
Breaking Art: Synthesizing Abstract Expressionism
Through Image Rearrangement

Christopher Palazzoloa, Oliver van Kaicka, David Moulda,∗

aCarleton University, 1125 Colonel By Dr, Ottawa, K1S 5B6, Ontario, Canada

Abstract

We present an algorithm that creates interesting abstract expressionist images from segments of an input image. The
algorithm operates by first segmenting the input image at multiple scales, then redistributing the resulting segments
across the image plane to obtain an aesthetic abstract output. Larger segments are placed using neighborhood-aware
descriptors, and smaller segments are arranged in a Poisson disk distribution. In our thorough analysis, we show
that our results score highly according to several relevant aesthetic metrics, and that our style is indeed abstract
expressionism. The results are visually appealing, provided the exemplar has a somewhat diverse color pallette and
some amount of structure.

Keywords: Abstract Art Synthesis, Image Generation, Image Segmentation

1. Introduction

Automatically generating abstract artwork has a num-
ber of applications, such as quickly creating hundreds
of unique images for populating homes and museums
in virtual worlds. Of course, the automatically created
images may be appealing on their own merits. Previous
work has proposed methods to transfer artistic styles to
photographs [1], generate “tidied up art” [2, 3], or pro-
vide the tools to manually create artwork [4, 5]. How-
ever, no previous approach enables automatic genera-
tion of abstract expressionism. In this paper, our ob-
jective is to create abstract images similar to abstract
expressionism, which we accomplish by rearranging el-
ements from a user-provided input image.

Our approach synthesizes an image in three layers:
coarse segments, fine segments, and a background gra-
dient field. We use flood fill to extract segments from
an input photograph, inheriting its color distribution. In
the synthesis phase, the coarse segments are assembled
using a neighborhood-descriptor-based system, and the
fine segments and gradient field layers are created with
a Poisson disk distribution [6]. Figure 1 showcases a

∗Corresponding Author
Email addresses:

ChristopherPalazzolo@cmail.carleton.ca (Christopher
Palazzolo), OlivervanKaick@cunet.carleton.ca (Oliver van
Kaick), DavidMould@cunet.carleton.ca (David Mould)

sample of the rich generative space of our algorithm on
display in a virtual art gallery.

Our method produces an original style of abstract ex-
pressionism art with aesthetic attributes comparable to
those of historical artwork. Our goal is to create aes-
thetic objects with little overhead. Because we rear-
range patches of content from the exemplar, one might
imagine that our work is similar to patch-based texture
synthesis algorithms such as image quilting [7]. How-
ever, our work differs both in process and intent. Patch-
based synthesis methods aim to synthesize local pat-
terns that resemble an exemplar, whereas we use non-
texture exemplars and make no attempt to preserve their
large-scale structure in our segment placement process.
The exemplars mainly provide the color scheme of the
result and we do not expect to synthesize visually simi-
lar images.

Our contributions are as follows:

• We present a novel algorithm to synthesize attrac-
tive abstract images.

• We demonstrate that we generate images in the de-
sired style (abstract expressionism), and that the re-
sulting images are similar to existing works of the
same style, according to aesthetic measures.

• We find the most visually similar existing artworks
to our results, and show that they are quite distinct

Preprint submitted to Computers & Graphics May 14, 2025



Figure 1: A virtual 3D art gallery showcasing some of our results.

both visually and in terms of the selected percep-
tual similarity metrics.

Our source code can be downloaded at
https://github.com/ChrisPGraphics/BreakingArt

2. Related Work

We discuss two areas of research: algorithmic syn-
thesis of art, particularly abstract art; and analysis of
images with a focus on quality assessment and catego-
rization, which we use for our analysis.

2.1. Artistic Image Synthesis
Using neural networks to synthesize stylized images

has received considerable attention. Tan et al. [8] build
on previous conditional and categorical GAN-based ap-
proaches to synthesize artwork through backpropagat-
ing the image labels to the generator in the loss function.
Yi et al. [9] show that results of painting synthesis can
be improved by using a diffusion model. Pérez and Coz-
man [10] train a GAN to synthesize paintings in differ-
ent art styles, potentially usable for data augmentation
in future art style classification work. While the results
are impressive, these methods are not intended for ab-
stract art and their results here are less satisfactory.

A number of authors including Gatys et al. [1] ex-
plore style transfer, the task of rendering the content of
one image in the style of a second. One might conclude
that this could be used to synthesize abstract art by us-
ing a real abstract painting as the style image. We em-
phasize that this is not the same objective: style transfer
preserves global structure by changing low-level details,
whereas we preserve the low-level details to synthesize
a novel global structure to create a new aesthetic object.

Lee et al. [4] and Alvarez et al. [5] propose methods
that allow the user to manually create abstract artwork.
This is in contrast to our algorithm which is fully au-
tomatic. Lee et al. simulate real-time 3d fluid jets of

paint whereas Alvarez et al. allow the user to combine
geometric shapes in a tree data structure.

Zhao et al. [11] generate abstract art from pho-
tographs by using semantic segmentation and introduc-
ing ambiguity to each element with a range of operators.
Yan et al. [12] use brush strokes to render the photore-
alistic exemplar as a painting. We perform the opposite
process: our method uses low-level details from the ex-
emplar and generates a novel global structure.

The closest work to ours is the work of Ufer et al. [2]
and Gieseke et al. [3], who independently proposed
algorithms inspired by the book by comedian Ursus
Wehrli [13]. Wehrli proposed “tidying up art”: taking
the distinct elements of an abstract painting, and rear-
ranging them in a more organized manner. The algo-
rithmic methods proceed similarly. Starting from image
segmentation, they then use a custom element arrange-
ment procedure that can be tuned to get the desired re-
sult. Our general process is similar, but we aim to create
a more stochastic result instead of a tidy one. Section 4
further discusses the difference.

2.2. Art Analysis

There is a substantial body of literature on automated
assessment of images, primarily for photographic im-
ages but sometimes also applied to art. Sartori et al. [14]
introduce the MART database, and use it for training a
method to predict and analyze the emotions experienced
by a person observing artwork. Malu et al. [15, 16] train
a multi-task CNN to predict the aesthetic score of a pho-
tograph, along with a number of other metrics to justify
that decision. Their model reliably predicts aesthetic
attributes compared with scores in the Aesthetics At-
tribute Database [16]. We use the model by Malu et al.
to compare with historical abstract paintings.

Lecoutre et al. [17] train a model using the WikiArt
database [18] to classify the style of art that a paint-
ing belongs to, achieving an overall accuracy of 62%,

2



Exemplar Coarse Segmentation Fine Segmentation Background Analysis

A
n
alysis

S
yn
th
es
is

Coarse Placement Fine Placement Background Construction Result

Figure 2: A high-level overview of our synthesis process. There are two phases: analysis of an input exemplar, then synthesis of a new image.

surpassing all previous state-of-the-art models. We use
this model to categorize the genre of images produced
by our algorithm.

3. Breaking Art

Abstract expressionism is a broad category of art-
work. Our goal is to emulate a specific subcategory of
paintings that are made of a composition of irregular and
largely unrecognizable elements with a high amount of
color coherence. We accomplish this by breaking up
an input image into nonuniform polygons using flood
fill. This ensures each polygon contains a fairly regular
color. Synthesizing an image based on these polygons
causes the result to look abstract and maintains a similar
color palette to the exemplar.

Other sub-styles, such as color field paintings, are not
well emulated by our algorithm. While both have re-
gions of a solid color, our process uses small irregular
fragments of color whereas color field paintings have
far larger and more regular regions; often a region is a
significant fraction of the entire image, 30% or more.

We designed our algorithm to be efficient and sim-
ple to use. For efficiency, our algorithm extracts local
structure in the form of segments from an exemplar and
spreads it across a canvas without preserving the global
structure of the exemplar. The segments are placed so
that they loosely preserve some properties of the exem-
plar, which makes the result more appealing than plac-
ing elements at random; the viewer can appreciate that
some structure is present. Our method is easy to use
and fully automatic as the only input is an exemplar that
controls the color palette and local structure of the out-
put. We do not require any tedious tuning of parameters.

Figure 2 shows the high-level structure of our algo-
rithm. We use an analysis phase, dividing the exemplar

into segments, and a synthesis phase, where the seg-
ments are used to construct an output texture. The seg-
ments extracted from the exemplar have little semantic
meaning. The algorithm attempts to learn a pattern from
the distribution of the extracted polygons, even though
none exists. The analysis step instead hallucinates a pat-
tern in the distribution which it then attempts to repro-
duce as the result. This pattern hallucination is what
creates the color and shape distributions in the output.

Our analysis step decomposes the exemplar into ele-
ments to be rearranged during synthesis. We have three
types of segments, plus background, as shown in Fig-
ure 3. The coarse segments are the larger and more
prominent features of the exemplar. Fine segments are
the smaller and less noticeable features between the
coarse segments. We also have detail polygons, each
of which is associated with a particular coarse segment.
Pixels that are not part of any coarse or fine segment are
used to define a background gradient field to complete
the image. All layers are crucial for creating a complete,
visually interesting result.

In the subsequent synthesis step, we use an iterative
polygon placement algorithm based on neighborhood
descriptors to create the coarse segment layer, and a
simple Poisson disk distribution for the fine segments
and background gradient field. These three layers are
then merged together to produce the result. More details
of both phases are given in the following subsections.

3.1. Analysis Phase

Coarse segment extraction. In the analysis step, we
start with an exemplar with color channels normalized
between 0 and 1. First, we extract the coarse segments
using flood fill (tolerance 0.2). Segments smaller than
10 pixels or larger than 300 (thresholds chosen empiri-

3



Coarse Segment Detail Polygons

Fine SegmentBackground

Figure 3: Some of the three types of segments and the background
gradient.

cally) are discarded, ensuring only meaningful and sig-
nificant segments are kept. Flood fill segmentation pro-
ceeds incrementally, with the seed point for the next re-
gion being the first non-labeled pixel in a raster order
traversal of the image.

While a vast array of segmentation techniques are
available, flood fill is well suited to our purposes, as
it produces non-semantic segments with irregular struc-
tures, advantageous in producing more chaotic abstract
images. Flood fill often breaks up objects that have
diverse colors into diverse and non-uniform shapes,
whereas more semantically-aware methods would pre-
serve the objects’ structure. Figure 5 shows a compar-
ison of alternate segmentation strategies. Comparisons
using additional exemplars can be found in the supple-
mental material.

Following the initial segmentation, we compute the
median color of all pixels contained within each coarse
segment and use it as the segment’s background color.
Next, we apply a second pass of flood fill inside each
coarse segment with a smaller tolerance (0.05 in the re-
sults shown) to obtain the detail polygons. The detail
polygons are considered children of the coarse segment
they are found in and provide extra visual detail. A de-
tail polygon’s color is the median color of its pixels.

Clustering and descriptor construction. Next, we or-
ganize the coarse segments into clusters based on vi-
sual similarity and build a descriptor for each segment.
We use the color, area, and Polsby-Popper compact-
ness [19] as features, and apply K-Means to get the
clusters. We found that 15 clusters produce good re-
sults. A descriptor is a square-shaped region around a
segment that characterizes the distribution of other seg-
ments in the vicinity of the central segment. It is stored

Figure 4: An example of segments and their descriptors. Left: The
segments found in the exemplar in their original context. Center: the
extracted segments and their descriptors (the red squares). Right: The
location of the segments in the synthesized result.

as a 2D array at pixel resolution where each cell con-
tains the cluster ID of the polygon type that appeared
there in the exemplar. We will use the descriptors to
compute scores based on spatial overlaps when synthe-
sizing a new distribution, approximately preserving the
local arrangement of the coarse segments in the result.

When creating descriptors, we want to ensure each
descriptor has enough segments in any direction to pre-
serve low-level structure, but not too many to risk mak-
ing a copy. We found that an average of 2.25 seg-
ments in any direction produces good results. This way
of defining descriptor sizes also ensures our method is
scale-independent. Segments touching the descriptor
square are included in the descriptor. Figure 4 shows
examples of descriptors of two segments and their loca-
tions in the exemplar and result.

Fine segment extraction. To obtain the fine segments,
we apply flood fill on all pixels not previously marked as
part of a coarse segment (tolerance 0.1 and must have an
area between 3 and 300). We compute the median color
of the contained pixels to get the segment’s color. We do
not attempt to find detail polygons for these segments,
nor do we compute descriptors, as fine segments are in-
tended to capture unstructured content of the exemplar.

Background extraction. Finally, we extract a color
palette from the remaining pixels, i.e., those not part of
any coarse or fine segment. The palette will be used to
create a background gradient field at synthesis time. Our
process begins by placing points according to a Poisson
disk distribution over the entire image (spacing 50 pix-
els, chosen empirically); we then construct the Voronoi
diagram of this point set. For each Voronoi region, we
take the median color of all pixels that are not part of a
coarse or fine segment and add that as a palette entry.

The analysis phase is now complete. For the coarse
segments, we have the neighborhood of each segment as
its descriptor, a cluster that the segment belongs to, and
detail polygons to add more visual interest to the seg-
ment. We also have the fine segments and their median
inter-element spacing. Finally, we have a color palette

4



extracted from the background which can be used to
construct the background gradient field.

3.2. Synthesis Phase

We synthesize the result in three stages: a layer
of coarse segments; a layer of fine segments; and a
background gradient field. These three layers are then
merged to produce the final result.

Coarse segment layer. The pseudocode for this pro-
cess can be found in the supplemental material. The
coarse segments are placed incrementally by choos-
ing segments at random and scoring the placement of
each one. Scores are based on the degree to which
an attempted placement aligns with the descriptors of
previously-placed segments.

We maintain a grid map, the same size and resolu-
tion as the target output, to store the evolving arrange-
ment of finalized and potential segments. Grid cells can
store values of one of four types: “undefined”, meaning
that nothing has been placed in the cell yet; ”empty”,
meaning that the cell is currently empty and should re-
main empty; ”finalized”, with an accompanying cate-
gory (cluster) ID for the segment that covers that grid
cell; or ”requested”, with an accompanying category ID
for the segment type that ought to be placed there.

A randomly placed segment S is scored based on
its overlap with cells in different categories; if the
grid cell requested a segment with S’s category, the
score increases, while mismatches or overlaps with non-
requesting cells cause the score to decrease.

An attempt at segment placement involves first
choosing a random grid cell with “requested” value.
The probability distribution comes from a distance
transformation on the requested cells to give more
weight to centers of large clusters. Next, we pick a ran-
dom segment of the requested category, place it, and
computing its score. The algorithm then attempts to lo-
cally optimize the position, shifting the segment centre
one pixel at a time as long as doing so improves the
score. We make k attempts (10 in the results shown) and
finalize the placement of the top-scoring segment, up-
dating the grid map: all “undefined” entries nearby are
given “empty” or ”requested” values according to the
descriptor of the placed segment, and the grid cells be-
neath the segment itself are given the value “finalized”.

After synthesis of the layer is complete, we use global
constraints to clean up the result. First, we measure how
much of the exemplar is covered by each category of
polygon. For each polygon category, we remove poly-
gons at random until the category coverage of the result
drops below the expected coverage from the exemplar.

To add some randomness to the result, the polygon re-
sponsible for causing the coverage to drop below the
threshold is only removed 50% of the time to ensure we
are not always under the expected coverage.

Fine segment layer. We take the median of the inter-
element distances of the fine segments from the exem-
plar and construct a Poisson disk distribution [6]. At
each of these points, if it is not already covered by a
coarse segment, we place a randomly-selected fine seg-
ment.

Background layer. We generate a set of control points
in a Poisson disk distribution, and assign to each a ran-
dom color from the exemplar palette. Using the combi-
nation of control points and colors, we interpolate the
entire field using Inverse Distance Weights interpola-
tion [20].

Layer merging. The three layers are then merged by
drawing the background gradient field followed by the
fine and coarse segments. Drawing the coarse segments
last ensures they are not occluded by the other layers.
All segments are opaque: the last-drawn segment over-
writes any pixel it covers.

4. Results

Figure 6 gives results from our method, showing both
the input exemplar and the synthesized abstract image.
Figure 7 shows some additional results where the names
are puns. Drastically different results can be obtained
depending on the structure and color distribution of the
exemplar.

Figure 5 shows some alternative segmentation and
placement strategies. Alternative segmentation strate-
gies include SLIC [21], uniform circular patches, and
irregular random-shaped patches. Alternative segment
placement strategies include using random placement,
and placement according to a Poisson Disk distribu-
tion [6]. This figure also shows the importance of the
fine segments and gradient field which are not included
in the bottom two rows. SLIC and uniform patch extrac-
tion produce segments with little size and shape varia-
tion and the result is mundane. Irregular patches contain
too many colors, with incoherent results.

Figure 8 highlights the difference between the objec-
tives of our work, and those of “tidying up art”. Both
Ufer et al. [2] and Gieseke et al. [3] break up an image
to rearrange the components in a more organized man-
ner, whereas we rearrange the components in a more
stochastic arrangement to create an aesthetic object.

We next turn our attention to comparisons between
the results of our algorithm and artwork created by his-
torical artists. We use the model of Lecoutre et al. [17]

5



Figure 5: Alternative segmentation and placement strategies for synthesizing images, shown across different columns and rows, respectively. Our
result (top left) is highlighted in red.

to confirm the art style produced by our algorithm. We
then use the model of Malu et al. [15] to compare the
aesthetic metrics of our results with images produced
by historical artists. Finally, we use a number of per-
ceptual similarity metrics to compare our work with ex-
isting abstract expressionism to show that our images
are visually distinct compared to existing artwork in the
genre.

The Aesthetics Attribute Database [16] is a database
of nearly ten thousand photographs containing a wide
range of subjects, structure, and colors. From this, we
took 500 random images, and synthesized results us-
ing them as exemplars. We compare these results with
paintings from the WikiArt database [18] in the follow-
ing subsections.

4.1. Art Style Classification

We use the pretrained model provided by Lecoutre
et al. [17] to categorize 500 images produced by our
method. More than 50% of these images were classified
as abstract expressionism, far more than any other cate-
gory. Other categories in the top ten include abstract art
and art informel which can be thought of as European
abstract expressionism [17]. We can reasonably con-
clude that our algorithm does indeed produce abstract
expressionist images. The breakdown of the top ten cat-
egories can be found in the supplemental material.

4.2. Aesthetic Metrics

We compared our set of 500 images with nearly
3000 abstract expressionism artworks from the WikiArt
database [18] using the model trained by Malu et
al. [15], and recorded the scores for the five attributes
and final aesthetic score for each image. It should be
noted that this model was trained on photographs, not
artwork. To our knowledge this is the most reliable aes-
thetic image evaluator.

Malu et al. estimate five aesthetic attributes: color
harmony; interestingness of content; depth of field; ob-
ject emphasis; and vivid color. The estimated values are
in the range {-1,1}; a value of -1 means that the attribute
reduces the photograph’s appeal, and +1 indicates the
attribute improves the visual appeal. They also compute
a final aesthetic score, ranging between 0 and 1. The
distribution of scores for each metric, for our images
and a sampling of images from the database, are shown
in Figure 9.

According to the model, the color harmony of our
images contributes significantly to their overall visual
appeal. Conversely, the low object emphasis in our im-
ages reduces their appeal. This makes sense because our
algorithm’s art style does not have discernible objects
in the result, whereas many historical paintings include
recognizable objects, even if represented in an abstract
way. The remainder of the histograms are very simi-

6



Exemplar Result Exemplar Result Exemplar Result

Figure 6: A sample of images synthesized by our method from the given exemplars.

Breaking Bread Color Me Impressed Brewed Awakening Root Cause

Figure 7: A sample of images synthesized by our method. The name given to each image is a pun related to the content of the exemplar.

7



Still Life, 1715 OursGieseke et al

Untitled, 1986 OursUfer et al

Figure 8: A comparison between our work, and the “tidying up art”
papers of Ufer et al. [2] and Gieseke et al. [3] to demonstrate the op-
posite objectives or our work and theirs.

1 0 1
0.00

0.15

0.30 (a)

1 0 1

(b)

1 0 1

(c)

1 0 1
0.00

0.15

0.30 (d)

1 0 1

(e)

0.0 0.5 1.0

(f)

Figure 9: The distribution of our images (solid gray) compared to ab-
stract expressionism paintings from the WikiArt database [18] (red
outline) for five criteria, plus an aggregate score: (a) Color Harmony,
(b) Interestingness of Content, (c) Depth of Field, (d) Object Empha-
sis, (e) Vivid Color, and (f) Aesthetic Score.

lar. Overall, although our artwork is part of the abstract
expressionism distribution, it does not span the full dis-
tribution, being generally more abstract than historical
images in this genre. The highest and lowest scoring
image for each aesthetic attribute can be found in the
supplemental material.

Figure 10a compares abstract expressionism against
two other recognized subsets, color field and action
paintings. Comparing these distributions to those of
Figure 9, one can see that our results are roughly
as close to abstract expressionism as the other sub-
categories. As a control, Figure 10b compares the dis-
tribution of abstract expressionism and two different
styles, minimalism and analytical cubism. With the ex-
ception of depth of field, each art style has a distinct
histogram pattern.

1 0 1
0.00

0.15

0.30 (a)

1 0 1

(b)

1 0 1

(c)

1 0 1
0.00

0.15

0.30 (d)

1 0 1

(e)

0.0 0.5 1.0

(f)

(a) Closely related styles: Action
Painting (red), Color Field Painting
(blue).

1 0 1
0.00

0.15

0.30 (a)

1 0 1

(b)

1 0 1

(c)

1 0 1
0.00

0.15

0.30 (d)

1 0 1

(e)

0.0 0.5 1.0

(f)

(b) Distinct styles: Minimalism
(red), Analytical Cubism (blue).

Figure 10: A comparison between abstract expressionism paintings
from the WikiArt database [18] (solid gray) and other art styles using
the same criteria as Figure 9.

(a) (b) (c) (d)

Figure 11: The most similar artworks to the results of our method
based on four perceptual similarity metrics. (a) Our result and the
query image, (b) best DISTS and SSIM scores (0.252 and 0.630,
respectively), (c) best LPIPS score (0.352), (d) best PieAPP score
(0.408). With DISTS, LPIPS and PieAPP, 0 is a perfect match, and
SSIM has 1 as a perfect match and 0 as no similarity.

4.3. Visual Similarity

The previous subsections show that our algorithm is
capable of producing images resembling abstract ex-
pressionism. Here, we consider how similar our results
are to the styles of historical artists. To do this, we select
a random image produced by our algorithm, and find
the image in the abstract expressionism category in the
WikiArt database that has the best perceptual similar-
ity score. We use the metrics DISTS [22], LPIPS [23],
PieAPP [24], and SSIM for this comparison, using the
implementation of these metrics provided by the PyIQA
Python library [25]. Figure 11 shows the results for one
image; additional results are shown in the supplemental
material.

Although we used perceptual similarity metrics to
find similar paintings to our generated images, none
possess a similar style or element distribution to ours.
The result in Figure 11 is typical; in no cases were the
historical artworks visually similar to our results. This
provides some evidence that our algorithm produces vi-
sually distinct images compared to historical abstract
expressionism.

4.4. Successful Exemplar Selection

From analyzing hundreds of exemplars synthesized
by our algorithm, we observed that two attributes have
the biggest impact on the quality of results: color and
structure.

8



Exemplar Results Created From Exemplar

Figure 12: A few images synthesized from the same exemplar to
demonstrate the low diversity in the results.

Color contrast is one of the most important attributes
informing images aesthetics. While the results in the
bottom row of Figure 13 look interesting individually,
they are less attractive than the images in the top row.
The exemplars of the bottom row are all grayscale im-
ages. The difference between the highest and lowest
scoring result in Figure 13 seems to mostly manifest in
colors, where red, orange and pink make a more excit-
ing color palette than gray, white and black.

Moreover, the exemplar must have some structure.
We tried a number of smooth gradients as exemplars;
these failed to produce good results because the coarse
and fine segmentation steps yielded few if any distinct
segments. In this case, the result is completely created
from the background gradient field, with unappealing
results.

4.5. Performance

Analysis takes an average of 2 minutes for a 500×500
exemplar. Synthesis takes on average 45 seconds to pro-
duce a 500×500 result and 6.5 minutes for a 1000×1000
result. These values can vary depending on the number
of identified segments and the size of the exemplar.

4.6. Limitations

We observed low diversity between results synthe-
sized from the same exemplar. To generate a diverse set
of artwork, the user requires an equally large set of dis-
tinct exemplars. However, there are massive databases
available of diverse photographs and images, mitigat-
ing this concern. Figure 12 shows an example of this.
The results are not exactly alike, but they share a similar
structure and color palette.

Grayscale exemplars do not score very highly accord-
ing to the model trained by Malu et al. [15]. The fifty
lowest scoring images are all based on grayscale exem-
plars. We somewhat disagree with the model’s conclu-
sion, since these images are aesthetically pleasing in-
dividually; however, when viewing multiple results of
grayscale exemplars together, they appear boring and
repetitive. This indicates that diverse color is an impor-
tant factor in constructing a collection of images.

Lo
w

es
t S

co
rin

g
H

ig
he

st
 S

co
rin

g

Figure 13: The four highest-scoring (above) and lowest-scoring re-
sults (below), according to the model trained by Malu et al. [15].

Figure 14: Images synthesized from exemplars lacking distinct fea-
tures. Above: exemplar; below: our result.

Exemplars without distinct features, such as gradient
images, do not produce good results because either no
segments are extracted, or the segments are too large
and cannot be used for synthesis. Figure 14 shows three
failure cases from exemplars with little structure.

Finally, our method produces a specific style of out-
put. It is not a general purpose algorithm like style trans-
fer techniques. Instead, it focuses on producing images
in a specific and novel style in a small amount of time.

5. Conclusion

We introduced an image synthesis algorithm which
is capable of producing abstract expressionism images
with similar aesthetic scores as artworks created by his-
torical artists. We construct an abstract image from an
input photograph, with an analysis step followed by a
synthesis step. The analysis deconstructs the exemplar
into coarse and fine segments, and identifies colors that
can be used to form a background gradient mesh. The
synthesis step creates a coarse segment layer from the
coarse segments, a detail layer from the fine segments,
and a background layer using the extracted background
colors; the three layers are merged to produce the ab-
stract output.

The choice of exemplar is important to ensure the re-
sult will be comprised of an exciting color palette and

9



contain enough structure to be visually appealing.
Future work could include segment augmentation and

other diversification strategies so that a single exemplar
can produce distinct results. With this change, less im-
ages would be required for generating a large library of
artwork. Another avenue of future work could explore
more expensive polygon placement strategies such as
through the use of an optimizer. Our texton placement
strategy avoids collisions, and ensures local structure is
preserved with little overhead; however, an optimizer
may provide better results at the cost of significantly
more synthesis time.

Acknowledgments

We thank the anonymous reviewers for their valu-
able feedback. This work was partially supported by
the Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC) and Carleton University. We
would also like to thank the members of the Graphics,
Imaging, and Games Lab (GIGL) as well as our friends
outside the lab for their suggestions and comments.

References

[1] L. Gatys, A. Ecker, M. Bethge, A neural algorithm
of artistic style, Journal of Vision 16 (12) (2016) 326.
doi:10.1167/16.12.326.

[2] N. Ufer, M. Souiai, D. Cremers, Wehrli 2.0: An algorithm for
“tidying up art”, in: A. Fusiello, V. Murino, R. Cucchiara (Eds.),
Computer Vision – ECCV 2012. Workshops and Demonstra-
tions, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp.
532–541.

[3] L. Gieseke, S. Klingel, M. Fuchs, Shake it up - image decom-
position and rearrangements of its constituents, in: Proceedings
of the Workshop on Computational Aesthetics, CAE ’15, Euro-
graphics Association, Goslar, DEU, 2015, p. 141–147.

[4] S. Lee, S. C. Olsen, B. Gooch, Interactive 3d fluid jet painting,
in: Proceedings of the 4th International Symposium on Non-
Photorealistic Animation and Rendering, NPAR ’06, Associa-
tion for Computing Machinery, New York, NY, USA, 2006, p.
97–104. doi:10.1145/1124728.1124745.

[5] L. Alvarez, N. Monzón, J.-M. Morel, Interactive design of
random aesthetic abstract textures by composition principles,
Leonardo 54 (2) (2021) 179–184. doi:10.1162/leon a 01768.

[6] M. McCool, E. Fiume, Hierarchical Poisson disk sampling dis-
tributions, in: Proceedings of Graphics Interface ’92, GI ’92,
Canadian Human-Computer Communications Society, Toronto,
Ontario, Canada, 1992, pp. 94–105.

[7] A. A. Efros, W. T. Freeman, Image Quilting for Texture Synthe-
sis and Transfer, 1st Edition, Association for Computing Ma-
chinery, New York, NY, USA, 2001.

[8] W. R. Tan, C. S. Chan, H. E. Aguirre, K. Tanaka, ArtGAN: Art-
work synthesis with conditional categorical GANs, in: 2017
IEEE International Conference on Image Processing (ICIP),
2017, pp. 3760–3764. doi:10.1109/ICIP.2017.8296985.

[9] D. Yi, C. Guo, T. Bai, Exploring painting synthesis with dif-
fusion models, in: 2021 IEEE 1st International Conference on

Digital Twins and Parallel Intelligence (DTPI), 2021, pp. 332–
335. doi:10.1109/DTPI52967.2021.9540115.

[10] S. P. Pérez, F. G. Cozman, How to generate synthetic paintings
to improve art style classification, in: A. Britto, K. Valdivia Del-
gado (Eds.), Intelligent Systems, Springer International Publish-
ing, Cham, 2021, pp. 238–253.

[11] M. Zhao, S.-C. Zhu, Abstract painting with interactive control
of perceptual entropy, ACM Trans. Appl. Percept. 10 (1) (Mar.
2013). doi:10.1145/2422105.2422110.

[12] M. Yan, Y. Pu, P. Zhao, D. Xu, H. Wu, Q. Yang,
R. Wang, Abstract painting synthesis via decremental opti-
mization, Computer Graphics Forum 41 (7) (2022) 419–430.
doi:https://doi.org/10.1111/cgf.14688.

[13] U. Wehrli, A. G. von Olenhusen, Kunst aufräumen, Kein &
Aber, 2002.

[14] A. Sartori, D. Culibrk, Y. Yan, R. Job, N. Sebe, Computational
modeling of affective qualities of abstract paintings, IEEE Mul-
tiMedia 23 (3) (2016) 44–54. doi:10.1109/MMUL.2016.20.

[15] G. Malu, R. S. Bapi, B. Indurkhya, Learning photography
aesthetics with deep CNNs, CoRR abs/1707.03981 (2017).
arXiv:1707.03981.

[16] S. Kong, X. Shen, Z. Lin, R. Mech, C. Fowlkes, Photo aesthet-
ics ranking network with attributes and content adaptation, in:
European Conference on Computer Vision (ECCV), 2016.

[17] A. Lecoutre, B. Negrevergne, F. Yger, Recognizing art style au-
tomatically in painting with deep learning, in: M.-L. Zhang, Y.-
K. Noh (Eds.), Proceedings of the Ninth Asian Conference on
Machine Learning, Vol. 77 of Proceedings of Machine Learning
Research, PMLR, Yonsei University, Seoul, Republic of Korea,
2017, pp. 327–342.

[18] W. R. Tan, C. S. Chan, H. Aguirre, K. Tanaka, Improved Art-
GAN for conditional synthesis of natural image and artwork,
IEEE Transactions on Image Processing 28 (1) (2019) 394–409.
doi:10.1109/TIP.2018.2866698.

[19] D. Polsby, R. Popper, The third criterion: Compactness as a pro-
cedural safeguard against partisan gerrymandering (2015).

[20] D. Shepard, A two-dimensional interpolation function for
irregularly-spaced data, in: Proceedings of the 1968 23rd
ACM National Conference, ACM ’68, Association for Com-
puting Machinery, New York, NY, USA, 1968, p. 517–524.
doi:10.1145/800186.810616.

[21] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua,
S. Süsstrunk, SLIC superpixels compared to state-of-the-
art superpixel methods, IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 34 (11) (2012) 2274–2282.
doi:10.1109/TPAMI.2012.120.

[22] K. Ding, K. Ma, S. Wang, E. P. Simoncelli, Image quality
assessment: Unifying structure and texture similarity, CoRR
abs/2004.07728 (2020). arXiv:2004.07728.

[23] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, O. Wang,
The unreasonable effectiveness of deep features as a per-
ceptual metric, in: 2018 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2018, pp. 586–595.
doi:10.1109/CVPR.2018.00068.

[24] E. Prashnani, H. Cai, Y. Mostofi, P. Sen, PieAPP: Percep-
tual image-error assessment through pairwise preference (2018).
arXiv:1806.02067.

[25] C. Chen, J. Mo, IQA-PyTorch: Pytorch toolbox
for image quality assessment, [Online]. Available:
https://github.com/chaofengc/IQA-PyTorch (2022).

10


