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Abstract

We present a refinement of histogram equalization which
uses both global and local information to remap the im-
age greylevels. Local image properties, which we gener-
ally call neighborhood metrics, are used to subdivide his-
togram bins that would be otherwise indivisible using clas-
sical histogram equalization (HE). Choice of the metric in-
fluences how the bins are subdivided, affording the opportu-
nity for additional contrast enhancement. We present exper-
imental results for two specific neighborhood metrics and
compare the results to classical histogram equalization and
local histogram equalization (LHE). We find that our meth-
ods can provide an improvement in contrast enhancement
versus HE, while avoiding undesirable over-enhancement
that can occur with LHE and other methods. Moreover, the
improvement over HE is achieved with only a small increase
in computation time.

1. Introduction

The ideal greyscale image histogram is perfectly flat and
makes use of every available grey value in the image for-
mat [11, 12, 13]. In general, classical histogram equaliza-
tion (HE) [11, 12] cannot come close to this ideal. Often the
histogram resulting from HE contains “gaps”, that is, empty
bins between very full bins. Figure 1(b), which depicts the
result of equalizing the histogram in Figure 1(a), illustrates
this phenomenon. The large bins in this histogram have not
been subdivided; they have only been spread out. However,
the small bins in the right of the original histogram have
been combined to form bins of close to the optimal size;
thus, if the large bins could be subdivided into bins of less
than optimal size, we would be able to recombine them such
that bins in the final histogram would be close to optimal
size. If an image is N pixels by M pixels in size, then the

(a) (b)

Figure 1. (a) an image histogram, (b) the re-
sult of (a) after classical histogram equaliza-
tion.

optimal bin size B is the total number of pixels in the im-
age divided by the number of greylevel intensities D (re-
ferred to in the sequel as the image depth):

B =
MN

D
.

If all bins are of size B, then the histogram has the ideal
characteristics described above.

One way of avoiding large bins is to add a small amount
of uniform noise to each pixel’s intensity value [11, 12]
prior to equalization. While this approach produces a flat
histogram, the noise is added without any regard to the orig-
inal structure of the image, potentially reducing image qual-
ity. A similar idea [11] is to compute the average greylevel
in a neighborhood around each pixel, assigning lower out-
put values to pixels with lower local averages.

Local histogram equalization (LHE) [8, 11] uses a slid-
ing window method in which, for each pixel, local
histograms are computed from the windowed neighbor-
hood to produce a local greylevel remapping for each
pixel. The greylevel of the pixel at the center of the neigh-
borhood is changed according to the local greylevel
remapping for that pixel. LHE is capable of great con-
trast enhancement which can sometimes be considered
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over-enhancement. LHE-based methods are generally re-
quire more computation than other methods because a local
histogram needs to be built and processed for every im-
age pixel.

Researchers have designed many variations of LHE.
Stark [14] uses a method in which the cumulation func-
tion can be altered to control the degree of enhancement.
Caselles et al. [3] propose a local histogram contrast en-
hancement algorithm which preserves the level sets of an
image. Paranjape et al. [10] generate adaptive neighbor-
hoods for each pixel by differentiating foreground and back-
ground pixels within the neighborhood and using only the
foreground pixels to build the local histograms. Dale-Jones
and Tjahjadi [6] describe a method in which the window
size for building local histograms is varied over the image
depending on local image characteristics. All of these meth-
ods share the drawback of requiring a separate histogram
equalization process for every image pixel.

Leu [9] describes a method which amplifies contrast
along edges. Edge pixels are located by standard edge-
detection methods and thresholding, and a histogram is cre-
ated using only edge pixels. This histogram is used to iden-
tify intensity levels that should not be merged, in order to
maximize contrast around edges. An intensity transforma-
tion function is derived from this information and applied
to the entire image. Leu’s, and similar methods [1], depend
heavily on successful detection of edges – a well-known,
but difficult problem in real images.

Cheng et al. [4] describe a method where a local ho-
mogeneity measurement is used to control the degree to
which local contrast is enhanced. The homogeneity mea-
sure is based on local measures such as edge value, stan-
dard deviation, entropy, and others. The level of enhance-
ment is controlled by an amplification constant which is de-
termined from the local homogeneity and the global his-
togram. High homogeneity lowers the constant and nar-
rower histograms increase the constant (respectively vice
versa). Although this method is capable of avoiding over-
or under-enhancement, it is more computationally intensive
than other methods.

Our proposed contrast enhancement method also uses lo-
cal information about pixels as well as global histogram in-
formation. It is a generalization of the previously mentioned
method of subdividing bins based on average neighborhood
grey values [11]. We formulate our solution as histogram
equalization using an arbitrary neighborhood metric, and
we investigate some old and new neighborhood metrics.

We shall see that our proposed method has the following
characteristics: its simplicity and small neighborhood size
yield a fast algorithm; it usually produces a very flat his-
togram; it is able to amplify edge contrast without explic-
itly detecting edge pixels; and it preserves image structure
by not overly-enhancing image contrast.

Algorithm 1. Classical Histogram Equaliza-
tion

for each pixel p in the image do
deposit p in temporary bin bg(p).

end for
j ← 0
for each temporary bin bi do

Copy pixels bi into histogram bin h(j/D).
j ← j + |bi| {|bi| = number of pixels in bi}

end for
for i = 0 to D − 1 do

Set greylevel of each pixel in bin hi to i.
end for

We are motivated directly by the basic goals of histogram
equalization: to produce a perfectly flat histogram that uses
evenly the entire dynamic range of intensity values. This
means that we want B pixels of each possible intensity
level. This cannot normally be achieved in HE because im-
ages frequently have histogram bins with pixel counts well
in excess of B, and these bins cannot be subdivided. Our
method uses neighborhood metrics to determine if and how
these large bins can be subdivided.

In the next section we introduce the notion of sorting
functions to be used for subdivision of histogram bins and
define some specific metrics which we will study in detail.
Section 3 discusses our experimental method, Section 4 de-
tails our results, and concluding remarks appear in Section
5.

2. Histogram Equalization with Neighbor-
hood Metrics

Let [a, b] denote the closed integral interval from a to b.
An image with dimensions N by M and depth D is a func-
tion g : [0, N−1]×[0, M−1] → [0, D−1] where g(x, y) is
the grey level of pixel (x, y). We may also write g(p) to de-
note the greylevel of a pixel p.

The classical histogram equalization algorithm can be
expressed as in Algorithm 1. This specific formulation of
classical histogram equalization allows for a simple gener-
alization to multiple sorting functions. Algorithm 2 will il-
lustrate this generalization.

2.1. Sorting Functions

We generalize the classical histogram algorithm to allow
any number of sorting functions on image pixels in place of
g(p) in Algorithm 1. The range of the sorting functions de-
fine a set of temporary bins for the algorithm. This allows us
to choose functions that can order pixels using different cri-
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Algorithm 2. Histogram Equalization with
Generalized Sorting Functions

Let the sorting functions be λ1 through λk.
for each pixel p in the image do

deposit p in temporary bin b(λ1(p),λ2(p),...,λk(p)).
end for
Sort temporary bins using λ1 as the primary sort key, λ2

as the secondary sort key, etc.
j ← 0
for each temporary bin bi in sorted order do

Copy pixels bi into histogram bin h(j/D).
j ← j + |bi| {|bi| = number of pixels in bi}

end for
for i = 0 to D − 1 do

Set greylevel of each pixel in bin hi to i.
end for

teria, and to separate pixels that would be in the same bin
in the original histogram into several of the temporary bins
defined by the sorting functions. Allowing multiple sorting
functions allows a more complete ordering of pixels by mul-
tiple sort keys. This generalized histogram equalization al-
gorithm is given as Algorithm 2.

2.2. Neighborhood Metrics

We now consider in detail some sorting functions; we
call them neighborhood metrics since they are functions
evaluated using greylevels of pixels in a local neighborhood
of the input pixel. In this section, R denotes the real num-
bers, and γ is the function which extends an image function
to be surrounded by a “background” of zero greylevel:

γ(x, y) =
{

g(x, y), (x, y) ∈ [0, N − 1] × [0, M − 1]
0, otherwise

.

For our first metric, we define within our framework the
neighborhood average metric suggested by Rosenfeld and
Kak[11] and discussed in the introduction. It is the function
αm : [0, N − 1] × [0, M − 1] → R such that

αm(x, y) =

∑
(x′,y′)∈R

(x,y)
m

γ(x, y)

|R(x,y)
m | − 1

where R
(x,y)
m is the set of pixels forming a square m by m

neighborhood centered on (x, y) and m is a positive odd in-
teger. Hence αm(x, y) is the average grey value of pixels in
the m by m neighborhood centered on (x, y).

We now introduce two new metrics, the first of which is
is the inverted neighborhood average metric. This metric,
denoted αm, is defined as the average grey value of the pix-
els in the square neighborhood of size m by m about pixel

(x, y), subtracted from the grey value of (x, y). Formally,
we define αm : [0, N − 1] × [0, N − 1] → R as

αm(x, y) = γ(x, y) −
P

(x′,y′)∈R
(x,y)
m

γ(x′,y′)

|R(x,y)
m |−1

= γ(x, y) − αm(x, y).

We suggest this metric because for pixels with the same
original greylevel, pixels with higher average greylevel of
neighborhood pixels will be remapped to lower greylevels
than pixels with lower average greylevel of neighborhood
pixels if the original bin is split. The result is that pixels
will tend to take on greylevels that are further away from
their neighborhood average greylevel than under HE.

Our second new neighborhood metric we call the neigh-
borhood voting metric. It requires the following voting func-
tion:

v(x, y, x′, y′) =
{

1, γ(x, y) > γ(x′, y′)
0, otherwise

.

The neighborhood voting metric, written βm, is defined as
the number of pixels in the m by m square neighborhood
centered on (x, y) whose grey value is strictly less than that
of γ(x, y). The voting metric will tend to force pixels which
have more neighbors with smaller grey level to a higher in-
tensity (and vice versa) if and when the bin is subdivided.
Formally, βm : [0, N−1]×[0, M−1] → [0, m2] is the func-
tion

βm(x, y) =
∑

(x′,y′)∈R
(x,y)
m

v(x, y, x′, y′).

We propose to use these neighborhood metrics as sort-
ing functions (as in Algorithm 2) to subdivide large bins in
the original histogram. To accomplish this we will use Al-
gorithm 2 with λ1 = g and λ2 will be one of our neighbor-
hood metrics. This will have the effect of subdividing the
original histogram bins into sub-bins where pixels in each
sub-bin share the same greylevel and neighborhood met-
ric value. The sub-bins are then sorted by greylevel with
ties broken by the neighborhood metric (λ2). Pixels in each
sub-bin are assigned in order to bins in the output histogram
such that each output bin contains approximately the opti-
mal number of pixels B. We expect that this subdivision of
bins will result in very few bins that are larger than the opti-
mal bin size, allowing us to build a very flat histogram that
uses most, if not all, of the available greylevels.

For our experiments with the neighborhood metrics, we
used a slightly modified instance of Algorithm 2. In the
modified version, shown as Algorithm 3, we fill the out-
put histogram bins hj sequentially until they are “optimally
full”. When this occurs we start filling the next output his-
togram bin. As stated in Section 1, the optimal bin size is B.
Letting |b| denote the number of pixels in a bin b, then the
current histogram bin hj in Algorithm 3 is considered “op-
timally full” if |hj| is at least |b|/2 less than B. That is, we
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Algorithm 3. Histogram Equalization with
Neighborhood Metric λ

for each pixel p in the image do
deposit p in temporary bin bg(p),λ(p).

end for
Sort temporary bins using g as the primary sort key and
λ as the secondary sort key.
j ← 0
for each temporary bin bi in sorted order do
{The current bin hj is considered “full” if it contains
B pixels. Thus, if less than half of bi fits into hj then
start filling hj+1.}
if B − |hj | < |bi|/2 then

j ← j + 1
end if
Copy pixels in bi into histogram bin hj .

end for
if j < D − 1 then

Respace bins h0 through hj evenly over h0 through
hD−1.

end if
for i = 0 to D − 1 do

Set greylevel of each pixel in bin hi to i.
end for

never overfill a bin by more than half the size of the cur-
rent temporary bin b.

A side effect of this modified bin-filling strategy is that
the non-empty output histogram bins may not span the en-
tire range of greylevels (one of the goals of equalization).
If this is the case, then, as a final step, we redistribute the
nonempty bins equally over the entire range of bins. We
note that doing so does not alter the “flatness” of the his-
togram (relative to the flatness if we did not redistribute the
bins) in the way it is defined in the following section.

3. Experiments

Our experiments focus on the neighborhood metrics α3

and β3. We compare Algorithm 3 using these two metrics to
HE, LHE, and Algorithm 3 using the metric α3. The com-
parison was made using three quality measures: contrast-
per-pixel, histogram flatness and image distortion. These
measures respectively reflect the three goals of improving
contrast, flattening the histogram, and minimizing deleteri-
ous effects on image structure.

We define contrast-per-pixel C of an image as

C =

∑N
i=0

∑M
j=0

(∑
(m,n)∈R

(i,j)
3

|γ(i, j) − γ(m, n)|
)

MN
.

Intuitively, this is the average difference in greylevel be-
tween adjacent pixels.

To measure the flatness σ of a histogram h we compute
the variance of the bin sizes:

σ =
∑D−1

i=0 (|hi| − µh)2

D
,

where |hi| is the size of the i-th bin of the image’s his-
togram, and µh = 1

D

∑D−1
i=0 |hi| is the mean histogram bin

size. A smaller value of σ indicates a flatter histogram. The
flatness measure indicates the degree of success towards
both reducing the number of empty bins and ensuring that
each bin has an equal number of pixels.

To measure the dissimilarity or distortion of the struc-
ture between two images with grey functions g1 and g2, de-
fined over [0, M − 1] × [0, M − 1], we compute the stan-
dard deviation of the ratios of pixel grey levels pairwise in
g1 and g2. This measure, δ, can be thought of as the stan-
dard deviation of local change in contrast. Formally it is de-
fined as

δ =
1

MN

∑
(i,j)∈[0,M−1]×[0,N−1]

(
g1(i, j)
g2(i, j)

− µij

)2

where the quantity µij = 1
MN

∑
i,j

g1(i,j)
g2(i,j)

is the mean ra-
tio. If g2(i, j) = 0, then pixel (i, j) is excluded from the
sums. Ratios of pixel greylevels have been used to measure
(dis)similarity of images in fractal image coding and com-
pression algorithms [5, 7].

4. Results

We tested our neighborhood metrics on 8-bit greyscale
samples (D = 256) of all 112 Brodatz textures [2]. Each
sample had dimensions of 256 by 256 pixels.

4.1. Aggregate Results

Table 1 contains the aggregate results of this experiment.
Each row of the table gives results for one of our quality
measures: contrast per pixel C, histogram flatness σ, and
image distortion δ. The first data column in the upper table
indicates the average result for classical histogram equaliza-
tion (HE). Subsequent columns give the result for their re-
spective neighborhood metrics relative to the result for HE
as an average percentage. For example, the first data row
of the lower table indicates that α3 resulted in a value of C
that was, on average, 7.48% greater than that of HE over the
112 images tested. Negative numbers indicate that the aver-
age result was less than that of HE.

Following the three goals of histogram equalization, we
would like to see the neighborhood metrics maximize con-
trast while minimizing distortion and the flatness measure,
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Table 1. Aggregate results for mean values
of quality measures on Brodatz images pro-
cessed with various algorithms. The abso-
lute results for HE are given, and the rest are
given relative to the performance of the HE al-
gorithm.

HE α3 LHE

Contrast C 29.75 −5.49% +50.13%
Flatness σ 691.88 −94.04% −82.12%

Distortion δ 43.24 +8.79% +225.08%

α3 β3

Contrast C +7.48% +3.12%
Flatness σ −94.03% −66.12%

Distortion δ +15.08% +6.63%

for which lower values mean a flatter histogram with fewer
gaps. We note that contrast and distortion are competing
measures, since increased contrast also increases distortion.
The best result is one that increases contrast significantly
while increasing distortion only slightly.

This table shows that the α3 metric produces, on aver-
age, an image with less contrast than HE, although the his-
togram is very flat and distortion is fairly low. The α3 neigh-
borhood metric produces a good combination of results –
contrast enhancement is better than HE by an average of
7.48%, the histogram is 94% flatter, and not too much dis-
tortion is introduced in excess of that for HE (8.79%). The
β3 neighborhood metric also shows a contrast improvement
over HE of 3.12% on average, a 66.12% flatter histogram
and has a very small amount of distortion – only 6.63%
more than HE. While LHE improves contrast by an aver-
age of about 50% and produces a histogram that is on av-
erage 82% flatter, LHE distorts the images by about 225%
more than HE on average.

In Section 4.2 we will show that for images whose his-
tograms consist mainly of narrow peaks, the β3 metric pro-
duces a result that is superior to that of the other meth-
ods tested. However, for images that have high local vari-
ance in greylevel and broader histograms, the differences
between the methods we are investigating become far less
pronounced.

Consider the scatter plot in Figure 2. This plot shows for
each of the Brodatz textures the contrast per pixel of the im-
age after classical equalization plotted against the contrast
per pixel of the same image after equalization with neigh-
borhood metric β3. The dashed line is the line of slope 1.
Thus, points that fall above the line indicate images for
which β3 resulted in higher contrast. Only 17 of 112 test
points fall below the line.

HE Contrast Per Pixel

80

80

60

40

60

20

0
40200

Figure 2. Scatter plot of contrast per pixel of
the Brodatz images after classical equaliza-
tion vs contrast per pixel of same images af-
ter equalization with neighborhood metric β3.

Figure 3 shows the same plot for the flatness quality
measure. We see that all points fall considerably below the
line. Since lower flatness measures are more desirable, this
demonstrates that β3 achieves a dramatic improvement in
flatness over classical equalization. All 112 test points fall
below the line.

Similar plots were examined for each neighborhood met-
ric and quality measure. Though omitted due to space con-
straints, these plots confirm that although our methods do
not always result in drastic improvement over HE, they usu-
ally result in higher contrast than HE and always produce a
flatter histogram than HE.

4.2. Specific Examples

The benefits of our methods are best observed in images
whose histograms consist of closely spaced narrow peaks.
Figures 4 and 5 show two examples of such images and
the results for each of the 5 tested methods. We see that
over-enhancement is best suppressed by β3. Figure 4 de-
picts the results for Brodatz texture D25 (brick). Figures
4(b), 4(c) and 4(d) reveal what appear to be variations in
the reflectance of the surface which are not apparent in the
original and are not overly enhanced by β3 (Figure 4(e)).

In Figure 5 are the results for Brodatz texture D102
(cane). We see that HE, α3, and α3 (Figures 5(b), (c) and
(d)) again over-enhance the slight intensity variation in the
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Figure 3. Scatter plot of flatness of the Bro-
datz images after classical equalization vs
flatness of same images after equalization
with neighborhood metric β3.

cane while β3 in Figure 5(e) is much more faithful to the
original while revealing some subtle texture on the cane not
visible in the original.

4.3. Inherent Edge Enhancement

The neighborhood metrics αm and βm also have the abil-
ity to visually enhance edges, as demonstrated in the series
of images in Figure 6. Figure 6(a) shows an image of verti-
cal bars of increasing greylevel. Figures 6(b) and 6(c) show
the image after histogram equalization with α3 and β3 re-
spectively. Figures 6(d), 6(e) and 6(f) show a closeup of an
edge in the images in Figures 6(a), 6(b) and 6(c) respec-
tively. We can see that edge contrast is enhanced by ad-
justments made to the grey values of pixels very close to
the edges of bands. This illustrates how these neighborhood
metrics can enhance contrast by tending to shift pixel grey
values further away from those of their neighbors when the
subdivision of an original histogram bin occurs. Note that
the edge pixels are not explicitly detected, but rather the
chosen neighborhood metrics are sensitive to the relation-
ship between the grey level of a pixel and that of its neigh-
bors. Thus, our methods can target edges as areas where
contrast should be maintained or improved without the com-
putational overhead of explicitly identifying edge pixels.

(a) (b)

(c) (d)

(e) (f)

Figure 4. Results for D25 (brick). (a) Original,
(b) Equalized using HE, (c) α3, (d): α3, (e): β3,
(f): LHE.

4.4. Complexity Analysis

We analyze the complexity of Algorithm 3 for an M
by N pixel image and a neighborhood size of m. Compu-
tation of the neighborhood metric for each pixel requires
O(MNm2) time. Adding each pixel to its appropriate tem-
porary bin is O(MN). In the worst case, each pixel is
placed it its own temporary bin, requiring that we sort MN
temporary bins. We can sort these in time proportional to
O(MN log(MN)).

The running time of the while loop is proportional to the
number of temporary bins. In the worst case, there is one
bin for each pixel, so the entire while loop executes in time
O(MN).

The re-spacing requires O(D) time since we don’t have
to move the pixels to different bins. Relabeling of the bins
suffices.

The last step of generating g′ is O(MN). The total time

Proceedings of the Second Canadian Conference on Computer and Robot Vision (CRV’05) 
0-7695-2319-6/05 $ 20.00 IEEE



(a) (b)

(c) (d)

(e) (f)

Figure 5. Results for D102 (cane). (a) Origi-
nal, (b) Equalized using HE, (c) α3, (d) α3, (e)
β3, (f) LHE.

complexity is thus

O(D + 3MN + MNm2 + MN log MN)
= O(MN(m2 + log MN) + D).

In the specific case where λ2 = βm, the sorting can
be done in O(MN) time because a radix sort can be used
to perform the sorting. since the range of βm is the inte-
gral interval [0, 8]. This reduces the overall running time to
O(MNm2 + D). For comparison, the time complexity of
the basic form of LHE is O(MN(mn+D2)) and the the m
by n window size can be as large as 100 by 100 in some ap-
plications; the time complexity is higher yet for most exten-
sions of the basic LHE method.

4.5. Effect of Neighborhood Size

In experimenting with the value of m, we found that for
the metrics tested, values of m greater than 3 did not im-

(a) (b)

(c) (d)

(e) (f)

Figure 6. Demonstration of edge enhance-
ment when using histogram equalization with
neighborhood metrics. (a) Original image, (b)
Algorithm 3 with α3, (c) Algorithm 3 with β3,
(d) edge closeup of (a), (e) edge closeup of
(b), (f) edge closeup of (c).

prove the results which, as expected, converged with the
results for HE as the value of m increased. Since, for the
neighborhood metrics studied, there appears to be no ad-
vantage to using a window size larger than 3, we may con-
sider m as a constant value, resulting in a time complexity
of O(MN log(MN) + D) for histogram equalization us-
ing our neighborhood metrics.

5. Summary and Conclusions

We described a variation of histogram equaliza-
tion which uses both local and global information in order
to achieve a more strict partial order on the image pix-
els. Accordingly, our method is able to achieve flatter his-
tograms and better use of the available greylevels than
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HE while mitigating the overenhancement that often oc-
curs with LHE.

We proposed a general framework which orders pixels
based on a sequence of sorting functions. We suggested us-
ing the original image greylevel as the primary key and
a neighborhood metric as the secondary key. We investi-
gated the neighborhood average metric, the inverted neigh-
borhood average metric, and the voting metric, applying
them to the Brodatz textures and comparing them to HE
and LHE using three quality metrics. We found that the in-
verted neighborhood average and voting metrics gave an
improvement in contrast and histogram flatness over clas-
sical histogram equalization, while having significantly less
distortion than local adaptive histogram equalization. The
previously proposed neighborhood average metric increases
flatness, but also increases distortion while decreasing con-
trast. For images with histograms consisting of very narrow
peaks, the voting metric gave results that were visually su-
perior to those of any of the other methods.

In summary, the neighborhood metrics achieve better
histogram characteristics than HE while avoiding the large
distortions and computational overhead of LHE. Also, our
method is simpler than most of the other methods described
in Section 1 and achieves additional enhancement of edge
contrast without the explicit detection of edge pixels. Our
method requires approximately 1/10 of a second for a 256
by 256 image on a Pentium 4, 3GHz PC. The computation
times for LHE and its variations on comparably sized im-
ages are on the order of a few to several seconds.

We have not exhausted the space of possible neighbor-
hood metrics. Future work might involve the design of addi-
tional metrics, either for use in specific domains or with de-
sirable properties for image processing in general. We may
also investigate using more than two, possibly competing
metrics. More elaborate measures can be considered in the
case of color images.
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