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1 Introduction

StereoLithography is a relatively new technology which is used in industry to produce
prototypes of CAD models. The input of the StereoLithography process is a trian-
gulated polyhedral CAD model which is sliced by horizontal planes into layers. The
StereoLithography apparatus builds the model layer by layer in the positive z-direction.

The time to build one layer is in the range from a few seconds up to dozens of minutes
depending on the layer complexity. To keep the building time of the prototype small it is
advisable to rotate the CAD model in such a way that its height (w.r.t the z-direction)
is as small as possible. Computing this orientation of the CAD model turns out to be
equivalent to computing the width of a 3D polyhedron.

In [10, 11|, we discuss an implementation of an algorithm of Houle and Toussaint [6]
that computes all directions that minimize the width of a polyhedron. The algorithm
uses efficient solutions to some well known problems in computational geometry, such
as convex hulls in 3D, computing the intersections of line segments, and point location
in planar graphs. In fact, the latter two problems have to be solved for segments and
graphs that are on the unit sphere rather than in the 2D plane. For more background
information and a high-level description of our implementation, the reader is referred
to [10, 11].

In this paper, we give a complete documentation of the implementation. The pro-
gram is written in C++ and uses LEDA |[8] (see also http://www.mpi-sb.mpg.de/LEDA).
In particular, we use efficient data structures from the LEDA library, such as sorted se-
quences (sortseq), which are implemented by skip lists; priority queues (p_queue),
which are implemented by Fibonacci heaps; and planar maps (PLANAR_MAP). Also, we
use LEDA’s exact rational arithmetic, and floating point filters to solve geometric pred-
icates exactly. Hence, our implementation solves the problem exactly, and is robust.

2 The width problem

We denote the unit sphere in R* by S2, and call the intersection of S? and the plane
z = 0 equator. We define the upper hemisphere as

S2 :=8*N{(z,y,2) eR*: 2 > 0}.
Similarly, we define the lower hemisphere as
S2 =8N {(z,y,2) e R®: 2 < 0}

Throughout this paper, we consider a direction d in R® as a point on the unit sphere
resp. as a unit vector.

Let P be an arbitrary polyhedron and let d be an arbitrary direction in R®. Let p;
and py be two parallel planes that are orthogonal to d and which enclose P. We call
the smallest distance between any two such planes p; and p, the width of P in direction



d and we denote it by w(d). We define the width W (P) of P as the smallest distance
between any two parallel planes enclosing P, i.e.,

W(P) = min{w(d) : d € S?}.

The width of a three-dimensional point set can be defined in a similar way.

It is clear that the width of P is equal to the width of P’s vertex set. Houle and
Toussaint [6] gave an algorithm which computes the width of a set of n points in R® in
O(n?) worst case time. The asymptotically fastest algorithm for computing the width
of a three dimensional point set is due to Agarwal and Sharir [1]. Its expected running
time is roughly O(n'®).

There are two reasons why we implemented the asymptotically slower algorithm of
Houle and Toussaint. First, it computes all optimal directions whereas the Agarwal and
Sharir algorithm computes only one. Knowing all optimal directions is useful, if we want
to optimize another measure among these directions [7]. Second, it is much easier to
implement and, as our experiments in Section 11 show, its running time in practice is
much lower than the quadratic worst-case running time.

3 The algorithm

It is obvious that the width of the polyhedron P is equal to the width of the convex hull of
P. Therefore, we first compute the convex hull CH (P) using the LEDA implementation
D3_HULL that computes the convex hull of a point set in R®. The output of this algorithm
is a graph G ¢y that is the implicit representation of the convex hull.

Let V be a vertex and F a facet of CH(P). We call (V, F) an antipodal vertez-facet
pair (or VF-pair), if the two parallel planes containing V' and F, respectively, enclose
CH (P). Note that these two planes are unique. We say that these parallel planes support
CH(P).

Similarly, two non-parallel edges eq and e; of CH(P) are called an antipodal edge-edge
pair (or EE-pair), if the two (unique) parallel planes containing ey and e;, respectively,
enclose CH (P). Again, we say that these parallel planes support CH (P).

Houle and Toussaint point out that the two parallel planes with minimum width
either touch P at a vertex and a facet or at two edges that are not parallel. All other
possibilities can be reduced to these two cases, or the planes do not have minimum
width. For example, if one plane touches a facet of P and the other plane touches an
edge, it is equivalent to a VF-pair. Or, if the two planes touch two parallel edges, it is
possible to rotate the polyhedron and reduce the distance of the planes.

Hence, we can solve the width problem by computing all VF- and EFE-pairs of
CH(P). Now, we give a short description how the VF- and EE-pairs can be computed.
A detailed description can be found in Sections 8 and 9.

Given the graph G ¢y, we compute its dual representation G. G is a planar graph on
the unit sphere S? and it is defined as follows. The vertices of G are the facet outer unit
normals of Gy and two vertices are connected by an edge in G, if the corresponding
facets of G ¢y share an edge. Note that edges of G are great arcs on S2. Moreover, edges



(resp. facets) of G' are in one-to-one correspondence with edges (resp. vertices) of Gop.
Since the endpoints p and ¢ of an edge e € GG are outer normals of two neighboring facets
of G ¢y, it is obvious that p and ¢ are not antipodal and that e is always the shorter one
of the two great arcs with endpoints p and gq.

We cut the graph G along the equator of S? in two pieces. We call the part of G
that is on the upper (resp. lower) hemisphere G, (resp. G”). If a vertex (or an entire
edge) is on the equator it is contained in both graphs, G, and G’_. An edge crossing
the equator is cut, and the upper (resp. lower) part of the edge is contained in G (resp.
G').

Now we compute the reflected image G_ of G’ . G_ is the graph we get by mapping
each vertex v of G’ to —wv. Thereafter, both graphs G, and G_ are on the upper
hemisphere S7.

It can be shown that EE-pairs are in one-to-one correspondence with intersecting
edges of G, and G_. (See [6].) Therefore, we find all EE-pairs by computing the
intersecting edges of G, and G_. We only compute intersection points that are in
the interior of both edges. (We treat degenerate intersection points as VF-pairs and
find them while computing the VF-pairs.) To do this, we adapt the implementation
of Bartuschka et al.[2| that is an efficient and robust implementation of the Bentley-
Ottmann sweep line algorithm [3]. This implementation makes no assumption about
the input, in particular, the segments need not be in general position.

The VF-pairs are in one-to-one correspondence with pairs (v, f), where v is a vertex
of G4 (resp. G_), f is a face of G_ (resp. G, ), and v € f. (See [6].) We compute all
VF-pairs with an adapted point location algorithm called slab method that is due to
Dobkin and Lipton [4]. It locates all vertices of G in the graph G_ and vice versa.
Since we know all query points in advance, it is not necessary to store the complete
point location data structure. We sort the vertices of G, and G'_ in the order the sweep
circle (we sweep on S2) visits them and compute the slabs as in the original algorithm.
While sweeping we locate each vertex that is contained in the current slab.

Both these algorithms are based on the plane sweep paradigm and they both use the
same type of geometric primitives.

The worst-case running time of the algorithm is bounded by

O(n* + klogh) = O(n*logn),

where n is the number of facets of the polyhedron P, h is the number of facets of CH (P),
and k is the number of intersections between edges of G, and edges of G_. (According
to the LEDA user manual, the convex hull implementation D3_HULL takes O(n?) time
in the worst case, but O(nlogn) time for most inputs.)

3.1 Sweeping on the upper hemisphere

In a plane sweep algorithm for two-dimensional objects, we solve the problem at hand
by sweeping a vertical line from left to right over the scene. Sweeping on the upper
hemisphere can be thought of as follows. Let the z-axis be vertical. Moreover, let the



x-axis be in the horizontal plane z = 0, going from left to right. Finally, let the y-axis be
in the plane z = 0, going from bottom to top. When sweeping on the upper hemisphere,
we move a half-circle from the left part of the equator, along the upper hemisphere to
the right part of the equator, while keeping the two endpoints of the half-circle on the
y-axis. We can also regard this as rotating a half-plane around the y-axis. We call this
half-plane the sweep half-plane.

By central projection, it follows that sweeping over S is in one-to-one correspondence
with sweeping on the plane. It would be possible to project all segments that are on Si
to the plane z = 1 and use the standard sweep line algorithms to solve the problems.
But this method has a disadvantage: Vertices and edges that are on the equator are
projected to infinity. As a result, we would have to be able to compare different points
at infinity.

4 Representation of vertices

Our algorithm represents each vertex of the dual graph G resp. G_ as a point on S2
The vertices are normal vectors of facets of G¢oy. To compute a vertex as a point on
the sphere, we first have to compute the normal vector and then we have to normalize
it. This means, we divide each coordinate by the square root /x? 4+ y? + 22. Since we
want to compute exactly and avoid expensive computations, we decided not to normalize
the vectors. Thus our vertices are not really points on the unit sphere. The ray from
the origin through our vertex intersects the unit sphere in exactly that point where the
vertex on the unit sphere would be.

Let a, b and ¢ be three points on the unit sphere and let a' (resp. b, ¢’) be an
arbitrary point on the ray from the origin through a (resp. b, ¢). The basic tests in all
our algorithms are orientation tests of three points on S2. We make the observation
that there is no difference between the following three tests.

e Test, if ¢ is to the left of (resp. to the right of or on) a great arc from a to b.

e Test, if ¢ is to the left of (resp. to the right of or on) a directed plane through the
great arc from a to b.

e Test, if ¢ is to the left of (resp. to the right of or on) a directed plane through the
great arc from a’ to b'.

Since the unique primitive in all tests is this orientation test, there is no difference if
we use the normal vectors or the normalized normal vectors as endpoints of the segments.

During the paper we will sometimes say “a point on the unit sphere” resp. “a segment
on the unit sphere”, because some things are easier to explain. E.g. we can say “a great
arc” or things like that. But bear in mind that in the implementation, these points resp.
segments are not really on the unit sphere; rather, they represent points and segments
on the unit sphere.



5 The class sphere_point — a point on the unit
sphere

A sphere_point is a non-zero point in R?® that represents a point on the unit sphere S2.
It is represented by its homogeneous coordinates px, py, pz and pw. Each point has a
unique number p_number.

Note, that some of the member functions only work correctly if all sphere_points are
on or above the plane z = 0. But this is no problem, because these member functions are
only used in our segment intersection and point location algorithms and these algorithms
only sweep over the upper hemisphere. This allows us to keep the member functions as
simple as possible.

5.1 The file sphere_point.h

(sphere_point.h)=

# ifndef
# define

#include
#include
#include
#include
#include

_SPHERE_POINT_H
_SPHERE_POINT_H

<LEDA/integer.h>
<LEDA/rational.h>
<LEDA/d3_rat_point.h>
<ctype.h>
<iostream.h>

class sphere_point

{

(protected part)
(public part)

};

extern int orientation( const sphere_pointé&,

const sphere_pointé&,
const sphere_point& );

extern int compare( const sphere_point& a,

const sphere_point& b);

# endif /* !_SPHERE_POINT_H */

5.1.1 The protected part

A sphere point is a 3D point with homogeneous coordinates and a unique number. The
coordinate pw is always positive.



(protected part)=
protected:
integer px;
integer py;
integer pz;
integer pw;
int p_number;

5.1.2 The public part

(public part)=
public:
(constructors)
(destructor, copy constructor and assignment operator)
(functions and operators)

The constructors

(constructors)=
sphere_point() : px(0), py(0), pz(0), pw(1) {p_number = -1;}

sphere_point(d3_rat_point p, int n = -1)

{
px = p.X(O;
py = p.YO;
pz = p.20);
pv = p.W(O);
p_number = n;
}
sphere_point(rat_vector v, int n = -1)
{
px = v.X(O;
py = v.YO;
pz = v.Z(O);
pvw = v.W(Q);
p_number = n;
}

sphere_point(integer x, integer y, integer z, integer w, int n

{

if (w>0)
{
PX = X3
Py = Vs

-1)



pw = W,
}
else
{
pPxX = -X;
py = -V
Pz = -Z;
pw = -w,
}
p_number = n;

}

Destructor, copy constructor and assignment operator

(destructor, copy constructor and assignment operator)=
~sphere_point () {2}

sphere_point& operator=(const sphere_point& p)

{
if (this == &p) return *this;

px = P.pPX;
Py = P-PY;
pz = p.pz;
pw = p.pw;

p_number = p.p_number;

return *this;

}
sphere_point (const sphere_point& p)
{
pPxX = P.pX;
Py = P-PY»
bz = p.pz;
pw = p.pw;
p_number = p.p_number;
}

Functions and operators The call p.cmp(a) compares the sphere_point p with the
parameter sphere_point a. For details see Section 5.2.2. All other functions are self
explaining.
(functions and operators)=

d3_rat_point rat_point() const {return(d3_rat_point(X(), YO, Z(O), WO));}



integer
integer
integer
integer

X0
YO
Z0O
'[0)

const {return(px);}
const {return(py);}
const {return(pz);?}
const {return(pw);}

rational xcoord() const {return(rational(px,pw));}
rational ycoord() const {return(rational(py,pw));}
rational zcoord() const {return(rational(pz,pw));}

int cmp(const sphere_point& a) const;
int number() const {return(p_number);}

friend
friend
friend
friend
friend

friend
friend

bool
bool
bool
bool
bool

operator<(const sphere_point& x, const sphere_point& y);
operator<=(const sphere_point& x, const sphere_point& y);
operator>(const sphere_point& x, const sphere_point& y);
operator>=(const sphere_point& x, const sphere_point& y);
operator==(const sphere_point& x, const sphere_point& y);

istream& operator» (istream& in, sphere_point& sp);
ostream& operator« (ostream& out, const sphere_point& sp);

5.2 The file sphere_point.c

(sphere_ point.c)=
#include <LEDA/d3_rat_plane.h>
#include <LEDA/integer.h>
#include "sphere_point.h"

(orientation)
(compare)
(operators)

5.2.1 The orientation of three sphere_points

The member function orientation computes the orientation of three sphere_points

(a, b and p) on the upper hemisphere.

Let o', b’ and p’ be the directions on Si that are represented by a, b and p, respec-

tively.

Deciding which orientation @', b" and p' have on S? is equivalent to deciding if point p/
is to the left, to the right or on the directed great circle from a’ to &'. But this is equivalent
to deciding if p’ is to the left, to the right or on the directed plane H through o', ¥’ and
the origin. Since a is on the ray from the origin to o', a is on H if and only if @’ is on
H. Similar observations hold for b and p. Therefore our orientation test is equivalent to
deciding if point p is to the left, to the right or on the oriented plane through a, b and the
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origin. This latter orientation test is decided by LEDA’s orientation(d3_rat_point
u, d3_rat_point v, d3_rat_point x, d3_rat_point y).

(orientation)=
int orientation(const sphere_point& a,
const sphere_point& b,
const sphere_point& p)
{
// Precondition: all points are on the upper hemisphere
return( orientation( a.rat_point(), d3_rat_point(0,0,0,1),
b.rat_point(), p.rat_point()) );

5.2.2 Comparing two sphere_points

This member function compares two sphere_points a (the object itself) and b. The
compare function decides which point is met first by the sweep half-plane. If it meets
both points at the same time, we decide which of the points is greater, as follows. We
walk along the sweep-circle from the negative to the positive y-axis. The point we meet
first is smaller. If we meet both points simultaneously they are equal. Notice, that this
compare function is not limited to the upper hemisphere.

In this function SP is a sweep half-plane stopping at the sweep event point a. Thus,
it is the plane through the point a and the y-axis. The outer normal of SP is in the
sweep direction. The variable side_of_b contains the information on which side of SP
the point b is.

(compare)=

int sphere_point::cmp(const sphere_point& b) const

{
integer aX = X();
integer aY = Y();
integer aZ = Z();
integer aW = W();
integer bX = b.X();
integer bY = b.Y();
integer bZ = b.Z();
integer bW = b.W(Q);

(minimum or mazimum points)
d3_rat_plane SP( d3_rat_point(0,1,0),
d3_rat_point(0,-1,0),

d3_rat_point(aX, a¥, aZ, aW));
int side_of_b = SP.side_of (d3_rat_point(bX, bY, bZ, bW));

11



if(az > 0)
{

(a is above the plane z=0)

else
{
if(aZ < 0)
{
(a is below the plane z=0)

else // aZ ==

(a is on the equator)

}

int compare(const sphere_point& a, const sphere_point& b)

{
return(a.cmp(b));

}

Handling points on the y-axis Points on the y-axis are on the sweep half-plane from
the beginning to the end of the sweep process. We define the point on the positive part
as the maximum point, and the other one as the minimum point.

We need some special tests to handle these minimum resp. maximum points in the
compare function. First, we test if the point a is the minimum or maximum point (-
and z-coordinates are equal to zero). If so, we test if the y-coordinate is less than zero.
If this holds a is the minimum point. Otherwise it is the maximum point.

Suppose a is the minimum point. If b is the minimum point as well, both points are
equal and we return 0. If not, point b is greater than point a and we return —1. The
case when a is the maximum point is analogous.

In the second part we know that a is neither the minimum nor the maximum point.
We test if b is the minimum or the maximum point. If it is the minimum point, it is
obvious that a is greater than b and we return the value 1. If b is the maximum point
we return —1 because a is less than b.

(minimum or mazimum points)=
if(aX == 0 && aZ == 0)

{
if(ay < 0) // Is a the minimum point?
{
if (bX == 0 && bY < 0 && bZ == 0)
{
return(0);
}

12



else
{
return(-1);
}
}
else
{ // a¥ >0 a is the maximum point
if(bX == 0 && bY > 0 && bZ == 0)

{
return(0);
}
else
{
return(l);
}
}
}
if(bX == 0 && bZ == 0)
{
if (bY < 0) // Is b the minimum point?
{
return(1);
}
else // b is the maximum point
{
return(-1);
}
}

a is above the plane z=0 Suppose side_of_b is greater than zero. In this case the
sweep halfplane SP first meets a and then b. By definition, a is less than b in this case.
We return —1.

Suppose side_of_b is equal to zero. If b is above the plane z = 0, then the sweep
halfplane SP meets both points at the same time. Now we are sorting the points along
SP from the negative part of the y-axis to the positive one. How can we decide if a point
a on SP is less than, greater than or equal to b? We can do this again by computing the
orientation of a plane and the point b.

Let [,, be the line through the origin orthogonal to the sweep half-plane SP. Suppose
we are rotating a halfplane NSP around /,, from the negative to the positive part of the
y-axis. NSP meets the points on the sweep halfplane in increasing order. If NSP first
meets a, then a is smaller than b. To decide this, we create the plane NSP through a and
the origin orthogonal to SP and test on wich side point b is. If b is on the side that NSP
has not reached so far it is greater than a and we return —1. Otherwise b is less than
or equal to a and we return 1 or 0, respectively.

13



It is obvious that we can return the value NSP.side_of (b), if we define NSP such
that the result of the side_of test is equal to the value our compare function should
obtain. This is so if we define NSP in the listed way.

If side_of_b is equal to zero and b is not above the plane z = 0, then a is less than
b, and we return —1.

Suppose side_of_b is less than zero. Recall that a is on S2. In this case there are
two possibilities. The first is when b is below the plane z = 0. In this case a is less than
b and therefore we return —1. The second is that b is on or above the plane z = 0. In
this case is a greater than b and therefore we return 1.

(a is above the plane z=0)=
if (side_of_b > 0)

{
return(-1);
}
else
{
if(side_of_b == 0)
{
if (bZ > 0)
{
d3_rat_point sp( aX, aY, aZ, aW );
d3_rat_plane NSP( sp + SP.normal(),
d3_rat_point (0,0,0),
sp )
return(NSP.side_of (b.rat_point()));
else
{
return(-1);
}
}
else // side_of_b < 0
{
if(bZ < 0)
{
return(-1);
else
{
return(l);
}
}
}

14



a is below the plane z=0 This case is analogous to the previous case.

(a is below the plane z=0)=
if(side_of_b < 0)

{
return(l);
}
else
{
if (side_of_b == 0)
{
if(bZ < 0)
{
d3_rat_point sp(aX, aY, aZ, aW);
d3_rat_plane NSP( sp + SP.normal(),
d3_rat_point(0,0,0),
sp );
return(NSP.side_of (b.rat_point()));
}
else
{
return(l);
}
}
else // SP.side_of(a) > 0
{
if (bZ < 0)
{
return(-1);
}
else
{
return(l);
}
}
}

a is on the equator Suppose a is on the equator. There are two possibilities in this
case. Either SP meets a at the beginning of the sweep (aX < 0) or after it has sweeped
over the entire upper hemisphere (aX > 0). Note that aX = 0 is not possible, otherwise
a would be the minimum or the maximum point. In this case, we would have returned
a value earlier in the compare function.

In the first case (aX < 0) there are again two possibilities. If b is also on SP, then we
sort the points along SP from the negative to the positive y-coordinate. To decide the

15



order of a and b, we again use the orthogonal sweep half-plane NSP as mentioned before.
If b is not on SP, then a is less than b, and we return —1.

In the second case (aX > 0) we obtain three cases. First, if b is below the plane z = 0
we know that a is less than b and we return —1. Second, if b is on SP we sweep around
the normal of SP. In the third case, we know that b is on or above the plane z = 0 but
not on SP. In this case we know that a is greater than b and therefore we return 1.

(a is on the equator)=
if(aX < 0)
{
if(bZ == 0 && bX < 0)
{
d3_rat_point sp(aX, aY, aZ, aW);
d3_rat_plane NSP( sp + SP.normal(),
d3_rat_point(0,0,0), sp );

return(NSP.side_of (b.rat_point()));

}
else
{
return(-1);
}
}
else
{
if(aX > 0)
{
if (bZ < 0)
{
return(-1);
}
else
{
if(bZ == 0 && bX > 0)
{
d3_rat_point sp(aX, a¥, aZ, aW);
d3_rat_plane NSP( sp + SP.normal(),
d3_rat_point(0,0,0), sp );
return(NSP.side_of (b.rat_point(})));
}
else
{
return(l);
}
}
}
}
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5.2.3 The operators

(operators)=

bool operator<(const sphere_point& x, const sphere_point& y)
{ return x.cmp(y) < 0; }

bool operator<=(const sphere_point& x, const sphere_point& y)
{ return x.cmp(y) <= 0; %}

bool operator>(const sphere_point& x, const sphere_point& y)
{ return x.cmp(y) > 0; }

bool operator>=(const sphere_point& x, const sphere_point& y)
{ return x.cmp(y) >= 0; }

bool operator==(const sphere_point& x, const sphere_point& y)
{ return x.cmp(y) == 0; }

ostream& operator« (ostream& s, const sphere_point& p)
{
S « p.p_number <« " (" <« p.X() <« "," <« p.YO « ","
« p.Z0) « "," « p. WO « ™"

return s;
}
istream& operator» (istream& in, sphere_point& p)
{
// p. X", p.Y ", p.Z ", PV
char c;
integer x,y,z,w;
do in.get(c); while (in && isspace(c));
if (¢ !'= ’(’) in.putback(c);
in » x;
do in.get(c); while (isspace(c));
if (¢ != ?,?) in.putback(c);
in » y;
do in.get(c); while (isspace(c));
if (c !'= ?,?) in.putback(c);
in » z;
do in.get(c); while (isspace(c));
if (c !'= ?,?) in.putback(c);
in » w;
do in.get(c); while (c == > ?);
if (c !'= ?)’) in.putback(c);
p = sphere_point(x,y,z,w);
return in;
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6 The class sphere_segment — a segment on the unit
sphere

An object of the class sphere_segment represents a segment, i.e., a great arc, on the unit
sphere S?. Tt is an edge of the dual representation of the convex polyhedron CH(P). Its
endpoints are the normal vectors (sphere_points) of two neighboring facets of CH (P).
Thus, the two endpoints are not antipodal.

Suppose the endpoints are represented by points a and b on S Let C be the great
circle through a¢ and b. Then the sphere_segment represents the shortest arc of C'
containing a and b.

6.1 The file sphere_segment.h

(sphere_ segment.h)=
# ifndef _SPHERE_SEGMENT_H
# define _SPHERE_SEGMENT_H

#include <LEDA/d3_rat_point.h>
#include <ctype.h>

#include <iostream.h>
#include "sphere_point.h"

extern int s_seg_number;

class sphere_segment

{
(protected part)
(public part)

I

extern int orientation(const sphere_segment& s, const sphere_point& p);

# endif /* !_SPHERE_SEGMENT_H */

6.1.1 The protected part

With each sphere_segment we store its two endpoints normall and normal2. During
our computation we also need the primal edge (of CH(P)) of the sphere_segment, to
be precise we need the endpoints of the primal edge. Therefore we store these endpoints
vl and v2 with each sphere_segment.

The two remaining variables contain a unique number (segnumber) and a boolean
value (intersected_segment) which is true iff the segment is intersected by the equator
of S? (the plane z = 0).
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(protected part)=
protected:
int segnumber;
sphere_point normall, normal2;
d3_rat_point vi1, v2;
bool intersected_segment;

6.1.2 The public part

The public part contains the constructors, destructors and some member functions.

(public part)=
public:
(constructors)
destructor copy constructor and assignment operator
Y g p
(functions and operators)

The constructors The class sphere_segment has three constructors. One constructor
taking no argument, one constructor taking two points (sphere_point) of the unit
sphere as arguments, and one constructor taking two sphere_points and the two vertices
of the primal representation of this segment as arguments. Using the compare function
of Section 5.2.2, we sort the endpoints of the sphere_segment such that normall <
normal2. Hence, the sphere_segments are directed.

(constructors)=
sphere_segment ()
{
segnumber = s_seg_number++;
intersected_segment = false;

}

sphere_segment (sphere_point nl, sphere_point n2, bool is = false )
{

segnumber = s_seg_number++;

if( n1l < n2 )

{
normall = nil;
normal2 = n2;
}
else
{

normall = n2;
normal2 = ni;
}

intersected_segment = is;
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sphere_segment (sphere_point nl, sphere_point n2,
d3_rat_point vertl, d3_rat_point vert2,
bool is = false )

segnumber = s_seg_number++;
if( nl < n2 )

{
normall = ni;
normal2 = n2;
}
else
{
normall = n2;
normal2 = nl;
}

intersected_segment = is;
vl = vertl;
v2 = vert2;

Destructor, copy constructor and assignment operator

(destructor copy constructor and assignment operator)=
“sphere_segment () {}

sphere_segment& operator=(const sphere_segment& p)
{
if (this == &p) return #*this;
segnumber = p.segnumber;
normall = p.normall;
normal2
intersected_segment = p.intersected_segment;
vl = p.vl;
v2 = p.v2;
return *this;

p.normal2;

sphere_segment (const sphere_segment& p)
{
segnumber = p.segnumber;
normall = p.normall;
normal2 = p.normal2;
intersected_segment = p.intersected_segment;
vl = p.vl;
v2 = p.v2;
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Functions and operators First there are functions to get the entries of the sphere_-
segment. To be precise, there are functions to get the endpoints of the dual segment in
different representations (a, b, rat_a and rat_b), the endpoints of the primal segment
(vertexl and vertex2), the unique number of the sphere_segment, information if
the segment is intersected by the equator, information if the segment is trivial, the
intersection point of two sphere_segments and a test if the sphere_segment contains a
given point. The function intersection has the precondition that an intersection point
exists.

(functions and operators)=
sphere_point a() const {return(normall);}
sphere_point b() const {return(normal2);}

d3_rat_point rat_a() const {return(normall.rat_point());}
d3_rat_point rat_b() const {return(normal2.rat_point());}

d3_rat_point vertexl() const {return(vil);?}
d3_rat_point vertex2() const {return(v2);}

int number() const {return(segnumber);}

bool intersected() const {return(intersected_segment);}

bool is_trivial() const {return(normall == normal?2);}

bool intersection(const sphere_segment& ss, sphere_point& p) const;
bool contains(const sphere_point& p) const;

friend bool operator==(const sphere_segment& x, const sphere_segment& y);
friend bool operator!=(const sphere_segment& x, const sphere_segment& y);

friend istream& operator» (istream& in, sphere_segment& sp);
friend ostream& operator« (ostream& out, const sphere_segment& sp);

6.2 The file sphere_segment.c

(sphere_ segment.c)=
#include <LEDA/rat_point.h>
#include <LEDA/vector.h>
#include <LEDA/integer.h>
#include <LEDA/d3_rat_plane.h>
#include "sphere_segment.h"

int s_seg_number = 0;
orientation)
intersection)

(
(
(contains)
(operators)
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6.2.1 The orientation of a (directed) sphere_segment and a sphere_point

The function orientation computes the orientation of three sphere_points on the
upper hemisphere. The first and second sphere_point are the source and the target
point of the sphere_segment s. Recall, that s is directed. The third point is the given
argument p.

During the sweep processes we maintain a sorted sequence containing all segments
that are in contact with the sweep half-plane. We introduce two sentinels which we
call a positive and a negative infinity segment. These sentinels are always in the sorted
sequence to avoid special cases. Similarly, we introduce infinity points. In this orientation
test, we first handle these infinity segments and points.

Suppose the segment is not entirely on the equator. Then the orientation of the
segment and the point is equal to the orientation of the three points (the source, the
target of the segment s and the point p).

Suppose the segment is on the equator. If the segment s contains the point p it is
obvious that the orientation of s and p is zero.

Let the left border be all points on the equator with negative z-coordinate together
with the minimum point, and let the right border be all points on the equator with
positive z-coordinate together with the maximum point.

Suppose the entire segment is on the left border. If the point p is also on the left
border the orientation equals zero, because they are both (segment and point) on the
sweep half-plane. If the point p is not on the left border, the orientation is a rightturn
and the result is “-1”. The case when the entire segment is on the right border is handled
similarly.

Suppose the segment is on the equator and not entirely on the left resp. right border.
Then the segment either crosses the positive or the negative part of the y-axis. We test
if the minimum resp. the maximum point is on the segment. In Section 6.2.3 we will
give some details for this test. If the segment contains the maximum (resp. minimum)
point the orientation is a rightturn (resp. leftturn).

(orientation)=

int orientation( const sphere_segment& s, const sphere_point& p)

{
if(s.a().Z() < 0) // infinity segment

{
if(s.a().X() < 0) // - infinity segment
{
if(p.Z() < 0 && p.X() < 0 ) // - infinity point
{
return(0) ;
}
else
{
return(l);
}
}
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else

{

else

{

}

// + infinity segment

if(p.Z() < 0 && p.X() > 0 ) // + infinity point

{

else

{

}

return(0);

return(-1);

// regular segment

if(p.z() < 0)

{

else

{

if(p.X() < 0)

{

// infinity point

return(1l);

// + infinity point

return(-1);

// - infinity point

if( s.a().Z(0) == 0 && s.b().Z() == 0)

{

if( s.contains(p) )

{
}
if(
{

if(

ret

urn(0) ;

// segment

s.a() . X()<=0 && s.b().X()<=0 )

if( p.Z0==0 && ( p.XO<0 || ( p.

{

}

ret

return(0);

urn(-1);

// segment

s.a().X()>=0 && s.b().X()>=0 )

if( p.Z0==0 && ( p.XO>0 || ( p.

{

return(0);

23

// segment

is on the

is on the
X(O)==0 &&

is on the
XO)==0 &&

equator

left border
p-YOO<0 ) ) )

right border
p.YO>0 ) ) )



}

return(l);
}
// if s contains the minimum or maximum point
d3_rat_plane pl( s.a().rat_point(Q),

s.b() .rat_point (),

s.b() .rat_point() + rat_vector(0,0,1,1) );
int side_of_0 = pl.side_of(d3_rat_point(0,0,0,1));
if(side_of_0 == -1) // maximum point

{
return(-1);
}
if(side_of_0 == 1) // minimum point
{

return(l);

}

}
// regular segment that is not on the equator
return( orientation(s.a(), s.b(), p) );

¥

6.2.2 compute the intersection point of two sphere_segments

The function call s1.intersection(s2,p) computes the intersection point p of two
sphere_segments s1 and s2. It has the precondition that an intersection point exists.

We compute the plane planel (resp. plane2) containing s1 (resp. s2) and the origin.
Recall that a sphere_point is a vector of arbitrary length and so is the intersection
point. This intersection point is a vector from the origin with direction parallel to the
intersection line of the two planes. We obtain this vector by computing the cross product
of the normals of s1 and s2. We have to pay attention that we do not compute the
reflected intersection point. Therefore the intersection point is either the cross product
or the reflected cross product of the two plane normals.

Since the segments are on the upper hemisphere the intersection point is reflected if
its z-coordinate is less than zero. If the intersection point is on the equator we have to
test if the sphere_segments contains the intersection point. If not, we have to reflect it.

(intersection)=
bool sphere_segment::intersection( const sphere_segment& ss,
sphere_point& p ) const

{
sphere_point al = a();
sphere_point bl = b();
sphere_point a2 = ss.a();
sphere_point b2 = ss.b();
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int ol = orientation(*this,a2);
int 02 = orientation(*this,b2);
int 03 = orientation(ss,al);
int o4 = orientation(ss,bl);

if (ol '= 02 && 03 '= 04 )

{
d3_rat_plane planel

d3_rat_plane( normall.rat_point(),
normal2.rat_point(),
d3_rat_point(0,0,0) );
d3_rat_plane plane2 = d3_rat_plane( ss.a().rat_point(),
ss.b() .rat_point (),
d3_rat_point(0,0,0) );

rat_vector nl = planel.normal();
rat_vector n2 plane2.normal();

integer x = (n1.Y()*n2.Z()) - (n2.Y()*n1.Z());
integer y = (n1.ZO*n2.X(0)) - (n2.ZO)*n1.X());
integer z = (n1.XO*n2.Y()) - (n2.XO)*n1.Y());
integer w = n1.W()*n2.W(Q);

if( z <0 || (z == 0 & !contains(sphere_point(x,y,z,w)) ) )

{
X = -x;
y =-v
zZ = -2Z;
}

p = sphere_point(x,y,z,w);
return true;
}
if ( 0ol == 0 && contains(a2) && ss.intersected() )
{
p = a2;
return(true) ;
}
if ( 02 == 0 && contains(b2) && ss.intersected() )
{
p = b2;
return(true);
}
if ( 03 == 0 && ss.contains(al) && intersected() )
{
p = al;
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return(true);

}
if ( 04 == 0 && ss.contains(bl) && intersected() )
{
p = bl;
return(true) ;

}

return(false);

}

6.2.3 Test if the sphere_segment contains a sphere_point

Since the segments are great arcs, a segment contains a point h only if the point lies on
the plane PL through the segment and the origin. This is necessary but not sufficient.
Recall that the segments are on the upper hemisphere.

Assume that h is on PL. If the segment (p, q) is not completely on the equator, then h
is on the segment iff p < h < q, where “<” is the order implied by the compare function
of Section 5.2.2. Otherwise, there are two different cases. First, both endpoints are on
the same side of the y-axis. In this subcase h is on the segment iff p < h < q. Second,
the segment crosses the negative or positive part of the y-axis (see Figures 1(a) and (b)).

Suppose the segment crosses the positive part of the y-axis. In this case the point h
is on the segment if one of the two following statements holds. First, the z-coordinate
of h is negative and p < h. Second, the z-coordinate of h is positive or zero and q <
h. Recall that the segment and the point are on the equator. If the segment crosses the
negative part of the y-axis, we need some similar tests.

How can we test if the segment crosses the positive or negative part of the y-axis? We
only have the endpoints of the segment. The fact that our sphere_points are vectors
with arbitrary length does not make the test easier.

\Y maz Ay maz

/

Figure 1: Does the segment contain the minimum or the maximum point? A view from
the position (0,0, 00). min resp. maz is the minimum resp. maximum point.
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Recall that all segments are shorter than half of a great circle and that the segments
are directed. We make the observation that the segment (p,q) crosses the positive (resp.
negative) part of the y-axis iff p, q and the origin make a rightturn (resp. leftturn). This
observation is also true if the endpoints of the segment are not unit vectors (see Figure
1(c)). Let PL be a plane through the endpoints p and q of the segment and a point that
is vertically above (w.r.t. the z-direction) q. Now, p, q and the origin make a rightturn
iff the origin is on the other side of the normal n of PL.

(contains)=
bool sphere_segment::contains(const sphere_point& h) const
{
sphere_point p = a();
sphere_point q = b();
d3_rat_plane PL(p.rat_point(), q.rat_point(), d3_rat_point(0,0,0,1));

if ( PL.side_of( h.rat_point() ) !'= 0 )
return(false);

if( p.Z() == 0 && q.Z() == 0 ) // Is the segment on the equator?

{
if( p.X() * q.XOO > 0 ) // Are both endpoints on the same side
{ // of the y-axis?
if(p<=h & h<=q)
{
return(true);
}
return(false);
}
else
{

// Test if the segment crosses the positive or the negative
// part of the y-axis.
PL = d3_rat_plane( p.rat_point(),

q.rat_point(),

q.rat_point() + rat_vector(0,0,1,1) );
int side_of_0 = PL.side_of(d3_rat_point(0,0,0,1));

if(side_of_0 == 1) // segment crosses the negative part
{ // of the y-axis
if( h.X() <= 0)
{
if(p>=h)
{
return(true) ;
}
return(false);
}
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else
{
if( g >=h)
{
return(true);
}
return(false);

¥

if(side_of _0 == -1) // segment crosses the positive part
{ // of the y-axis
if( h.X() < 0)
{
if( p<=h)
{
return(true) ;

}

return(false);

else
{
if( q <=h)
{
return(true);
}
return(false);

¥

}
}
// segment is not on the equator
if( p<=h & h <=q)
{
return(true) ;
}

return(false);

}

6.2.4 The operators

Since the sphere_segments are oriented the operators == and != are easy to define.
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(operators)=
bool operator==(const sphere_segment& x, const sphere_segment& y)
{
if(x.normall == y.normall && x.normal2 == y.normal2)
return(true);
return(false);
}
bool operator!=(const sphere_segment& x, const sphere_segment& y)
{
if(x.normall == y.normall && x.normal2 == y.normal2)
return(false);
return(true);

3

ostream& operator« (ostream& s, const sphere_segment& p)

{

8 « "intersected segment: " « p.intersected_segment
« "\nnormall: " « p.normall « "\nnormal2: " « p.normal2
« "\nvertexl: " « p.vl « "\nvertex2: " « p.v2
<« "\nnumber: " « p.segnumber « endl;

return s;

X
istream& operator» (istream& in, sphere_segment& p)
{

// "“intersected segment:" p.intersected_segment

// "normall:" p.normall "normal2:" p.normal2"
// "vertexl:" p.vertexl "vertex2:" p.vertex2"
char c;

string s;

do in.get(c); while (isspace(c));
in.putback(c);
in » s;
if(s != "intersected")
{ cerr « "ERROR: sphere_segment input: syntax error" « endl;
exit(-1);
}
in » s;
if(s != "segment:")
{ cerr « "ERROR: sphere_segment input: syntax error" « endl;
exit(-1);
}
bool is;
in » is;
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do in.get(c); while (isspace(c));
in.putback(c);
in » s;
if(s !'= "normall:")
{ cerr « "ERROR: sphere_segment input:
exit(-1);
}
sphere_point nl;
in » ni;
do in.get(c); while (isspace(c));
in.putback(c);
in » s;
if(s !'= "normal2:")
{ cerr « "ERROR: sphere_segment input:
exit(-1);
}
sphere_point n2;
in » n2;

do in.get(c); while (isspace(c));
in.putback(c);
in » s;
if(s !'= "vertexl:")
{ cerr « "ERROR: sphere_segment input:
exit(-1);
}
d3_rat_point vertl;
in » verti;
do in.get(c); while (isspace(c));
in.putback(c);
in » s;
if(s !'= "vertex2:")
{ cerr « "ERROR: sphere_segment input:
exit(-1);
}
d3_rat_point vert2;
in » vert2;

do in.get(c); while (isspace(c));
in.putback(c);

int h;

in » h;

p = sphere_segment(nl, n2, vertl, vert2,
return in;
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7 The file dual_graph.c

In this section we compute the dual graph G of the convex hull G¢y. To be precise, we
compute the dual edges (sphere_segments) and the dual points (sphere_points). In
Sections 8 and 9 we will see that this information is sufficient to solve our problem.

(dual_ graph.c)=
#include <LEDA/list.h>
#include <LEDA/map.h>
#include <LEDA/planar_map.h>
#include <LEDA/rat_vector.h>
#include <LEDA/integer.h>
#include <LEDA/d3_rat_point.h>
#include <LEDA/d3_rat_plane.h>
#include <math.h>
#include <stdlib.h>
#include <iostream.h>
#include <fstream.h>
#include <assert.h>
#include "sphere_point.h"
#include "sphere_segment.h"

(compare segments)

(build dual graph)

7.1 The function cmp_seg

This function sorts the segments lexicographically. It is used to eliminate the reversal
edges in the list of all edges that we obtain from the LEDA planar map (See Section
7.2.2). Recall that the segments are directed.

(compare segments)=
inline int cmp_seg(const sphere_segment& sl, const sphere_segment& s2)
{
if(s1.a() < s2.a())
return(-1);
else
if(st.a() > s2.a())
return(l);
else // sl.a() == s2.a()
if(s1.b() < s2.b())
return(-1);
else
if(s1.p() > s2.b0))
return(1);
return(0);

31



7.2 The function build_dual_graph

This function builds the upper and lower parts Gy and G_ of the dual graph G.

(build dual graph)=
void build_dual_graph( const PLANAR_MAP<d3_rat_point, int, int>& Poly,
map<int, face>& Poly_face,
list<sphere_segment>& u_segment,
list<sphere_segment>& 1_segment,
list<sphere_point>& u_point,
list<sphere_point>& 1_point )

face f, rf;

int face_nr;

edge el, e2, e;

d3_rat_point a, b, c, ep, rep;
d3_rat_plane plane;
sphere_segment seg;
sphere_point sp;
list<sphere_segment> S;
list<sphere_point> P;
map<face, sphere_point> dual_node;
map<face, int> face_number;

(compute DG vertices)

(compute DG edges)

(compute upper and lower vertices)
(compute upper and lower edges)

7.2.1 Compute the dual graph vertices

We compute a plane through each facet £ of G. The dual of this facet is defined as its
outer normal plane.normal(). We store some values that help us computing the dual
edges without computing the normals again.

(compute DG vertices)=
face_nr = 0;
forall_faces(f, Poly)

{
el = Poly.first_face_edge(f);
e2 = Poly.face_cycle_succ(el);
a = Poly.inf(Poly.source(el));
b = Poly.inf(Poly.target(el)); // target(el) == source(e2)
c = Poly.inf(Poly.target(e2));

assert( ! collinear(a, b, c) );
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plane = d3_rat_plane(a, b, c);
sphere_point sp(plane.normal(), face_nr);
P.append( sp );

Poly_face[face_nr] = f;

dual_node[f] = sp;

face

}

cout «

_number [f] = face_nr++;

"number of dual nodes: " ¢ P.size() « endl;

7.2.2 Compute the dual graph edges

We compute for each edge e of G the dual edge seg. It has as endpoints the dual of the

face of e

and the dual of the face of the reversal of e. Since we compute all edges twice

(the edge and its reversal edge) but need them only once, we delete the copies using the
sort and unique functions of the LEDA 1ist.

(compute
forall
{

D@ edges)=
_faces(f, Poly)

forall_face_edges(e,f)

{

}
// del
S.sort

rf = face_of (Poly.reversal(e)); // face of the reversal edge
a = (dual_node[f]).rat_point();
b = (dual_node[rf]).rat_point();

seg = sphere_segment( a, b, Poly.inf(Poly.source(e)),
Poly.inf (Poly.target(e)), false );
S.append( seg );

ete the reversal edges
(cmp_seg) ;

S.unique (cmp_seg) ;

cout «

"number of dual edges: " « S.size() « endl « endl;

7.2.3 Compute upper and lower vertices

Given a

list of all dual vertices, we compute the list u_point of the vertices on Si and

the list 1_point of the remaining vertices. Note, that 1_point does not contain the
vertices on the equator. The vertices in the list 1_point are reflected to S2.

(compute

upper and lower vertices)=

sphere_point p;

forall
{

(p, P)
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if( p.Z20O) >=0)

{
u_point.append( p );
}
if( p.ZO < 0) // points on equator are only in u_point
{

1_point.append( sphere_point( -p.X(O), -p.YO, -p.ZO, p.WO,
p.number() ) );

7.2.4 Compute the sets of upper and lower segments

We test for each segment if it is completely on the upper or lower part of the hemisphere.
If so, we append it to the appropriate list u_segment resp. 1_segment. We reflect the
segment if it is on the lower part. Thus u_segment contains the segments on S2 and
1_segment contains the reflected segments of S?.

If the segment (sa, sb) crosses the equator, we cut it. To be precise, we compute
the intersection point ep of the segment and the equator, thereby obtaining two new
segments, (sa, ep) on S% and (ep, sb) on S?. We reflect the last one and append it to
the list 1_segment. The first, we append to u_segment.

To compute the intersection point of the segment and the equator, we compute the
cross product of two normals nh and norm. Here nh is the normal vector of the plane
through the equator. We choose the homogeneous vector (0,0,1,1) as nh. norm is the
normal vector of the plane splane through the segment and the origin. We choose the
direction for splane such that the vector nh X norm is on the ray from the origin through
the point ep. Since the z- and y-coordinates of nh are zero the cross product is easy to
compute. The z-coordinate of the cross product is equal to zero.

(compute upper and lower edges)=
sphere_point sa, sb;

forall(seg, S)
{
sa
sb

seg.a();
seg.b();

if( sa.Z() >= 0 && sb.Z() >= 0 ) // sa and sb on the upper sphere

{
u_segment .append(seg) ;
}
if( sa.Z() <= 0 && sb.Z() <= 0 ) // sa and sb on the lower sphere
{

sphere_point ma( -sa.X(), -sa.Y(), -sa.Z(), sa.W(), sa.number() );
sphere_point mb( -sb.X(), -sb.Y(), -sb.Z(), sb.W(), sb.number() );
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1_segment .append(sphere_segment ( ma, mb, seg.vertexl(),
seg.vertex2(), false ));

// one point on the upper sphere and one on the lower sphere
if( sa.Z() * sb.ZO < 0 )
{
// compute the intersection point with the equator
d3_rat_plane splane;

if(sa.Z() > 0 && sb.Z() < 0)

{
splane = d3_rat_plane( sa.rat_point(), sb.rat_point(),
d3_rat_point(0,0,0));
}
else
{
assert( sa.Z() < 0 && sb.Z() > 0 );
splane = d3_rat_plane( sb.rat_point(), sa.rat_point(),
d3_rat_point(0,0,0) );
}

rat_vector norm = splane.normal();

integer x = -norm.Y(); // cross product (0,0,1,1) x norm
integer y = norm.X();
integer w = norm.W();
ep = d3_rat_point( x, y, O, w); // point on the equator

rep = d3_rat_point(-x, -y, 0, w); // reflected point on the equator

assert( splane.contains(ep) && splane.contains(rep) );

if(sa.Z() > 0)
{
sphere_point mb( -sb.X(), -sb.Y(), -sb.Z(), sb.W(Q),
sb.number() );
u_segment .append (sphere_segment( sa, ep, seg.vertexl(),
seg.vertex2(), true ));
1_segment.append (sphere_segment( rep, mb, seg.vertexl(),
seg.vertex2(), true ));
}
else // a.Z() <0
{
sphere_point ma( -sa.X(), -sa.Y(), -sa.zZ(), sa.W(),
sa.number() );
u_segment .append (sphere_segment( sb, ep, seg.vertexl(),
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seg.vertex2(), true ));
1_segment.append (sphere_segment( rep, ma, seg.vertexl(),
seg.vertex2(), true ));

8 The file sweep_segments.c

To compute the EE-pairs we have to find the intersecting sphere_segments of G, and
G_. (Refer to Section 3.) We can compute these by adapting the Bentley and Ottmann
sweep line algorithm for the segment intersection problem. Since we do not make the
assumption that the segments are in general position we adapt the robust and efficient
implementation of Bartuschka et al.[2] so that it works for great arcs on the upper
hemisphere. Since the code is almost identical to that of [2], we present it without
comments.

(sweep segments.c)=
#include <LEDA/sortseq.h>
#include <LEDA/d3_rat_point.h>
#include <LEDA/d3_rat_plane.h>
#include <LEDA/vector.h>
#include <LEDA/planar_map.h>
#include <LEDA/map.h>
#include <LEDA/list.h>
#include <LEDA/map2.h>
#include <LEDA/p_queue.h>
#include <iostream.h>
#include <fstream.h>
#include <assert.h>
#include "sphere_segment.h"

int number_of_intersections;
sphere_point p_sweep;

static sphere_segment lower_sentinel;
static sphere_segment  upper_sentinel;

(compare function)
(compute_intersection function)
(sweep_segments function)
(EE_man_ distance function)
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8.1 The function compare

The compare function has as precondition that the sweep half-plane intersects both
segments and at least one source point of a segment is equal to the sweep point p_sweep.
This function is needed to order the sphere_segments according to their intersections
with the sweep half-plane. It tests if the sphere_segment on which p_sweep lies is above
(w.r.t. the sweep circle) the other sphere_segment.

(compare function)=
int cmp_segments(const sphere_segment& sl, const sphere_segment& s2)

{
if( s1.a() == s2.a() && s1.b() == s2.b() )
return 0;

int s = 0;

if( p_sweep == sl.a() )

{
S = orientation(s2, p_sweep);
}
else
{
assert( p_sweep == s2.a() );
s = orientation(sl, p_sweep);
}
if(s !'= 0 || sl.is_trivial() || s2.is_trivial())
{
return(s);
}

s = orientation(s2, s1.b());
return s 7 s : (s2.number() - si.number());

int compare(const sphere_segment& sl, const sphere_segment& s2)
{ return cmp_segments(sl,s2); }

8.2 The function compute_intersection

(compute_intersection function)=
void compute_intersection(sortseq<sphere_point, seq_item>& X_structure,

sortseq<sphere_segment, seq_item>& Y_structure,
const map2<int,int,seq_item>& inter_dic,
seq_item sitO,
map<int, sphere_segment>& original,
list<sphere_segment>& S1,
list<sphere_segment>& S2)

37



seq_item sitl = Y_structure.succ(sit0);
sphere_segment sO = Y_structure.key(sit0);
sphere_segment sl = Y_structure.key(sitl);

if ( orientation(s0,s1.b()) <= 0 && orientation(s1,s0.b()) >=0 )
{
seq_item it = inter_dic.operator() (sO.number(),sl.number());
//seq_item it = inter_dic(s0,sl);
sphere_point q;
if (it == nil)
{
sO.intersection(sl, q);
it = X_structure.insert(q,sit0);
}

Y_structure.change_inf (sit0, it);

if ( orientation(s0,s1.b()) < 0 && orientation(sl,s0.b()) > 0 )

{
if (original[sO.number()] != lower_sentinel &&
original([sl.number()] != upper_sentinel)
{
number_of_intersections++;
S1.push(original [sO.number()]);
S2.push(original[sl.number()]);
}
}

8.3 The function sweep_segments

(sweep _segments function)=
void sweep_segments( const list<sphere_segment>& S,
list<sphere_segment>& S1,
list<sphere_segment>& S2 )

sortseq<sphere_point, seq_item> X_structure;
sortseq<sphere_segment, seq_item> Y_structure(cmp_segments);
map<int, sphere_segment> original;

map2<int, int, seq_item> inter_dic(nil);
p_queue<sphere_point, sphere_segment> seg_queue;
sphere_segment s;

(initialization)
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while ( !X_structure.empty() )
{
(extract next event from the X-structure)
(handle passing and ending segments)
(insert starting segments)
(compute new intersections and update X-structure)

X_structure.del_item(event);

}

cout « "number of EE-pairs: " « number_of_intersections « endl;

}

8.3.1 Initialization

(initialization)=
number_of_intersections = 0;

forall(s, S)
{

seq_item itl = X_structure.insert(s.a(), seq_item(nil));
X_structure.insert(s.b(), seq_item(nil));

seq_item it2

if (itl == it2) continue; // ignore zero-length segments

sphere_point p = X_structure.key(itl);
sphere_point q = X_structure.key(it2);

sphere_segment s1 = sphere_segment(p, q);
original[sl.number()] = s;
seg_queue.insert(sl.a(), si);

sphere_point pos_infty_a(10,-1,-1,1);

sphere_point pos_infty_b(10,1,-1,1);

sphere_point neg_infty_a(-10,-1,-1,1);

sphere_point neg_infty_b(-10,1,-1,1);

lower_sentinel = sphere_segment(neg_infty_a, neg_infty_b);
upper_sentinel = sphere_segment(pos_infty_a, pos_infty_b);

p_sweep = lower_sentinel.a();
Y_structure.insert (upper_sentinel,seq_item(nil));

Y_structure.insert (lower_sentinel,seq_item(nil));

seg_queue.insert (upper_sentinel.a() ,upper_sentinel);
sphere_segment next_seg = seg_queue.inf(seg_queue.find _min());
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8.3.2 Extract next event from the X-structure

(extract next event from the X-structure)=
seq_item event = X_structure.min();
p_sweep = X_structure.key(event);

8.3.3 Handle passing and ending segments

(handle passing and ending segments)=
seq_item sit = nil;
sit = X_structure.inf(event);

if (sit == nil)
{
sit = Y_structure.lookup(sphere_segment (p_sweep,p_sweep));

}

seq_item sit_succ = nil;
seg_item sit_pred = nil;
seq_item sit_first = nil;
if(sit != nil)
{
while ( Y_structure.inf(sit) == event ||
Y_structure.inf(sit) == Y_structure.succ(sit) )
{
sit = Y_structure.succ(sit);
}

sit_succ = Y_structure.succ(sit);

seq_item xit = Y_structure.inf(sit);
if (xit)
{

sphere_segment sl = Y_structure.key(sit);
sphere_segment s2 = Y_structure.key(sit_succ);
inter_dic(sl.number(),s2.number()) = xit;

¥

bool upperst;
do
{
upperst = false;
s = Y_structure.key(sit);

if ( p_sweep == s.b() ) //ending segment
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seq_item it = Y_structure.pred(sit);
if ( Y_structure.inf(it) == sit )
{
upperst = true;
Y_structure.change_inf (it, Y_structure.inf(sit));
}
Y_structure.del_item(sit);
sit = it;
}
else //passing segment
{
if ( Y_structure.inf(sit) != Y_structure.succ(sit) )
{
Y_structure.change_inf(sit, seq_item(nil));
}
sit = Y_structure.pred(sit);
}
} while ( Y_structure.inf(sit) == event || upperst ||
Y_structure.inf(sit) == Y_structure.succ(sit) );

sit_pred = sit;
sit = Y_structure.succ(sit_pred);
sit_first = sit;

while ( sit != sit_succ && Y_structure.succ(sit) != sit_succ)
{
seq_item sub_first = sit;
seq_item sub_last

sub_first;

while( Y_structure.inf(sub_last) == Y_structure.succ(sub_last) )
sub_last = Y_structure.succ(sub_last);

if ( sub_last != sub_first )
Y_structure.reverse_items(sub_first, sub_last);

sit = Y_structure.succ(sub_first);

if (Y_structure.succ(sit_pred) != sit_succ )
Y_structure.reverse_items(Y_structure.succ(sit_pred),
Y_structure.pred(sit_succ));
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8.3.4 Insert starting segments

(insert starting segments)=
while (p_sweep == next_seg.a() )

{

seq_item s_sit = Y_structure.locate(next_seg);
seq_item p_sit = Y_structure.pred(s_sit);

S = Y_structure.key(s_sit);

if( !orientation(s, next_seg.a()) &&
lorientation(s, next_seg.b() ) )

sit = Y_structure.insert_at(s_sit, next_seg,
else
sit = Y_structure.insert_at(s_sit, next_seg,

s = Y_structure.key(p_sit);

if( !orientation(s, next_seg.a()) &&
lorientation(s, next_seg.b() ) )
Y_structure.change_inf (p_sit, sit);

X_structure.insert (next_seg.b(), sit);

if ( sit_succ == nil )
{
sit_succ = Y_structure.succ(sit);
sit_pred = Y_structure.pred(sit);
sit_first = sit_succ;

}

seg_queue.del_min();
next_seg = seg_queue.inf (seg_queue.find_min());

s_sit);

seq_item(nil));

8.3.5 Compute new intersections and update X-structure

(compute new intersections and update X-structure)=
if (sit_pred !'= nil)

{

seq_item xit = Y_structure.inf(sit_pred);
if ( xit )
{

sphere_segment sl = Y_structure.key(sit_pred);
sphere_segment s2 = Y_structure.key(sit_first);

inter_dic(s1l.number(),s2.number()) = xit;

Y_structure.change_inf (sit_pred, seq_item(nil));
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compute_intersection(X_structure, Y_structure, inter_dic,
sit_pred, original, S1, S2);
sit = Y_structure.pred(sit_succ);
if (sit != sit_pred)
{
compute_intersection(X_structure, Y_structure, inter_dic,
sit, original, S1, S2);

8.4 The function EE_min_distance

The algorithm of Section 8.3 computes all possible EE-pairs. The function EE_min_-
distance computes the minimum distance among the corresponding pairs of supporting
planes. The results of this function are the minimum distance min_dist, the number
number_min_distance of FFE-pairs with this minimum distance and two lists S1 and S2.
S1 and S2 contain the segments that are the duals of the edges of the FE-pairs. The
dual of the ith segment in list S1 forms an EF-pair with the dual of the ith segment in
list S2.

(EE_min_ distance function)=
void EE_min_distance( list<sphere_segment>& S1,
list<sphere_segment>& S2,
rational& min_dist,
int& number_min_dist,
const PLANAR_MAP<d3_rat_point, int, int>& Poly )

list<sphere_segment> H1;
list<sphere_segment> H2;
sphere_segment sl, s2;
d3_rat_point al, a2, bl, b2;
rat_vector v(3);

rational dist, mdist = -1;
assert( Sl.size() == S2.size() );
while( ! Si.empty() )

{

sl = S1.popQ);
s2 = $52.pop();

al = sil.vertexi();
bl = sil.vertex2();
a2 = s2.vertexi();
b2 = s2.vertex2();
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// al, .., b2 should not be coplanar! -> EE-pair
assert( orientation(al, a2, bl, b2) !=0 );

v = b2 - a2;

d3_rat_plane p(al, bl, al+v);

dist = p.sqr_dist( a2 );

assert( dist == p.sqr_dist( b2 ) );

if( (dist < mdist) || (mdist == -1) )
{
mdist = dist;
Hi.clear();
H2.clear();
H1.append(sl);
H2.append(s2);

}
else
{
if(dist == mdist)
{
H1.append(sl);
H2.append(s2);
}
}

}
min_dist = mdist;
number_min_dist = Hl.size();

}

9 The file point_location.c

We compute the VF-pairs using a point location algorithm based on the slab method of
Dobkin and Lipton. Since we know all points that we want to locate in advance, it is
not necessary to store the slabs. (Refer to Section 3.)

(point_location.c)=
#include <LEDA/plane.h>
#include <LEDA/map.h>
#include <LEDA/p_queue.h>
#include <LEDA/sortseq.h>
#include <LEDA/d3_rat_plane.h>
#include <LEDA/planar_map.h>
#include <assert.h>
#include <iostream.h>
#include <fstream.h>
#include "sphere_segment.h"
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extern sphere_point p_sweep; // current position of the sweep half-plane
static sphere_segment lower_sentinel;
static sphere_segment upper_sentinel;

extern int compare(const sphere_segment& sl, const sphere_segment& s2);

typedef sortseq<sphere_point,seq_item> X_structure;
typedef sortseq<sphere_segment,seq_item> Y_structure;

(locate_ one_ point)
(locate_ points)
(VF_min_ distance)

9.1 The function locate_one_point

This function takes a point p that we want to locate, and a sorted list Y containing all
segments that cross a slab. It locates the point p in the slab Y. The result is an edge of
the face that contains the point. We store this edge in a list E and the point p in a list
V. Note that the i-th edge in E belongs to the i-th vertex in V.

(locate_ one_ point)=
void locate_one_point( const sphere_point &p,
const Y_structure &Y,
list<sphere_point>& V,
list<sphere_segment>& E )

seq_item sit;
sphere_point h = p_sweep;
p_sweep = p;

sphere_segment lookseg(p,p);
sit = Y.lookup(lookseg);

// is sit nil or a sentinel?

if( sit == seq_item(nil) || sit == Y.min() || sit == Y.max() )
{
sit = Y.locate_succ(lookseg);
if( sit == nil || sit == Y.min() || sit == Y.max() )
{
sit = Y.locate_pred(lookseg) ;
}
}

assert(sit != nil && sit != Y.min() && sit !'= Y.max() );

E.append( Y.key(sit) );
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V.append( p );
p_sweep = h;

}

9.2 The function locate_points

The precondition of this algorithm is that L is a list of non-intersecting sphere_segments.
The&asphere_segmentsanadhedﬁd,smaSecﬁon(112.'The:ﬂgoﬁthnls“mepsovm?Si
(as explained in Section 3) and maintains a sorted list Y of all segments intersecting the
sweep plane SP.

As long as the list X of sweep events and the list P of points that we want to locate
are not empty we do the following. First, we update p_sweep to the next sweep event.
After that, we update the sorted list Y of segments that are intersected by SP. To be
precise, we delete all segments ending in point p_sweep and then we insert all segments
starting in p_sweep. Finally, we do the point location with all points of P that are in
this slab. Note that the points in P are sorted w.r.t. SP (see Section 9.2.1).

(locate_ points)=
void locate_points( list<sphere_point>& P,
list<sphere_segment>& L,
list<sphere_point>& V,
list<sphere_segment>& E )
{
(initialization)
sphere_point loc_point = P.pop();
while( ! X.empty() && ! P.empty() )
{
seq_item event = X.min(); // next event
p_sweep = X.key(event);

seq_item sit = nil;
sit = Y.lookup(sphere_segment (p_sweep,p_sweep));
while( sit != nil )
{
Y.del_item(sit);
sit = Y.lookup(sphere_segment (p_sweep,p_sweep));
}

while (p_sweep == next_seg.a() )
{

seq_item sit = Y.locate(next_seg);

sit = Y.insert_at(sit, next_seg, seq_item(nil));
X.insert (next_seg.b(), sit);

seg_queue.del_min();
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next_seg = seg_queue.inf (seg_queue.find_min());

}
X.del_item(event);

if( ! X.empty() )

{
while( loc_point < X.key(X.min()) && ! P.empty() )
{
locate_one_point( loc_point, Y, V, E );
loc_point = P.pop();
}
if( loc_point < X.key(X.min()) && P.empty() )
{
locate_one_point( loc_point, Y, V, E );
}
}
else
{
while( ! P.empty() )
{
locate_one_point( loc_point, Y, V, E );
loc_point = P.pop();
}
}

0.2.1 Initialization

First we initialize the X structure (sweep events). After that, we introduce some sen-
tinels. These infinity segments are stored in the Y structure to avoid tests like “is the Y
structure empty?”. The priority queue seg_queue contains all segments to the right of
the sweep half-plane, sorted by their left endpoint. Thus it is easy to test if a segment
has to be inserted at the actual sweep half-plane position.
(initialization)=

P.sort();

X_structure X;

Y_structure Y;

p_queue<sphere_point, sphere_segment> seg_queue;

sphere_segment s;

forall(s,L) // initialize the X structure

{
seq_item itl = X.insert(s.a(), seq_item(nil));
seq_item it2 = X.insert(s.b(), seq_item(nil));
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if (itl == it2) continue; // ignore zero-length segments

seg_queue.insert(s.a(), s);

}

sphere_point pos_infty_a( 10,-1,-1, 1);
sphere_point pos_infty_b( 10, 1,-1, 1);
sphere_point neg_infty_a(-10,-1,-1, 1);
sphere_point neg_infty_b(-10, 1,-1, 1);

lower_sentinel = sphere_segment(neg_infty_a, neg_infty_b);
upper_sentinel = sphere_segment(pos_infty_a, pos_infty_b);

p_sweep = upper_sentinel.a();
Y.insert(lower_sentinel,seq_item(nil));
Y.insert (upper_sentinel,seq_item(nil));

seg_queue.insert (upper_sentinel.a() ,upper_sentinel);
sphere_segment next_seg = seg_queue.inf(seg_queue.find_min());

9.3 The function VF_min_distance

The point location algorithm of Section 9.2 computes all possible VF-pairs. With the
function VF_min_distance we compute all VF-pairs for which the distance between the
corresponding supporting planes is minimum. The direction that minimizes the width
is determined either by a VF-pair or an EE-pair (see Section 3). Since we have already
computed the EFE-pairs for which the distance between the corresponding supporting
planes is minimum in Section 8.4, we are only interested in VF-pairs for which the dis-
tance between the corresponding supporting planes is smaller. At the start the minimum
distance of the EE-pair supporting planes is stored in the parameter min_dist. Its value
is “—1” if there are no EE-pairs.

We loop over all VF-pairs that are stored in the lists P and E. In each iteration, we
take a point p which is the dual of a facet and a segment seg which is the dual of an edge.
Thereafter, we compute a plane p1 through the facet of the dual of p which is the “facet”
of the VF-pair. Note that the primal edge (seg.vertex1(), seg.vertex2()) is also
stored with our dual segment sphere_segment. The vertex v of the primal edge with
maximum distance to p1 is the “vertex” of the VF-pair. We compute the distance dist
of the parallel planes that are supporting the VF-pair. In fact, because of precision
problems we always compute the square of the distance. We store all VF-pairs with
minimum distance of p1 and v in the lists VERTEX and FACE. At the start of the loop the
variable number_min_dist contains the number of FE-pairs whose supporting planes
have minimum distance. At the end we update it to the total number of directions with
minimum width.
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(VF_min_ distance)=
void VF_min_distance( const list<sphere_point>& P,
const list<sphere_segment>& E,
const map<int, face>& Poly_face,
const PLANAR_MAP<d3_rat_point, int, int>& Poly,
rational& min_dist,
int& number_min_dist )

list_item pit, eit;
sphere_point P;
sphere_segment seg;
rational mdist, dist;

list<face> FACE;
list<d3_rat_point> VERTEX;

assert( P.size() == E.size() );

mdist min_dist;
eit = E.first();
pit = P.first();

while( pit != nil )
{
seg
p

E.inf(eit);
P.inf(pit);

assert( Poly_face.defined(p.number()) );
face f = Poly_face[p.number()];

d3_rat_point a = Poly.inf( Poly.source( Poly.first_face_edge(f) ) );
d3_rat_plane pl( a, p.rat_point().to_vector() );

d3_rat_point v;

if( pl.sqr_dist( seg.vertexl() ) >= pl.sqr_dist( seg.vertex2() ) )

{
v = seg.vertexl();
}
else
{
v = seg.vertex2();
}
dist = pl.sqr_dist(v);
if ( dist <= mdist || mdist == -1 )
{
if ( dist < mdist || mdist == -1 )
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{
mdist = dist;
FACE.clear();
VERTEX.clear();
}
FACE. append(f);
VERTEX . append (v) ;

}
eit = E.succ(eit);
pit = P.succ(pit);
}
if( mdist < min_dist || min_dist == -1 )
{

min_dist = mdist;
number_min_dist = VERTEX.size();

}
else
{
if ( mdist == min_dist )
{
number_min_dist += VERTEX.size();

}

}

10 The main part of the program

This section describes the main function.

(Cwidth.c)=
#include <LEDA/list.h>
#include <LEDA/map.h>
#include <LEDA/planar_map.h>
#include <LEDA/d3_rat_point.h>
#include <LEDA/d3_hull.h>
#include <stdlib.h>
#include <iostream.h>
#include <fstream.h>
#include "sphere_segment.h"

extern void load_points( const string& name, list<d3_rat_point> &L );
extern void save_points( const string& name, const list<d3_rat_point> &L);
extern void check_arguments(int, char *argv[], int&,

list<d3_rat_point>& L,
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extern

extern

extern

extern

extern

list<rat_vector>& STL );
void build_dual_graph( const PLANAR_MAP<d3_rat_point, int, int>& Poly,
map<int, face>& Poly_face,
list<sphere_segment>& u_segment,
list<sphere_segment>& 1_segment,
list<sphere_point>& u_point,
list<sphere_point>& 1_point );
void sweep_segments( const list<sphere_segment>& S,
list<sphere_segment>& S1,
list<sphere_segment>& S2 );
void EE_min_distance( list<sphere_segment>& S1,
list<sphere_segment>& S2,
rational& min_dist,
int& number_min_dist,
const PLANAR_MAP<d3_rat_point, int, int>& Poly );
void locate_points( list<sphere_point>& P,
list<sphere_segment>& S,
list<sphere_point>& V,
list<sphere_segment>& E );
void VF_min_distance( const list<sphere_point>& P,
const list<sphere_segment>& E,
const map<int, face>& Poly_face,
const PLANAR_MAP<d3_rat_point, int, int>& Poly,
rational& min_dist,
int& number_min_dist );

int _rand = 0;

bool _stl

false;

int main(int argc, char *argv[])

{

(initialization)

float time = used_time();

(
{
(
{

time
cout

convez hull)

dual graph)

sweep segment intersection)
point location)

= used_time(time);
< "\ntime = " « time « "sec" « endl « endl;
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10.1 The initialization

The function check_arguments checks the arguments of the program and either reads
the given file or sets the value of the variable _rand. The value in _rand indicates
whether we create random points in the cube, in the ball or on the sphere. If the given
file is an STL file all points of the polyhedron are stored in the list L and the normals
are stored in the list STL. The duplicates of the points in the STL file are removed so L
contains each point exactly once. If no parameter is given, a default file is loaded.

(initialization)=
int number_rpoints;
list<d3_rat_point> L;
list<rat_vector> STL;
GRAPH<d3_rat_point,int> H;

rational min_dist = -1; // sqr of the minimum distance
int number_min_dist = 0; // number of directions with minimum distance

check_arguments(argc, argv, number_rpoints, L, STL);

if(_rand)

{
cout « "\nCREATE " « number_rpoints « " RANDOM POINTS ";

switch(_rand)
{
case 1:
cout « "IN CUBE\n\n";
random_d3_rat_points_in_cube( number_rpoints, 1000, L );
break;
case 2:
cout « "IN BALL\n\n";
random_d3_rat_points_in_ball( number_rpoints, 1000, L );
break;
case 3:
cout « "ON SPHERE\n\n";
random_d3_rat_points_on_sphere( number_rpoints, 1000, L );
break;
}
save_points("t",L);

}

if( ! ( _stl || _rand ) )
{
cout « "\nLOAD POINTS";
load_points( "t", L );
}
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10.2 Compute the 3D convex hull with LEDA

This function computes the 3D convex hull with the LEDA function D3_HULL and stores
the result as a LEDA PLANAR_MAP. A member function of this combinatorial embedding
of a planar graph can compute the needed faces.

(conver hull)=
cout « "number of points: " ¢ L.size() « endl < endl;
cout « "CONVEX HULL\n\n";

D3_HULL( L, H );
L.clear();

list<edge> R;
H.make_map(R) ;
R.clear();
H.make_planar_map();
H.compute_faces();

PLANAR_MAP<d3_rat_point, int, int> Poly(H);
Poly.compute_faces();

H.clear();

cout « "number of CH nodes: " « Poly.number_of_nodes() « endl;

cout « "number of CH edges: " « Poly.number_of_edges()/2 « endl;

cout « "number of CH faces: " « Poly.number_of_faces() « endl « endl;

10.3 Compute the dual graph

To compute the dual graph we simply call the function build_dual_graph which was
explained in Section 7.2.
(dual graph)=

cout « "DUAL GRAPH\n\n";

list<sphere_segment> u_segment;

list<sphere_segment> 1_segment;

list<sphere_point> u_point;

list<sphere_point> 1l_point;

map<int, face> Poly_face; // map from DG point number to Poly face

build_dual_graph( Poly, Poly_face, u_segment, l_segment, u_point, 1l_point );

10.4 Segment intersection

First, we copy all segments of the lists u_segment and 1_segment to the list S. There-
after, we call the segment intersection algorithm. Note that neither the segments in
u_segment nor the segments in 1_segment intersect each other. The EFE-pairs are

93



stored in the lists S1 and S2. Note, that the ¢th sphere_segment of list S1 intersects
the 7th sphere_segment of list S2. The function EE_min_distance computes among all
EFE-pairs those for which the distance between the corresponding supporting planes is
minimum.

(sweep segment intersection)=
cout « "SWEEP SEGMENTS\n\n";

list<sphere_segment> S;
list<sphere_segment> S1, S52;
sphere_segment seg;
sphere_point p;

S = u_segment;
forall(seg, 1l_segment)
{

S.append(seg) ;
}

sweep_segments(S, S1, S2);
S.clear();

EE_min_distance(S1, S2, min_dist, number_min_dist, Poly);

Si.clear();

S2.clear();

cout « "\nEE:\n" <« "number of optimal directions: " « number_min_dist
<« endl « "square of the minimum distance: " « min_dist.to_double()

< endl « endl;

10.5 Point location

The first call of the function locate_points locates the points of G_ in the graph G.
The second call locates the points of G, in the graph G_. The results of these function
calls are stored in the lists P and E. Here the ¢th point of list P belongs to the ith segment
of list E. Note that the dual of such a pair is a VF-pair.

(point location)=
list<sphere_point> P;
list<sphere_segment> E;

cout <« "\nLOCATE LOWER POINTS\n";
locate_points( 1l_point, u_segment, P, E );
cout « "LOCATE UPPER POINTS\n\n";
locate_points( u_point, 1l_segment, P, E );

1_point.clear();
u_point.clear();
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| model n | h | k | time

tod21.stl 1,128 87 20 13
mj.stl 2,832 | 356 29 31
triadl.stl 11,352 | 3,874 | 3,769 | 504
daikin_trt321.stl | 19,402 | 1,638 | 3,036 | 155
impller.stl 30,900 414 288 42
eaton_sp.stl 41,318 | 1,065 | 1,207 | 114
4501005.stl 50,626 | 2,306 | 2,063 | 165
frame_29.stl 67,070 388 312 31
$a600280.stl 74,350 | 3,899 | 2,669 | 375
fishb.stl 213,384 | 5,459 | 5,845 | 566

Table 1: Performance of our implementation on some polyhedral models. n denotes the
number of facets of the model; h and k denote the number of convex hull facets,
and the number of FE-pairs, respectively; time denotes the time in seconds.

1_segment.clear();
u_segment.clear();

VF_min_distance( P, E, Poly_face, Poly, min_dist, number_min_dist );

cout « "\nTOTAL:\n"
<« "number of optimal directioms: " « number_min_dist « endl
<« "square of the minimum distance: " « min_dist.to_double()
« endl « endl;

11 Experimental results

In this section, we report on the experiments we did on a SUN Ultra (300 MHz, 512
MByte RAM).

First, we tested our implementation on real-world polyhedral models obtained from
Stratasys, Inc. Table 1 gives the test results for ten models, which were chosen to
encompass different geometries. For example, tod21.stl is a bracket, consisting of
a hollow quarter-cylinder, with two flanges at the ends, and a through-hole drilled in
one of the flanges. This model has 1,128 facets. The model mj.stl is an anvil shaped
like a pistol with a square barrel. This model has 2,832 facets. The largest model tested
is fishb.stl, which has 213,384 facets. Our program computed the width of the latter
model within ten minutes.

As can be seen in Table 1, the actual running time of the program heavily depends on
the number, h, of facets of the convex hull. This is not surprising, because our compare
functions are fairly complex. For each model that we tested, the value of A is much
smaller than the number, n, of facets of the model.
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N | h| k| min | max | average | variance

1,000 | 133 | 67| 2.1 | 3.0 2.5 0.870
5,000 | 205 | 97| 3.2 | 5.0 4.1 0.266
10,000 | 239 | 110 | 4.0 | 5.2 4.8 0.144
20,000 | 254 | 120 | 4.8 | 6.4 5.4 0.177
30,000 | 269 | 119 | 5.0 | 6.9 6.0 0.300
40,000 | 265 | 121 | 53| 7.3 6.1 0.384
50,000 | 269 | 121 | 6.0 | 7.7 6.5 0.293
60,000 | 267 | 113 | 59| 7.3 6.6 0.167
70,000 | 280 | 123 | 6.4 | 8.8 7.2 0.620
80,000 | 266 | 115 | 5.8 | 8.3 7.1 0.459
90,000 | 268 | 117 | 6.0 | 8.8 7.4 0.819
100,000 | 274 | 118 | 7.2 | 8.6 7.8 0.213

Table 2: Performance of our implementation for points randomly chosen in a cube. For
each value of N, we randomly generated ten point sets of size N. h and k denote
the average number of convex hull facets, and the average number of EE-pairs,
respectively. Although k could be ©(h?), this table shows that in practice, it is
slightly less than h/2. min, max, average, and variance denote the minimum,
maximum, and average time in seconds, respectively, and the variance.

Since we only have a limited number of polyhedral models, we also tested our im-
plementation on random point sets. First, we used LEDA’s point generator random_d3-
_rat_points_in_cube to generate random points from a uniform distribution in the
cube [—1000, 1000]3. For each value of N € {103,...,10°}, we generated ten point sets
of size N. We measured the time of our program after these points were generated.
Table 2 shows the minimum, maximum, and average running time in seconds, as well as
the variance. This variance was computed using the formula [5, Section 8.2]

B+B+... 412, (t+te+t...+ty)?

m—1 m(m — 1)

Y

where t; denotes the time of the ¢-th run, and m denotes the total number of generated
point sets (which is ten in our case).

Also in Table 2, the average values of h (the number of facets of the convex hull),
and & (the number of EE-pairs) are given. Note that for this distribution, the expected
value of & is bounded by O(log® N), see Section 4.1 in [9].

Although the worst-case running time of the algorithm is ©(N?log N), our experi-
mental results show that on random inputs, the algorithm is much faster. The actual
worst-case performance is bounded by O(N? + klogh). As we can see in Table 2, the
value of h is much smaller than N. Also, the value of £—which could be as large as
©(h?)—is in fact slightly less than h/2. Table 2 shows that in practice, the running time
is not proportional to N2: otherwise, doubling N would increase the running time by at
least a factor of four. This implies that the constant factor corresponding to the term
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N| k| k| min | max | average | variance |
1,000 | 258 | 141 | 49| 5.9 5.3 0.870
5,000 | 607 | 325|122 | 14.7 13.4 0.694

10,000 | 884 | 477 | 19.2 | 20.7 20.0 0.188
20,000 | 1256 | 673 | 28.4 | 34.9 30.1 3.407
30,000 | 1535 | 818 | 34.6 | 39.9 37.5 1.815
40,000 | 1782 | 962 | 43.4 | 46.4 441 0.808
50,000 | 1976 | 1053 | 47.1 | 52.5 50.2 2.493
60,000 | 2165 | 1161 | 53.3 | 56.9 55.5 1.338
70,000 | 2346 | 1254 | 59.4 | 64.4 61.4 2.192
80,000 | 2528 | 1356 | 64.7 | 68.0 66.3 1.352
90,000 | 2677 | 1440 | 68.3 | 72.7 70.3 1.773
100,000 | 2810 | 1501 | 72.0 | 79.0 75.0 5.323

Table 3: Performance of our implementation for points randomly chosen in a ball. For
each value of N, we randomly generated ten point sets of size N. h and k
denote the average number of convex hull facets, and the average number of
EE-pairs, respectively. In this case, the value of k is slightly larger than h/2.
min, max, average, and variance denote the minimum, maximum, and average
time in seconds, respectively, and the variance.

klogh is large, and this term basically determines the running time in practice.

Next, we generated points from a uniform distribution in the ball centered at the
origin and having radius 1000, using LEDA’s point generator random_d3_rat_points-
_in_ball. For each value of N € {103, ... ,105}, we generated ten point sets of size
N, and measured the time after these points were generated. The results are given in
Table 3. For this distribution, the expected value of h is bounded by O(v/N), see Section
4.1 in [9]. In this case, the value of k is slightly larger than h/2. Again, the running
time in practice is not proportional to N2, but is determined by the term k log h, which
has a large constant.

Finally, we generated random point sets that are close to the sphere centered at the
origin and having radius 1000, using LEDA’s point generator random_d3_rat_points-
_on_sphere. For each value of N € {10%,...,10%}, we generated ten point sets of size
N, and measured the time after these points were generated. The results are given in
Table 4. For this distribution, (almost) all points are on the convex hull. (Recall that h
denotes the number of convex hull facets.) In this case, the value of k is about 2h/3. By
doubling the number of points, the running time in practice increases by a factor that
is slightly larger than two.
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N | h | k| min | max | average | variance |
100 196 122 5.8 6.3 6.0 0.021
500 996 635 | 34.6 | 36.2 35.3 0.293

1,000 | 1,996 | 1,277 | 73.8 | 80.7 76.4 4.715
2,000 | 3,995 | 2,538 | 156.6 | 162.6 158.2 3.089
3,000 | 5,992 | 3,809 | 239.7 | 245.2 242.5 3.584
4,000 | 7,982 | 5,072 | 325.0 | 334.9 330.3 9.343
5,000 | 9,968 | 6,315 | 409.5 | 424.2 416.0 20.160
6,000 | 11,962 | 7,549 | 496.7 | 533.6 504.1 | 121.824
7,000 | 13,933 | 8,788 | 583.4 | 635.0 596.6 | 320.541
8,000 | 15,899 | 9,997 | 660.0 | 696.5 677.7 | 108.740
9,000 | 17,882 | 11,226 | 740.9 | 822.4 768.6 | 443.838
10,000 | 19,814 | 12,400 | 842.2 | 934.6 864.3 | 850.981

Table 4: Performance of our implementation for points randomly chosen close to a
sphere. For each value of N, we randomly generated ten point sets of size
N. h and k denote the average number of convex hull facets, and the average
number of EE-pairs, respectively. In this case, the value of k is about 2h/3.
min, max, average, and variance denote the minimum, maximum, and average
time in seconds, respectively, and the variance.
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