
1

PRE PROCESSOR DIRECTIVES IN –C
LANGUAGE.

2401 – Course Notes.

2

The C preprocessor is a macro processor that is used automatically by the C compiler to
transform programmer defined programs before actual compilation takes place. It is called a
macro processor because it allows the user to define macros, which are short abbreviations for
longer constructs.

This functionality allows for some very useful and practical tools to design our programs.

 To include header files(Header files are files with pre defined function definitions, user
defined data types, declarations that can be included.)

 To include macro expansions. We can take random fragments of C code and abbreviate
them into smaller definitions namely macros, and once they are defined and included
via header files or directly onto the program itself it(the user defined definition) can be
used everywhere in the program. In other words it works like a blank tile in the game
scrabble, where if one player possesses a blank tile and uses it to state a particular letter
for a given word he chose to play then that blank piece is used as that letter throughout
the game. It is pretty similar to that rule.

 Special pre processing directives can be used to, include or exclude parts of the program
according to various conditions.

To sum up, preprocessing directives occurs before program compilation. So, it can be also be
referred to as pre compiled fragments of code. Some possible actions are the inclusions of
other files in the file being compiled, definitions of symbolic constants and macros and
conditional compilation of program code and conditional execution of preprocessor directives.

All preprocessor directives has begin with the # operator.

include preprocessor directive:

Only defined at the top of the program definition and only white space and comments may
appear before preprocessor directive line.This directive includes a copy of the specified file or
library. And is written like so-

include <filename>

Or #include “file name”

3

If included inside <> then the compiler looks for the file in an implementation defined manner
(or system directory paths).

If included inside a quote “ ” statement then it searches for the file in the same directory as the
program being written.

So if we include a file named file1 while writing a program name code.c which is being stored in
a folder called test. Then inclusion like so -- #include “file1”

Will tell the compiler to look for the file inside the test folder, It looks at neighboring folders or
subfolders too but it starts its search in the test folder.(This sub search option is compiler
dependent).

#define preprocessor directives (Symbolic constants)

Used to create symbolic constants and macros, meaning useful for renaming long named data
types and certain constants or values which is being used throughout the program definition.

Symbolic constant definition-

Written as –

#define identifier replacement-text

When this line appears in a file, all subsequent occurrences of identifier that do not appear in
string literals will be replaced by the replacement text automatically before program
compilation takes place.

For example:

#define PI 3.14159

Replaces all subsequent occurrences of the symbolic constant PI with numeric constant
3.14159. Symbolic constants enable the programmer to create a name for a constant and use
that name throughout program execution. If this needs to be modified ,it has to be done in
the #define directive statement. After recompilation all definitions get modified accordingly.

#define Preprocessor Directive : Macros

 Symbolic constants and macros can be discarded by using the #undef preprocessor
directive.

 Directive #undef “undefines” the symbolic constant or macro name.

 The scope of a symbolic constant or macro is from its definitions until it is undefined
with #undef or until the end of the file.

4

Example Code –

#include<stdio.h> -- Include external source code file
#include “file1” - Include a file which is in the same folder as the parent file
#define BUFFER_SIZE 250

Int maint(){
 Char array[BUFFER_SIZE] = [0];
 Int I = 9;

 Printf(“%d”,i);
 Printf(“%s”,array);

 Return 0;
}//end main body

Conditional Compilation:
Conditional compilation enables the coder to control the execution of preprocessor directives
and the compilation of program code.
->Conditional preprocessor directives evaluate constant integer expressions.The ones that
cannot be evaluated in preprocessor directives are sizeof expressions and enumeration
constants.
Every #if construct ends with #endif

Example –
#if !defined(MY_CONSTANT)
 #define MY_CONSTANT 0
#endif

These directives determine if MY_CONSTANT is defined or not.The expression
defined(MY_CONSTANT) evaluates to 1 if MY_CONSTANT is not defined and is defined else it
evaluates to 0.

Predefined Symbolic Constants:
Standard C provides some predefined symbolic constants, several of which are shown below-

5

DIRECTIVES EXPLANATION
LINE The line number of the current source code line(An integer
constant.)

FILE The presumed name of the source file(a string).
DATE The date source file was compiled (The string of the form ‘MM dd YYYY’
 such as Jan 20 2013).
TIME The time source file was compiled (A string literal of the form
 ‘hh:mm:ss’).
STDC Value 1 if the compiler supports Standard C.

#error and #pragma not covered.
Assert macro defined in <assert.h> not covered.

6

Sources:
1.Internet Google Search - http://docs.freebsd.org/info/cpp/cpp.pdf

2.C How to Program –Deitel and Deitel (7
th

 Ed),Chapter 13.

3.System programming (with Unix and C) –Adam Hoover

http://docs.freebsd.org/info/cpp/cpp.pdf

7

