X() == 0 && u.Z() == 0)

{
if(u.Y() < 0) // is u the minimal point?
{
if(v.X() == 0 && v.Y() < O && v.Z() == 0)
{
return(0); // u==v
else
{
return(-1); // u < v
}
}
else
{ // u.Y) >0 u is the maximal point
if(v.X() == 0 && v.Y)) > 0 && v.Z() == 0)
{
return(0); // u ==
else
{
return(1); // u > v
}
T
}
if(v.X() == 0 && v.Z() == 0)
{
if(v.YO) < 0) // is v the minimal point?
{
return(1l); // u > v
else
{
return(-1); // u < v
}
}

d3_rat_plane sweep(d3_rat_point(0,1,0,1),
d3_rat_point(0,-1,0,1),
u.rat_point());

if(u.Z() > 0)

{
if(sweep.side_of(v.rat_point()) > 0)
{
return(-1); // u < v
else
{

if(sweep.side_of(v.rat_point()) == 0)
{
if(v.20 > 0)
{

16 . Schwerdt, Smid, Majhi, Janardan

d3_rat_point sp(u.X(), u.Y()), u.ZQ, u.WQ);
d3_rat_plane Nsweep(sp + sweep.normal(),
d3_rat_point(0,0,0,1),

sp);
return(Nsweep.side_of(v.rat_point()));
}
else
{
return(-1); // u< v
}
else // sweep.side_of(v) < 0
{
if(v.Z() < 0)
{
return(-1); // u < v
}
else
{
return(l); // u > v
}
}
T
}
else // u.Z() <=0
{
if(u.zZ() < 0)
{
if(sweep.side_of(v.rat_point()) < 0)
{
return(l); // u > v
else
{
if(sweep.side_of(v.rat_point()) == 0)
{
if(v.Z() < 0)
{
d3_rat_point sp(u.X(), u.Y()), u.ZQ, u.WQ);
d3_rat_plane Nsweep(sp + sweep.normal(),
d3_rat_point(0,0,0,1),
sp);
return(Nsweep.side_of(v.rat_point()));
else
{
return(1); // u> v
}
else // sweep.side_of(v) > 0
{
if(v.Z(O) < 0)

{
return(-1); // u < v
T

Computing the width of a three-dimensional point set

else
{
return(1); // u> v
}

}

else // u.z() ==
{
if(u.X() < 0)
{
if(v.Z(O) == 0 & v.XO <0)
{

d3_rat_point sp(u.X(), u.Y(), u.Z(), u.W());

d3_rat_plane Nsweep(sp + sweep.normal(),
d3_rat_point(0,0,0,1),
sp);

return(Nsweep.side_of(v.rat_point()));

else
{
return(-1); // u < v

}

else
{
if(u.X() > 0)
{
if(v.Z() < 0)
{
return(-1); // u< v

else

{
if(v.Z() == 0 && v.X() > 0)
{

d3_rat_point sp(u.X(), u.Y(), u.Z(), u.W());

d3_rat_plane Nsweep(sp + sweep.normal(),
d3_rat_point(0,0,0,1),
sp);

return(Nsweep.side_of(v.rat_point()));

else

{
return(1); // u> v

}

