

Contour Correspondence via Ant Colony Optimization

Oliver van Kaick GrUVi Lab Ghassan Hamarneh MIAI Hao Zhang GrUVi Lab Paul Wighton MCI

School of Computing Science Simon Fraser University

Outline

- Introduction
- 2 Related work on correspondence
- 3 Review of the ACO framework
- 4 ACO for shape correspondence
- **5** Experimental results
- 6 Conclusions

Outline

- Introduction
- 2 Related work on correspondence
- 3 Review of the ACO framework
- 4 ACO for shape correspondence
- Experimental results
- 6 Conclusions

Introduction

- Shape correspondence
 - Finding a meaningful matching between two shapes

Introduction

- Shape correspondence
 - Finding a meaningful matching between two shapes
- Focus: 2D contours



Introduction

- Applications in
 - Computer graphics (shape analysis, morphing, and animation)
 - Computer vision (object tracking, recognition, and retrieval)
 - Medical computing (statistical shape modeling and analysis of anatomical structures)
 - 3D shape matching and retrieval (Chen et al., 2003)

Solving contour correspondence

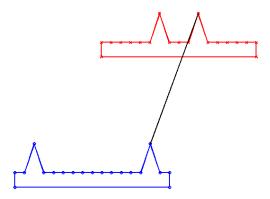
Common approach

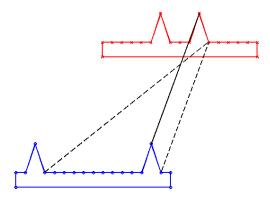
- Select feature points
- 2 Compute shape descriptors
- Extract a matching

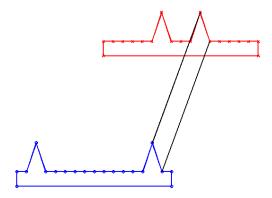
Solving contour correspondence

Common approach

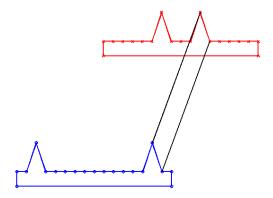
- Select feature points
- 2 Compute shape descriptors
- Extract a matching
 - Greedy best matching
 - Bipartite matching
 - Iterative closest point (ICP) scheme
 - Dynamic programming under point ordering







Most algorithms do not consider proximity information
Proximity: if two points are close on one shape, their corresponding points in the second shape should also be close

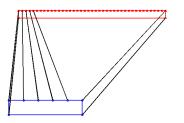


Better handling of missing parts or a lack of salient features

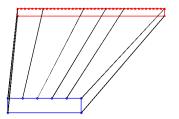
• Take advantage of the vertex ordering (contours)

Enforcing **order preservation** \neq

and davantage or the vertex ordering (contours)



Enforcing proximity



QAP

- When proximity is incorporated, we can formulate point correspondence via the Quadratic Assignment Problem (QAP)
- QAP is one of the most difficult optimization problems
- Ant Colony Optimization (ACO) has had great success in solving this problem

Contributions

- We formulate the general point correspondence problem in terms of QAP incorporating proximity information
- We propose the first ACO algorithm to compute the matching
- Applicable to contours and unorganized 2D point sets
- We extend the framework to enforce order preservation (contours)

Outline

- Introduction
- 2 Related work on correspondence
- 3 Review of the ACO framework
- 4 ACO for shape correspondence
- Experimental results
- 6 Conclusions

- Matching shape descriptors
 - 2D shape matching
 - Bipartite matching solved using the Hungarian algorithm
 - Integer constrained minimization (Maciel and Costeira, 2003)
 - Soft assign algorithm (Gold et al., 1998)
 - Preservation of binary neighborhood information (Zheng and Doermann, 2006)
 - QAP formulation (Berg et al., 2005)
 - Contour correspondence
 - Order preservation and dynamic programming (Liu et al., 2004, Scott and Nowak, 2006)

- Matching shape descriptors
 - 2D shape matching
 - Bipartite matching solved using the Hungarian algorithm
 - Integer constrained minimization (Maciel and Costeira, 2003)
 - Soft assign algorithm (Gold et al., 1998)
 - Preservation of binary neighborhood information (Zheng and Doermann, 2006)
 - QAP formulation (Berg et al., 2005)
 - Contour correspondence
 - Order preservation and dynamic programming (Liu et al., 2004, Scott and Nowak, 2006)

- Matching shape descriptors
 - 2D shape matching
 - Bipartite matching solved using the Hungarian algorithm
 - Integer constrained minimization (Maciel and Costeira, 2003)
 - Soft assign algorithm (Gold et al., 1998)
 - Preservation of binary neighborhood information (Zheng and Doermann, 2006)
 - QAP formulation (Berg et al., 2005)
 - Contour correspondence
 - Order preservation and dynamic programming (Liu et al., 2004, Scott and Nowak, 2006)

- Without using local descriptors:
 - Physically-based approach (Sederberg and Greenwood, 1992)
 - Pattern matching in the Gaussian map (Tal and Elber, 1999)
 - Deformation-based edit distance (Sebastian et al., 2003)
 - Skeletal and shock graphs (Sundar et al., 2003, Siddiqi et al., 1999)
- Transform-based techniques (Shapiro and Brady, 1992, Sclaroff and Pentland, 1995, Bronstein et al., 2006, Jain et al., 2007)
- Group correspondence
 - Minimum Description Length (MDL) principle (Davies et al., 2002)

Outline

- Introduction
- 2 Related work on correspondence
- 3 Review of the ACO framework
- 4 ACO for shape correspondence
- Experimental results
- 6 Conclusions

- Finds good solutions to NP-hard problems (Dorigo et al., 1996)
- Routing, assignment, and scheduling
- Inspiration from nature
 - Individual ants have a simple behavior
 - The ant colony can solve difficult problems

- Finds good solutions to NP-hard problems (Dorigo et al., 1996)
- Routing, assignment, and scheduling
- Inspiration from nature
 - Individual ants have a simple behavior
 - The ant colony can solve difficult problems
- Ant characteristics
 - Foraging behavior (search)
 - Pheromone trail (communication)

- Finds good solutions to NP-hard problems (Dorigo et al., 1996)
- Routing, assignment, and scheduling
- Inspiration from nature
 - Individual ants have a simple behavior
 - The ant colony can solve difficult problems
- Ant characteristics
 - Foraging behavior (search)
 - Pheromone trail (communication)

- Finds good solutions to NP-hard problems (Dorigo et al., 1996)
- Routing, assignment, and scheduling
- Inspiration from nature
 - Individual ants have a simple behavior
 - The ant colony can solve difficult problems
- Ant characteristics
 - Foraging behavior (search)
 - Pheromone trail (communication)

- Finds good solutions to NP-hard problems (Dorigo et al., 1996)
- Routing, assignment, and scheduling
- Inspiration from nature
 - Individual ants have a simple behavior
 - The ant colony can solve difficult problems
- Ant characteristics
 - Foraging behavior (search)
 - Pheromone trail (communication)

- Finds good solutions to NP-hard problems (Dorigo et al., 1996)
- Routing, assignment, and scheduling
- Inspiration from nature
 - Individual ants have a simple behavior
 - The ant colony can solve difficult problems
- Ant characteristics
 - Foraging behavior (search)
 - Pheromone trail (communication)

- Finds good solutions to NP-hard problems (Dorigo et al., 1996)
- Routing, assignment, and scheduling
- Inspiration from nature
 - Individual ants have a simple behavior
 - The ant colony can solve difficult problems
- Ant characteristics
 - Foraging behavior (search)
 - Pheromone trail (communication)

- Finds good solutions to NP-hard problems (Dorigo et al., 1996)
- Routing, assignment, and scheduling
- Inspiration from nature
 - Individual ants have a simple behavior
 - The ant colony can solve difficult problems
- Ant characteristics
 - Foraging behavior (search)
 - Pheromone trail (communication)

- Finds good solutions to NP-hard problems (Dorigo et al., 1996)
- Routing, assignment, and scheduling
- Inspiration from nature
 - Individual ants have a simple behavior
 - The ant colony can solve difficult problems
- Ant characteristics
 - Foraging behavior (search)
 - Pheromone trail (communication)

- Finds good solutions to NP-hard problems (Dorigo et al., 1996)
- Routing, assignment, and scheduling
- Inspiration from nature
 - Individual ants have a simple behavior
 - The ant colony can solve difficult problems
- Ant characteristics
 - Foraging behavior (search)
 - Pheromone trail (communication)

Review of the ACO framework

- Problem modeled with a graph
- The solution search involves ants traversing this graph

Review of the ACO framework

- Problem modeled with a graph
- The solution search involves ants traversing this graph
- ACO metaheuristic:

For each iteration:

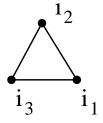
- **1** Traverse the graph (construct solution)
 - Heuristic information and pheromones
- Evaluate solution
 - Objective function
- 3 Deposit pheromones on the edges of the graph
 - Quality of the solution

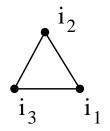
Advantages of ACO

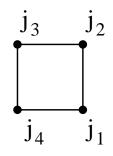
- Probabilistic approach
- Heuristic information
- Escape from bad local minima
- Parallelizable

Outline

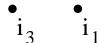
- Introduction
- 2 Related work on correspondence
- 3 Review of the ACO framework
- 4 ACO for shape correspondence
- Experimental results
- 6 Conclusions







Shapes to be matched



i₁ •

 $i_2 \bullet$

i₃ •

 j_3 j_2

 j_4 j_1

 $i_1 \bullet$

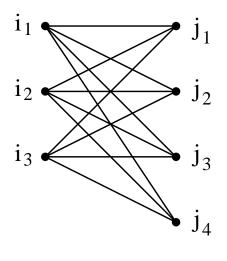
• j₁

 $i_2 \bullet$

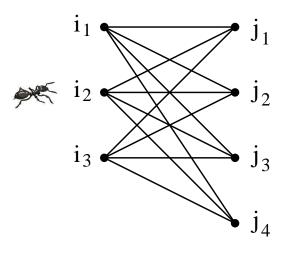
• j₂

i₃ •

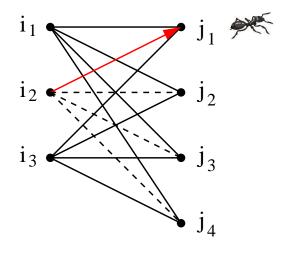
- j₃
- j₄



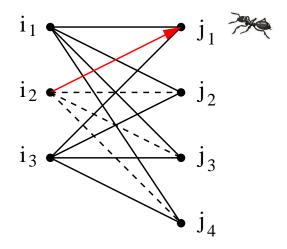
ACO graph

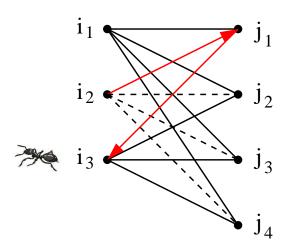


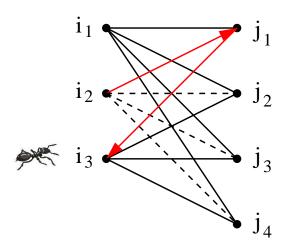
Iteration start

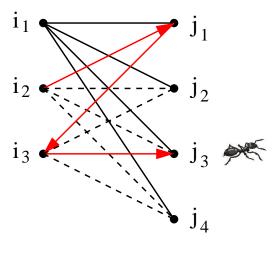


$$\pi(i_2) = j_1$$

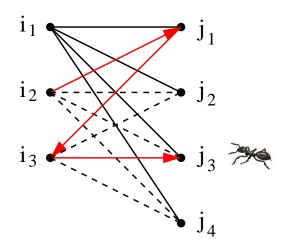


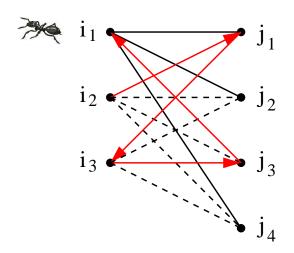


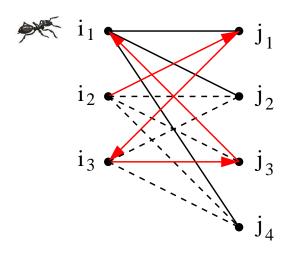


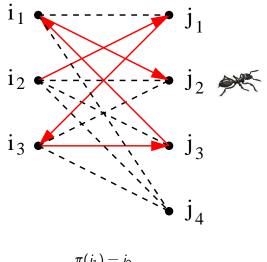


$$\pi(i_3)=j_3$$

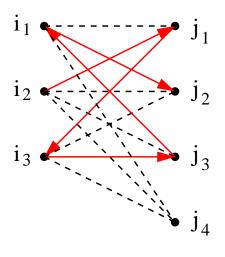




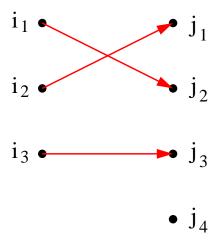




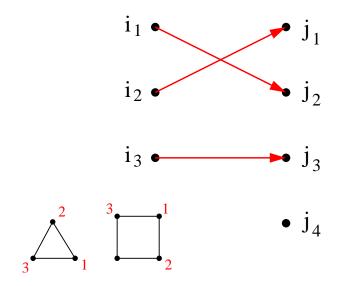
$$\pi(i_1)=j_2$$

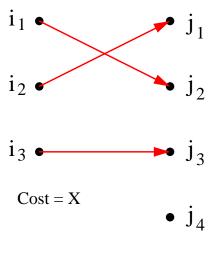


Iteration end

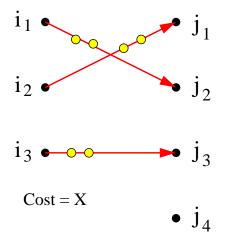


Correspondence obtained





Cost is computed



Pheromone is deposited

- For a fixed number of iterations:
 - Traverse the graph
 - Heuristic information and pheromones
 - 2 Evaluate solution
 - Objective function
 - Open Deposit pheromones on the edges of the graph
 - Quality of the solution
 - Retain best solution

- For a fixed number of iterations:
 - Traverse the graph
 - Heuristic information and pheromones
 - 2 Evaluate solution
 - Objective function
 - Open Deposit pheromones on the edges of the graph
 - Quality of the solution
 - Retain best solution

$$QAP = Descriptor distance + Proximity$$

$$QAP = (1 - v)$$
 Descriptor distance + v Proximity

$$QAP = (1 - v)$$
 Descriptor distance + v Proximity

Descriptor distance =
$$\sum_{i \in I} ext{dist}(R_i, R_{\pi(i)})$$

$$QAP = (1 - v)$$
 Descriptor distance + v Proximity

Descriptor distance =
$$\sum_{i \in I} \exp \left(-\frac{\operatorname{dist}(R_i, R_{\pi(i)})^2}{\sigma_R^2} \right)$$

$$QAP = (1 - v)$$
 Descriptor distance + v Proximity

Descriptor distance =
$$1 - \frac{1}{|I|} \cdot \sum_{i \in I} \exp\left(-\frac{\operatorname{dist}(R_i, R_{\pi(i)})^2}{\sigma_R^2}\right)$$

$$QAP = (1 - v)$$
 Descriptor distance + v Proximity

Descriptor distance =
$$1 - \frac{1}{|I|} \cdot \sum_{i \in I} \exp\left(-\frac{\operatorname{dist}(R_i, R_{\pi(i)})^2}{\sigma_R^2}\right)$$

$$\mathsf{Proximity} = \sum_{i \in I} \sum_{i' \neq i \in I} \left| \mathsf{dist}(i,i') - \mathsf{dist}(\pi(i),\pi(i')) \right|$$

$$QAP = (1 - v)$$
 Descriptor distance + v Proximity

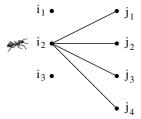
Descriptor distance =
$$1 - \frac{1}{|I|} \cdot \sum_{i \in I} \exp\left(-\frac{\operatorname{dist}(R_i, R_{\pi(i)})^2}{\sigma_R^2}\right)$$

$$\mathsf{Proximity} = \sum_{i \in I} \sum_{i' \neq i \in I} \exp\left(\frac{-\mathsf{dist}(i,i')^2}{\sigma_I^2}\right) \left| \mathsf{dist}(i,i') - \mathsf{dist}(\pi(i),\pi(i')) \right|$$

$$QAP = (1 - v)$$
 Descriptor distance + v Proximity

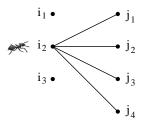
Descriptor distance =
$$1 - \frac{1}{|I|} \cdot \sum_{i \in I} \exp\left(-\frac{\operatorname{dist}(R_i, R_{\pi(i)})^2}{\sigma_R^2}\right)$$

$$\mathsf{Proximity} = \underbrace{\sum_{i \in I} \sum_{i' \neq i \in I} \exp\left(\frac{-\mathsf{dist}(i,i')^2}{\sigma_I^2}\right) \left| \mathsf{dist}(i,i') - \mathsf{dist}(\pi(i),\pi(i')) \right|}_{|I|(|I|-1)/2}$$



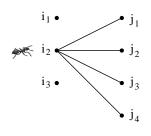
Edge probability:

$$p_{ij} = \alpha \, \mathsf{Pheromones} + (1 - \alpha) \, \mathsf{Heuristic}$$



Edge probability:

$$p_{ij} = \alpha$$
 Pheromones $+ (1 - \alpha)$ Heuristic



Heuristic information:

$$Heuristic^{-1} = \frac{dist(R_i, R_j) \times}{Descriptor similarity}$$

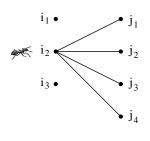
$$|\operatorname{dist}(i,i') - \operatorname{dist}(j,\pi(i'))| \times$$
Proximity to last vertex

$$|\operatorname{dist}(i,i'') - \operatorname{dist}(j,\pi(i''))| \times$$

Proximity to second last vertex

Edge probability:

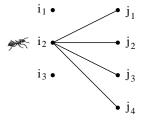
$$p_{ii} = \alpha$$
 Pheromones $+ (1 - \alpha)$ Heuristic



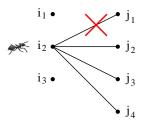
Heuristic information:

$$\begin{split} & \mathsf{Heuristic} = \left(e^{\frac{-\mathsf{dist}(R_i,R_j)^2}{\sigma_R^2}}\right) \times \\ & \left(1 - e^{\frac{-\mathsf{dist}(i,i')^2}{\sigma_I^2}} |\mathsf{dist}(i,i') - \mathsf{dist}(j,\pi(i'))|\right) \times \\ & \left(1 - e^{\frac{-\mathsf{dist}(i,i'')^2}{\sigma_I^2}} |\mathsf{dist}(i,i'') - \mathsf{dist}(j,\pi(i''))|\right) \end{split}$$

Order preservation

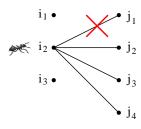


Order preservation



- Hard constraints: by removing edges that should not be traversed
 - Order preservation

Order preservation



- Hard constraints: by removing edges that should not be traversed
 - Order preservation
- Soft constraints: by modifying the probabilities

List of ACO parameters and values

ACO Parameters	Symbol	Value
Number of ants	m	1
Number of iterations	T	1000
Influence of pheromones	α	0.3
Pheromone evaporation rate	ρ	0.1
Pheromone deposition constant	δ	0.01
Initial pheromone levels	$ au_0$	1
Minimum pheromone levels	$ au_{min}$	$0.1 \cdot \frac{1}{ I }$
Influence of proximity	ν	0.7
Gaussian width in ${\mathscr X}$	σ_l	$0.1 \cdot I_{\sf max}$
Gaussian width in ${\mathscr S}$	σ_R	$0.1 \cdot R_{max}$

Parameters used in our ACO algorithm and their chosen values

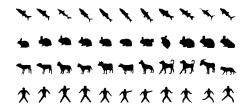
The values are fixed in all the experiments

Outline

- Introduction
- Related work on correspondence
- Review of the ACO framework
- 4 ACO for shape correspondence
- Experimental results
- 6 Conclusions

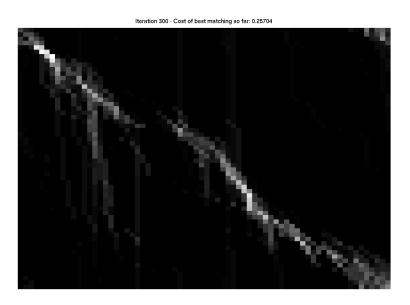
Experimental results

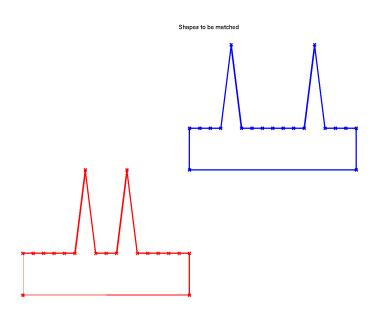
• Contours extracted from the Brown dataset (Sharvit et al., 1998)

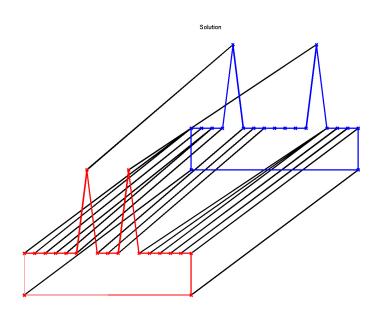


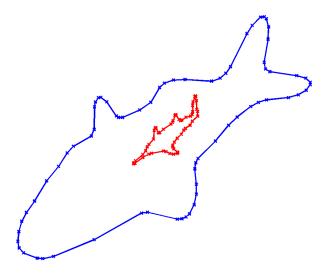
• Shape context (rotation-variant) descriptor (Belongie et al., 2002)

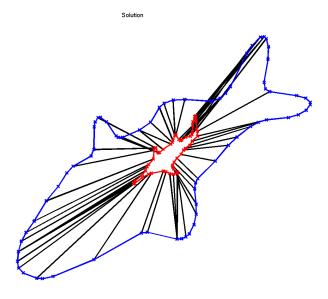
ACO pheromone deposition



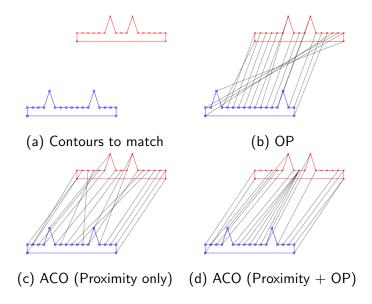




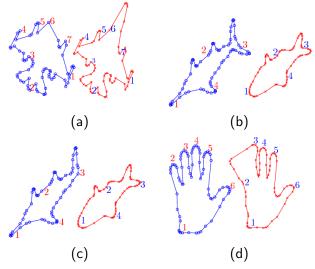




Order preservation (OP) vs. proximity

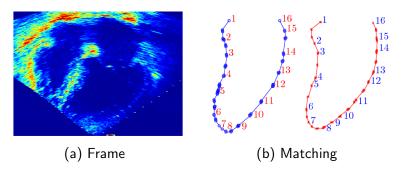


Handling of occlusion or missing parts



Matchings computed by ACO for contours with occlusion or structure change

Handling of open contours



Matching computed by ACO for an open contour of a left ventricle

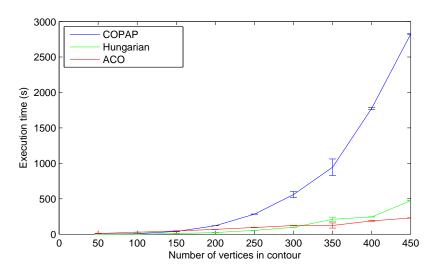
Evaluation against ground-truth correspondence

- Ground truth provided by a human user
- Error is the sum of geodesic distances between corresponded vertices and ground truth (Karlsson and Ericsson, 2006)
- Compared to Hungarian and COPAP (Scott and Nowak, 2006)

Shape class	Hungarian	COPAP	ACO
Airplanes	223.16	32.55	13.02
Fish	56.85	21.67	22.80
Four-legged	235.57	32.58	25.48
Hands	375.94	94.86	121.95
Humans	482.27	53.75	20.95
Rabbits	190.01	80.01	53.44
Stingrays	30.55	5.88	5.16
Tools	204.36	35.29	22.48

Deviation from ground truth

Timing



Execution time comparison between Hungarian, COPAP, and ACO

Outline

- Introduction
- 2 Related work on correspondence
- Review of the ACO framework
- 4 ACO for shape correspondence
- Experimental results
- **6** Conclusions

Conclusions and future work

- Proximity is incorporated
- The QAP is solved using the proposed ACO algorithm

Conclusions and future work

- Proximity is incorporated
- The QAP is solved using the proposed ACO algorithm
- Advantages include
 - Proximity improves the results
 - Results are generally better
 - Resource requirements scale moderately
 - Applicable to contours and unorganized 2D point sets
 - Hard and soft constraints can be easily incorporated

Conclusions and future work

- Proximity is incorporated
- The QAP is solved using the proposed ACO algorithm
- Advantages include
 - Proximity improves the results
 - Results are generally better
 - Resource requirements scale moderately
 - Applicable to contours and unorganized 2D point sets
 - Hard and soft constraints can be easily incorporated
- Future work
 - Extension to 2D manifolds
 - Parallelization

Thank you!

Funding for this project was provided by

 Faculty of Applied Sciences Simon Fraser University

gruvi graphics + usability + visualization