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Figure 1: Black and white image conversion. Left to right: original image; belief propagation result; graph cuts result; base+detail result.

Abstract

Halftoning algorithms attempt to match the tone of an input im-
age despite lower color resolution in the output. However, in some
artistic media and styles, tone matching is not at all the goal; rather,
details are either portrayed sharply or omitted entirely.

In this paper, we present an algorithm for abstracting arbitrary input
images into black and white images. Our goal is to preserve details
while as much as possible producing large regions of solid color in
the output. Our algorithm involves composing a base layer, consist-
ing of large flat-colored regions, with a detail layer containing the
small high-contrast details. The base layer is computed using graph
cuts, while thresholded local histogram equalization gives the detail
layer. The final labeling is tidied by removing small components,
vectorizing, and smoothing the region boundaries. The output im-
ages satisfy our goal of high spatial coherence with detail preserva-
tion.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display Algorithms; J.5.0 [Computing Applications]:
Arts and humanities—Arts, fine and performing

Keywords: halftoning, image filtering, black and white images

1 Introduction

Conversion of grayscale images into binary images is a task long
studied in computer graphics, and various halftoning algorithms
have been proposed over the years. Oftentimes, such algorithms
exchange spatial resolution for intensity resolution: a solid-colored
region of the input image is transformed into a pattern of black and
white primitives such that the area integral of intensity in the output
is the same as the intensity level of the input.
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However, there are contexts in which low spatial and low color res-
olutions occur simultaneously. Mobile devices usually have small
screens and may have limited color resolution, so images intended
for such displays out to be as simplified as possible. Icon design
provides another example: icons should be recognizable, but small,
so few pixels are available; and often, color is used as a separate
information channel, so is not available for image reproduction.

Further, faithful reproduction of tone is not always desirable, even
when possible. Some artistic media, such as scratchboard [Lozner
1990], inherently result in black and white images. Also, some
artists employ other media such as ink to obtain similar effects.
For example, Frank Miller’sSin Citygraphic novels [Miller 2005]
use solid blacks and whites without mid-gray levels (other colors
are occasionally introduced, their effectiveness heightened by their
rarity).

In this paper, we propose an automated algorithm for converting a
grayscale image into a black and white image; the intended out-
put image retains sharp features while areas lacking sharp features
are converted to solid color. Example output from our algorithm
is shown in Fig 1. The results are an instance of abstraction, the
process of removing irrelevant information while preserving salient
detail; even salient detail is sometimes simplified.

Binarization of grayscale images is in some sense a trivial opera-
tion. One method is to choose a threshold, so that pixels brighter
than the threshold become white, and darker pixels become black.
Unfortunately, it is not easy to find a threshold that does a good job
for a particular image; for most images, no single threshold will do
a reasonable job. On the other hand, adaptive thresholding tech-
niques suffer from overamplification of noise.

We use adaptive thresholding to provide an initial guess about the
fate of individual pixels, and then use energy minimization to obtain
a binary labeling; we first approached the minimization problem us-
ing loopy belief propagation, and then, using our observations from
this first attempt, we designed a new energy formulation and used
graph cuts to obtain the labeling. The difficulty of constructing an
appropriate energy term that both captured local details and large-
scale coherence prompted us to devise a modified method that pro-
duced a labeling based on a composition of a detail layer and a base
layer; graph cuts was used in building and composing the layers.
Following the labeling, the binary image is polished by removing
small isolated elements and converted to a vector representation.

The contribution of this paper is to present a trio of related meth-



ods for creating stylized black and white images from input pho-
tographic images. The desired labelings retain salient details but
have substantial regions of constant color where no details were
present. Graph cuts and loopy belief propagation were applied to
the problem framed as an energy minimization exercise, and pro-
duced unsupervised labelings of an arbitrary input image. With the
lessons learned from these, coupled with the observation that lo-
cal adaptive thresholding preserves detail, we propose a base plus
detail algorithm for black and white stylization, where graph cuts
are used to obtain a coarse (base) level, local adaptive segmenta-
tion is usd to obtain a fine (detail) level, and the two are combined
to produce a final image that both preserves details and has large
flat-colored regions where warranted.

The paper is organized as follows. In the following section, we re-
view some artistic and scientific work related to our goal. Next, we
describe the details of our proposed algorithms. We show results
of applying the method to different input images in the following
section, and give some commentary on the effectiveness and ro-
bustness of the techniques. This is followed by a final section in
which we conclude and provide some suggestions for future work.

2 Previous Work

Previous work related to this problem follows three threads: al-
gorithms for halftoning; methods for artistic depictions of input
images; and schemes for foreground extraction from images. We
consider each of these in turn.

The goal of halftoning is to convert a grayscale (continuous tone)
image into a binary (two tone) image, often for reproduction on a
low color resolution output device such as a printer. Techniques
including error diffusion [Floyd and Steinberg 1977] and ordered
dither are commonplace. Both error diffusion and ordered dither
use the maximum available spatial resolution; the intent is that over
a region, the average intensity of the two-tone output image equals
the average intensity of the continuous-tone input image. When the
output image has higher spatial resolution than the input, halftoning
algorithms can match tones very effectively.

When the output image resolution is the same as or lower than
the input resolution, however, halftoning does not always repro-
duce the input effectively. Sharp features may become less clear,
and spurious textures may be introduced (although it is possible to
control such textures for artistic effect, as shown by Veryovka and
Buchanan [Veryovka and Buchanan 1999]).

Close tone matching of the input image is not always necessary
in image abstraction contexts. Various artistic media, including pen
and ink [Guptill 1976], engraving, and scratchboard [Lozner 1990],
produce images in black and white.

Both pen-and-ink and engraving have seen some attention in past
years. Winkenbach and Salesin [Winkenbach and Salesin 1994]
gave a scheme for imitating artistic pen and ink illustration and
introduced stroke textures; Salisbury et al. [Salisbury et al. 1994]
made use of the stroke textures in an interactive application, cre-
ating halftoned images which look as though made with pen and
ink. Ostromoukhov [Ostromoukhov 1999] presented a method for
creating beautiful digital engravings of an input image, but one that
requires considerable user input to achieve its effects.

Also worth mentioning in this context is stippling, a particular style
of drawing in ink in which the ink is distributed through the out-
put image as tiny discrete dots. Stippling has fascinated computer
graphics practitioners in part because of its connections with com-
putational geometry; algorithms for stippling [Deussen et al. 2000;
Secord 2002] have often drawn on Lloyd’s algorithm [O’Rourke

1990] for centroidal Voronoi diagrams. Usually, problems of stip-
ple distribution have been cast as halftoning problems, deploying
stipples as halftoning primitives with the intent of matching tone.

Other researchers have previously proposed automated abstraction
problems. Gooch et al. [Gooch et al. 2004] presented a method
for creating black and white caricatures of human faces out of pho-
tographs. Their method is automatic, but specialized to the case of
human faces. While Winnem̈oller et al. [Winnem̈oller et al. 2006]
perform abstraction on arbitrary photographs and video, they do not
abstract all the way to black and white.

Lastly, methods for image segmentation have some relevance to the
current problem. We have used the existing frameworks ofloopy
belief propagation(LBP) andgraph cutsto perform foreground ex-
traction for our stylized images.

In the following subsections, we describe LBP and graph cuts, but
first, we give a brief discussion of image segmentation as an energy
minimization problem. The energy cost function to be minimized
is usually written as a Gibbs energy with adata costcomponent
D (the cost of assigning a label to a pixel) and asmoothness cost
componentV (the cost of assigning labels to adjacent pixels).

We write the label of a pixelp as fp. The data term of the en-
ergy isD = Σpdp(fp); that is, the total data energy is the sum
over all pixels of individual pixel energies. The smoothness term
is V = Σvpq(fp, fq), where the sum is taken over all neighboring
pixel pairs (8-connected, in our implementations), andvpq(fp, fq)
gives the smoothness energy of assigning labelfp to pixel p at the
same time as assigningfq to q. The particular functionsdp(·) and
vpq(·, ·) depend on the application. The goal is to choose a set of
labels over all pixels that minimizes the total energyE = D +λV .
The particulars of the different minimization processes are given
next.

2.1 Loopy Belief Propagation

Loopy Belief Propagation is a popular algorithm for performing en-
ergy minimizations in image processing. The technique is borrowed
from inference in graphical models. In particular,max-product be-
lief propagationcomputes a labeling for any unlabeled variables
given an assignment to the other variables in the model. If the
graphical model is a tree (no loops), then the computed labeling is
optimal (it is the maximum a posteriori assignment, or the labeling
with the highest probability). In general graphs, optimality is not
guaranteed, but the algorithm has demonstrated itself to compute a
reasonable approximation in many circumstances. Here, we focus
on belief propagation as it pertains to image analysis; a discussion
of loopy belief propagation in general graphs is given by Weiss and
Freeman [Weiss and Freeman 2001]. A more thorough description
of loopy belief propagation for image analysis is given by Szeliski
et al. [Szeliski et al. 2006].

The loopy belief propagation algorithm is easily modified to com-
pute a labeling of minimum energy over an image rather than a
maximum probability (the energy is the negative logarithm of the
probability); hence, it can be used to compute pixel assignments
of low energy. In this framework, each pixel is treated as a ran-
dom variable whose possible labelings are the potential colours
of the pixel. Each pixel also has a neighborhood, which is the 4-
neighborhood or the 8-neighborhood of the pixel (in our case, the
8-neighborhood was used). A pixel receives messages from each
of its neighbors; these messages influence the likelihood of a pixel
taking on a particular label. The message passed from a pixelp to
a neighboring pixel is a summary ofp’s local data and smoothness
terms, plus the messagesp received from all other neighbors in pre-
vious iterations. The algorithm terminates after a fixed number of



iterations, or if it converges to a solution, where convergence means
that the likelihoods at each pixel are no longer changing. When the
computation is complete, each pixel is assigned the label with the
highest likelihood.

2.2 Graph Cuts

Graph cutsare another framework for energy minimization, and in
recent years graph cuts have seen widespread use in computer vi-
sion and computer graphics [Boykov et al. 2001; Boykov and Jolly
2001; Li et al. 2004; Rother et al. 2004]. The basic idea is to treat
the image as a graph, typically a 4-connected or 8-connected grid,
and to connect each node (pixel) to two additionalterminalvertices,
the source and sink. Edge weights are computed based on relevant
image properties, and theminimum cutis determined: the set of
edges with minimum total cost whose removal will separate source
and sink. After cutting, each pixel will be connected to only one
terminal, giving it its label.

The minimum cut for the two-terminal case can be straightfor-
wardly calculated based on max-flow. In our case, we are attempt-
ing to partition the graph into two pieces, so we can employ this
method. We used an implementation of min-cut/max-flow provided
by Kolmogorov [Boykov and Kolmogorov 2004]. Our remaining
task is to decide what weights to assign to the edges.

Typically, terminal weights are assigned according to the data term
of the Gibbs energy, while neighborhood weights are determined by
the smoothness energy. The neighborhood weights may be given by
something as simple as a linear energy term, such as

Vpq(fp, fq) = 0, fp = fq (1)

Vpq(fp, fq) = |ip − iq|, otherwise (2)

whereip is the intensity of pixelp. In our application, we employ
a variation of this energy term, and derive terminal weights from a
comparison of a pixel’s value to the mean value in its neighborhood,
as detailed in Section 3.2.

3 Algorithms

Figure 2: Thresholding and adaptive thresholding.

This section describes the system we built to convert images to
black and white. First, though, we seek to supply some insight
into the problem and some additional motivation for the need for a
complex algorithm to solve it.

Fig. 2 shows the perils of thresholding. The left-hand result used
a single threshold (the mean image intensity) over the entire im-
age, while the right-hand result used a variable threshold (the mean
intensity within a window). The problems with such thresholding
schemes are clear. Global thresholds ignore local contrasts, while
local thresholds preserve local contrast but amplify noise in rela-
tively flat regions of the image.

At first, we thought that the outcomes from local and global thresh-
olding might be combined in some way to produce an adaptive
thresholding algorithm that suited our needs. However, after spend-
ing some effort attempting to create a more sophisticated threshold-
ing scheme, we came to the conclusion that thresholding alone was
not a good approach to the problem, and we turned to other seg-
mentation methods. We present here two variants of an algorithm
for converting grayscale images to black and white, one using loopy
belief propagation and the other using graph cuts. The surrounding
processing is the same in each case, but LBP and graph cuts ap-
proach the core segmentation problem differently; also, we used
different energy frameworks for the two algorithms, using the ex-
perience of LBP to design better energy terms for use with graph
cuts.

The segmentation-based black and white conversion system con-
sists of four stages. First, image statistics are extracted from the
original image: standard deviation, local and global means, and
gradient magnitudes. Second, the image is separated into black and
white regions using either graph cut or loopy belief propagation.
Third, the black and white image is smoothed by removing small
isolated regions. Finally, boundaries of regions in the raster image
are extracted and drawn with splines; optionally, the vector bound-
aries can be further smoothed at this stage.

Although adaptive thresholding is not suitable for the segmenta-
tion, we can use the outcome of adaptive thresholding as a set of
priors we can use as input to the more sophisticated segmentation
algorithm (energy minimization, using one of loopy belief propa-
gation or graph cuts). In particular, the distance of a pixel from its
neighborhood’s mean was found to be an energy term well-suited
to representing local detail. Our first attempt to solve the prob-
lem combined global and local thresholding results and labeled the
output using loopy belief propagation. In our second attempt, we
obtained a data energy term using only local thresholding and min-
imized the energy using graph cuts. As we will see, graph cuts
did a better job preserving detail while flattening the low-contrast
regions. However, the images resulting from LBP are not without
their charm.

The progression of an image through this pipeline is shown in Fig 3.
The top image shows a visualization of the data energy term used
for graph cuts, where only the local neighborhood is considered; it
is actually an alternative visualization of the image in its own right,
akin to “embossing” effects obtained by gradient-based edge detec-
tion. The second image is the outcome from the segmentation, in
this case graph cut. The third image shows the result of despeck-
ling by eliminating connected components smaller than a certain
size (25 pixels, here) and the bottom image is the final vectorized
version of the black and white raster image. Connected components
labeling and boundary extraction can be done using well-known al-
gorithms such as those found in textbooks [Shapiro and Stockman
2001]. The source image for this sequence is shown in the teaser in
Fig. 1.

The heart of the algorithm is the segmentation in the second stage.
We present here a brief overview of the idea; additional details for
LBP are given in section 3.1 and details for the graph cut are given
in section 3.2.

Our segmentation-based algorithms preserves most details, al-
though very fine scale details such as hair texture are often merged.
However, large regions of the image can change color based on a
desire for coherence with local details; ideally, we would want the
sky region in the sheep texture to become a single color. We found
it difficult to manage both coherence and detail in a single image.
Accordingly, we split the problem into a base layer (promoting co-
herence) and a detail layer (containing local features). The details



Figure 3: Progress through the pipeline: graph cuts. Top: visualiza-
tion of data energy. Middle: initial segmentation. Bottom: result
after despeckling.

of this algorithm are given in section 3.3.

3.1 Segmentation using LBP

We first approached the labeling problem using loopy belief propa-
gation. In this section, we describe the energy term that we sought
to minimize.

As before, we associate a cost with a labelfp for a given pixelp; the
LBP scheme will attempt to determine the minimum cost configura-
tion of labels for all pixels in the image. A label can be either black
or white; we define the functions(f) such thats(black) = −1
ands(white) = 1. We will also use the two-argument function
s(fp, fq) which returns 1 if its arguments are the same, -1 other-
wise.

We compose the data cost function for pixelp from a local en-
ergy component and a global energy component. The global en-
ergy component for a given pixel is determined by comparing the
pixel’s value ip with the mean image intensityµ. Let δG =
(µ− ip)/(M + 1), whereM is the maximum possible pixel value
(in our case, 255). The division byM + 1 puts the value in the
range(−1, 1). Finally, the theglobal energy costof labeling the
pixel with labelfp is given by

G(fp) = −ln(0.5 + 0.5 · s(fp) · (δG)γD ). (3)

Similarly, we compute the local energy component for a pixel by
comparing the pixel’s valueip with be the mean intensity of its
neighborhoodµp. We first computeδL(p) = (µp − ip)/(M + 1).
The local energy costof labeling the pixel withf is then

L(fp) = −ln(0.5 + 0.5 · s(fp) · (δL)γD ) (4)

wheres(·) is defined as before. Functions 3 and 4 punish (with a
higher energy) a pixel label that falls on the opposite side of the
computed mean as the original pixel value, while rewarding label-
ings that fall on the same side of the mean as the original pixel
value. The parameterγD affects the magnitude of the energy; the
higher the value ofγD, the more severe the punishment and rewards
are for even small values ofδG andδL. We experimented with dif-
ferent values ofγD, and obtained the most pleasing images with
γD = 0.3333 (cube root).

The global energy and local energy term are combined to give the
data term through a simple weighting function:

D(fp) = (1 − α)G(fp) + αL(fp), (5)

giving the data term for pixelp.

The parameterα allowed us to tune the amount of local features
in the resulting images. Higher values ofα retained much of the
spatial frequency of the original image, while lower values created
larger segments of one colour. We explored different settings for
this parameter; values around0.8 seemed to give the best result.

To compute the smoothness cost between two neighboring pixels
p andq, we used the gradient magnitude values of the image. Let
gp represent the gradient magnitude at pixelp, and defineGM to
be a constant larger than the gradient magnitude of any pixel. Let
δV (p, q) = (GM − max(gp, gq))/GM . Given these definitions,
the smoothness energy is

Vpq(fp, fq) = −ln(0.5 + 0.5 · s(fp, fq) · δV (p, q)γV ) (6)

where as stated previously,s(·, ·) returns1 if its inputs are the same
and−1 otherwise. This function punishes (rewards) neighboring



pixel labelings that are different (the same) with a high (low) en-
ergy value. The parameterγV governs the effect of the gradient.
The higher the value ofγV , the less severe the punishment and
rewards are for values ofδV . As with parameterγD, we experi-
mented with different values ofγV , and found the most pleasing
images occurred withγV = 8.

Figure 4: Iterations from LBP. Top: one iteration; 20 iterations. Bot-
tom: 40 iterations; 60 iterations.

Fig. 4 shows the results of the first 60 iterations of LBP on the
subway image. The image is still changing slightly at this point;
the final image is shown in Fig. 1. We consider LBP results to be
final after 100 iterations. The initial labeling is dominated by the
data term, and as time goes on and messages transmit information
through the graph, the smoothness term exerts a larger and larger
influence over the results.

We were not completely satisfied with our LBP results. Although
we were usually able to get a somewhat reasonable segmentation,
the features in the final image appeared blurred relative to the origi-
nal image content. Also, and critically for our goal of unsupervised
segmentation, we often had to resort to a trial and error process to
find good parameters for a given image (including iteration count).
Accordingly, we took the lessons from LBP and designed a new en-
ergy formulation which we minimized using graph cuts. Graph cuts
were found to be a better energy minimization framework than LBP
on a set of benchmark problems [Szeliski et al. 2006] and we were
hopeful that using graph cuts to minimize the new energy terms
would produce better images overall. Details of this endeavour are
given next.

3.2 Segmentation using Graph Cut

Our initial experiments with LBP suggested that the global data en-
ergy term was not helpful, and although we were not able to obtain
reasonable results by eliminating it from LBP, we decided to design
a new energy formulation for graph cuts which excluded this term.

Using graph cuts, we exercise control over the segmentation by set-
ting edge weights in the graph. We have terminal weightsT and
neighborhood weightsN ; the terminal weights represent the data
term, and the neighborhood weights represent the smoothness term.
We consider each of these in turn.

We determine for each pixel a signed energy valueE describing its
distance from the local mean:

E = µp − ip, (7)

whereip is the pixel value andµp is the mean in a local neighbor-
hood surroundingp (in our implementation, a square neighborhood
with radius 10). A positiveE indicates a tendency towards black
and a negativeE a tendency towards white. We allocate a probabil-
ity r to a pixel as follows:

r =
1

2
e−zE2/2σ2

, (8)

whereσ is the standard deviation of intensity values in the input im-
age. For normally distributed pixel intensities, comparingE to σ
provides a good characterization of whether an intensity difference
is strong or not. The parameterz allows us to adjust the tradeoff be-
tween the data energy and the neighborhood energy; largerz means
more attention to the data, while a smallerz leads to weaker termi-
nal links and correspondingly greater emphasis on coherence. We
usedz = 1 in all single-stage graph cuts segmentation; however,
we will use this parameter later, in the base plus detail algorithm
presented in section 3.3.

The valuer from equation 8 is the probability of the less likely
terminal; (1 − r) is the probability of the more likely terminal.
Notice the factor1/2, needed becauseE is signed; anE of zero
means that both terminals have likelihood0.5.

If we use the above probabilities as weights directly, the resulting
labelings are too noisy, since outlier pixels will have one terminal
assigned a large absolute weight. In consequence, we compute an
attenuation factorλ:

λ = 4e−E2/16σ2
. (9)

The value ofλ decreases with larger energy, meaning that the
greater the bias of a pixel towards one label, the more likely we
are to disregard that bias. This is counterintuitive, but has the ef-
fect of ensuring that individual pixels, even with large energies, still
need the cooperation of their neighbors (i.e., the data weight of an
isolated pixel cannot swamp the neighborhood weight). Small re-
gions of pixels, and (especially) step edges, will still have a large
total data weight, so that small and medium features can be shown
in the labeling. The terminal weights are set as follows:

Tbetter = λ(1 − r), (10)

and
Tworse = λr, (11)

where “better” and “worse” are with respect to the sign ofE.

The neighborhood weights are computed conventionally, based on
image gradient. For gradient magnitudeg at the location in ques-
tion, the edge between the pixels is assigned weight

N = e−g2/2σ2
. (12)

This is the neighborhood weight suggested by Boykov and
Jolly [2001].

3.3 Base plus Detail

It has been difficult to get both the appropriate level of noise re-
duction and the desired amount of detail preservation simultane-
ously from a unified segmentation algorithm. However, the energy
terms we used previously had a natural division into global and lo-
cal terms. In this section, we discuss a method that tries to obtain



better results by creating a base-layer image in parallel with a detail-
layer image, and then combines the two to create the final image.
This design philosophy follows the successful photo manipulation
work done by Bae, Paris, and Durand [Bae et al. 2006], in which
the bilateral filter provides a base/detail separation and the two lay-
ers are processed separately before being merged into a single final
image.

In Figure 2, we can see that adaptive thresholding is fairly effec-
tive at capturing details. Here, we propose a three-level classifi-
cation scheme: a pixel is classed as “definitely black”, “definitely
white”, or “don’t know”. We use the intensity variance over the en-
tire image to obtain our threshold for “don’t know”: pixels further
than a threshold away from the average value in their neighborhood
are known, while those within the tolerance are classed as “don’t
know”. The known values from this process form a detail layer,
while a base layer is obtained by running graph cuts as above but
with stronger neighborhood links (N = e−kg2/2σ2

, with k = 4)
and weaker terminal links (z = 1/50, in equation 8). Our approach
is summarized in Figure 5.

The stronger neighborhood links produce a base layer with high
spatial coherence, but the details have been obliterated. We then
use the adaptive threshold technique to give us a detail layer. For
the results shown in this paper, we used thresholdτ = q×σ, where
σ is the standard deviation of the intensities over the entire image,
andq is a parameter. We usedq = 0.4 for all images. Note that
the pixel intensities are being compared against the mean value in a
local neighborhood, where we would expect the values not to vary
much; our choice ofq represents a rather conservative threshold,
in the sense that only quite dramatic differences are preserved as
details. If preferred, the user can changeq, although we did not
need to for any of the examples we show.

Once the base and detail layers are built, we combine them with a
final application of graph cuts. Care must be taken with this final
cut not to destroy the detail we have collected; We therefore restrict
the region to be cut, as follows.

Where the detail layer provides us a known result, we take the ter-
minal energy from the local value. Where the detail layer has a
“don’t know” label, we take our energy term from the base layer.
The neighborhood links are taken from the intensity differences
(equation 12). Then, graph cuts segmentation is only applied to
the detail region and a narrow band around it (5 pixels wide in our
implementation); this is shown as a blue region in step 3 of the
pipeline in Figure 5. Further from the detail regions, the final val-
ues are taken directly from the base layer. This composition step
usually does not change the details that were in the detail layer, but
does in some cases slightly improve the region shapes. A particular
form of improvement is when a potential feature has a very weak
gradient with the surrounding flat-colored region; in such cases,
these regions can be thinned to lines, such as the line indicating the
top of the sheep’s head and horns in the final image in Figure 5.

Figure 6 shows base and detail examples for some test images. The
detail layer reintroduces the small features that were eliminated to
create the base layer, while the base layer provides sensible defaults
in regions where there are no details present. Even when details do
populate a region, the base layer gives a sensible background color;
the shape of the man’s face, and the structure of the mustache, are
emphasized by the differences in the base layer.

4 Results

In this section we show some additional results from applying our
algorithm to input images. While there are some parameters avail-
able to tune our algorithm, such as neighborhood size, we have

Figure 5: Base plus detail overview. Top: base layer from graph
cut segmentation. Next: detail layer from 3-way threshold. Next:
extended detail regions for composition. Bottom: composed base
and detail.



Figure 6: Base plus detail. Left to right: base layer; detail layer; combined base and detail.



Figure 7: Original images.

found that the default settings are robust for a variety of images.
The user may want to adjust the scale parameters in the final speckle
removal step. Also, the scheme allows the usual lightweight inter-
action method of user-assisted segmentation with graph cuts (set-
ting hard constraints), both in the graph cuts version and the base
plus detail version.

We can assess our results by evaluating to what extent we met our
initial goals. Recall that we wanted to preserve sharp features while
flattening out noise and background areas into single-color regions.
We ran our algorithm on a variety of images with different subjects,
different scales of details, and different contrast levels.

A collection of black and white image conversions is shown in
Fig. 8. We consider these to be success cases; the figures or ob-
jects in the scene are clearly recognizable, and subtle details have
been preserved. We are particularly pleased with the outcome of
the cat image, a difficult case because of the extremely low contrast
between the cat’s body and the wall behind it. High frequency de-
tails have been simplified, but remain present (such as in the beard
of the old man); where the image is not changing much, the results
from both graph cuts and base plus detail have a single solid color.

Our completely automated approach leaves us with some limita-
tions. Because we have been fairly cautious in setting the size of
regions to be removed (keeping even quite small regions so as to
preserve small high salience details such as people’s eyes) we some-
times retained spurious regions, such as in the top left of the sphinx
image. The images also excessively preserve background detail, as
seen in the mountains of the sheep image. An artist would doubtless
make different decisions about which parts of the image are impor-
tant, and indeed, minor human-assisted postprocessing can elimi-
nate the specific problems we mention. However, in the absence of
human intervention, these results are credible.

Because we implemented two variants of energy minimization, we
can also compare the LBP results to the graph cuts results. From
the standpoint of our initial goal, preserving details while elimi-
nating background, we believe the results of graph cuts superior to
LBP. Details are more sharply resolved by graph cuts. The LBP
images possess a uniform style which observers have characterized
as “soft”, “dreamy”, or “melted”. While not all of these terms are

entirely flattering, the consistent style of the LBP processed images
is one virtue of the technique.

One reason for the difference between the graph cuts and LBP re-
sults is the use of a global energy term in LBP and the absence of
this term in graph cuts. In the Lena image, for example, the top
central area is marginally lighter than the average, so LBP pushes
it towards white; we have no such pressure from the graph cuts
edge weights, so the neighborhood flow allows it to be flat colored.
Although we attempted to remove the global term from LBP, we
found it useful in enforcing local coherence (noise amplification
was worse when the global term was eliminated).

Lastly, we believe that the base plus detail algorithm produces the
best quality results of all. Both coherence and detail preservation
are better than in either of the other two algorithms. The main lim-
itation of our methods, common to all three algorithms presented,
is in their application to highly textured areas. The base plus de-
tail algorithm faithfully preserves the textures, such as the hair of
the sheep and the old man’s beard; the two energy minimization
approaches attempt to simplify the texture by merging regions to
reduce boundary length, with not entirely satisfactory results. Tex-
ture simplification is an outstanding problem in image abstraction
and we have not solved it here.

We report graph cuts and base plus detail times relative to a 3.0GHz
P4 with 1GB RAM, while LBP times are relative to an Intel Core
Duo 2 E6300 with each core at 1.86 GHz, and 2 GB RAM. LBP was
terminated after 100 iterations of message passing. All images were
of size 512× 512. Under these conditions, graph cuts produces
results in about 2 seconds per image, while LBP takes about 20
seconds. Graph cuts, which usually produced better quality images,
is thus roughly an order of magnitude faster than LBP, typically
requiring about 2 seconds per image. The results from the base plus
detail algorithm require two iterations of graph cuts, executing in
about 4 seconds, although a good approximation of the final image
(doing a trivial compositing step) is available after 2 seconds.

5 Conclusion

In this paper, we have presented an algorithm for converting in-
put photographic images into stylized black and white images. The
core of the algorithm is the segmentation from energy minimiza-
tion, for which we have implemented graph cuts and loopy belief
propagation. We were able to achieve superior results using graph
cuts. Following this success, we devised a base plus detail formula-
tion that uses local thresholding to produce a detail layer, and graph
cuts to get a base layer and to merge the base and detail layers to-
gether. The spatial coherence and detail preservation capabilities of
this final algorithm are better than either of the single-stage algo-
rithms.

The images our method produces have considerable detail where
there were high or medium contrasts in the original image, and
are solid colored elsewhere. This provides an abstracted black and
white version of the input, and allows us to automatically produce
images reminiscent of some scratchboard or inked images. Our al-
gorithms were tested on images with different levels of contrast and
different quantities of texture, and found to be robust over a range
of image characteristics.

There remain avenues for future work. Likely the most significant
of these is texture indication, a longtime problem in image abstrac-
tion. Reliance on contrast produces overrepresentation of texture
edges (low salience details). In the context of this work, the ques-
tion may be framed thus: can we construct energy functions that
distinguish between texture edges and feature edges?



Figure 8: Image conversion results. Left to right: labeling with LBP; labeling with graph cuts; base plus detail. Top to bottom: portrait; cat;
old man; sphinx.



We would like to improve our discrimination of foreground and
background regions, in part to eliminate background textures from
the final image, and one cue to doing this is blur. Professional pho-
tographs often use a relatively narrow depth of field, so that only the
subject is in focus. If we can assume that the background is blurred,
we may be able to consider that when creating our detail layer and
thus avoid preserving less-salient background details.

Furthering the goal of converting images to black and white, we
can consider converting color images. Color opponency can give
us additional contrast information and potentially provide a label-
ing with better detail. We might also consider image sequences.
The present system processes individual images independently, and
minor changes to the image content can cause entire sections to flip
from black to white. For coherent image sequences, it is necessary
to consider information from surrounding frames, perhaps biasing
the energy locally by the labeling at the previous frame.
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WINNEMÖLLER, H., OLSEN, S. C.,AND GOOCH, B. 2006. Real-
time video abstraction. InProceedings of SIGGRAPH 2006,
ACM Press, 1221–1226.


