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Figure 1: We introduce a neural network architecture, NNProc, which approximates procedural models’ forward shape generation (—) and
their inverse mapping by aligning latent spaces of parameters and shapes. (a) After training with a given procedural model, NNProc can
generate shapes from given parameters (—) and predict parameters for shapes (— ). (b) NNProc can also be used in an optimization setting
to predict parameters for objects provided in different representations, such as 3D shapes, point clouds, and photographs. Note that we only
show a subset of the parameters in the boxes for clarity.

Abstract

Procedural modeling is a popular technique for 3D content creation and offers a number of advantages over alternative tech-
niques for modeling 3D shapes. However, given a procedural model, predicting the procedural parameters of existing data
provided in different modalities can be challenging. This is because the data may be in a different representation than the one
generated by the procedural model, and procedural models are usually not invertible, nor are they differentiable. In this paper,
we address these limitations and introduce an invertible and differentiable representation for procedural models. We approxi-
mate parameterized procedures with a neural network architecture NNProc that learns both the forward and inverse mapping
of the procedural model by aligning the latent spaces of shape parameters and shapes. The network is trained in a manner that
is agnostic to the inner workings of the procedural model, implying that models implemented in different languages or systems
can be used. We demonstrate how the proposed representation can be used for both forward and inverse procedural modeling.
Moreover, we show how NNProc can be used in conjunction with optimization for applications such as shape reconstruction
Jfrom an image or a 3D Gaussian Splatting.
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1. Introduction

The creation of 3D content, especially 3D objects, is important in
several industries, such as game development, movie production,
and simulation. Significant time and effort go into the develop-
ment of 3D shapes as this task requires skilled artists to metic-
ulously create content using an interface. The problem is exac-
erbated when a large collection of 3D content has to be devel-
oped. Thus, there is a growing need for methods that can au-
tomatically synthesize 3D objects while minimizing human in-
put. Several techniques have been proposed in the literature to
achieve this goal, and the latest research advances include deep
neural networks that can learn to represent and then synthesize
3D shapes, for example, using transformers or diffusion mod-
els [HPG*22, YLM*22, ZVW*22, HLHF22, LGT*23, ZTNW23].
The downside of these learning-based methods is the need for large
amounts of training data that resemble the target shapes. In addi-
tion, it is difficult to control the results of the generative models,
and the generated shapes are often not readily given in a represen-
tation suitable for efficient visualization, such as a triangle mesh.

Another approach for synthesizing large collections of shapes is
to use procedural generation. In procedural modeling, there is a set
of rules, usually implemented as a procedure or computer program,
that can create a shape from input parameters. Procedural modeling
can be applied to generate various types of shapes, such as organic,
architectural, and man-made objects [STBB14]. One advantage of
using procedural modeling is that we can quickly generate a large
number of diverse shapes by varying the input parameters. More
importantly, unlike generative models, shapes can be easily edited
by changing their parameters, and the procedural model can be de-
signed to ensure that the resulting shapes are free of artifacts and
self-intersections. The main requirement for using procedural gen-
eration is the creation of the procedure by a skilled developer with
an artistic eye.

Nevertheless, using a predefined procedural model can still be
challenging even for skilled users because they need to explore a
large parameter space to create the shape that they desire. Methods
have been proposed to predict parameters for input shapes, which
can be used to replicate a given shape or to provide a starting set
of parameters for further exploration [SPK* 14, HKYM17]. How-
ever, most procedural models are equivalent to a non-differentiable
computer program, which implies that efficient gradient-based op-
timization methods cannot be used to estimate parameters. Some
recent work defines procedural models in terms of some Domain
Specific Language (DSL) which in turn allows defining gradi-
ents at arbitrary locations of the shapes. These solutions include
systems where the user can edit specific parts of the generated
shapes [LSL*19, MB21, CSQ*22], or where optimization meth-
ods such as automatic differentiation are used [GKG*22], which
require the procedural model to use predefined differentiable oper-
ations. These methods are suitable solutions for parameter predic-
tion, but are constrained by the use of specific DSLs or operations.

In this paper, we propose NNProc, a neural network architec-
ture for approximating procedural models of shapes (Figure 1). Our
method can approximate existing procedural models encoded as
programs, node graphs, or other representations. Our key idea is
to approximate a procedural model and its inverse mapping with

a differentiable neural network, which is learned from data gener-
ated by the procedural model. Then, inverse tasks that are difficult
to accomplish with the original procedural model can be carried out
more easily with the neural network approximation.

We note that a procedural model can be approximated as a neural
network that generates shapes from input parameters [NGDA™ 16,
HKYM17]. However, such a design does not impose a meaningful
structure on the latent space of the network, which still leads to the
failure of inverse optimization tasks. Instead, we propose to learn
both the forward and inverse mappings of the procedural model
by aligning latent spaces for parameters and shapes. The different
pieces of the trained network can then be used to perform various
tasks, including the prediction of procedural parameters from 3D
shapes. Moreover, since the individual components of the network
are differentiable, gradient based optimization algorithms can also
be applied to any portions of the network for optimization-based
tasks, such as predicting parameters from images of shapes. Finally,
the neural network approximation is agnostic to how the procedural
model is implemented, as we train the network with training data
automatically collected from the procedural model.

We demonstrate that our network can approximate different
classes of man-made objects represented by different procedural
models (primitive-based and node-based procedural models). It can
generate shapes from parameters (forward procedural modeling)
for fast visualization. More importantly, the proposed network can
be used to predict parameters of the procedural model for replicat-
ing shapes. To demonstrate the inverse mapping, we present results
from experiments where we combine our network with iterative op-
timization to infer shape parameters from 3D shapes, silhouette im-
ages, photographs, and views sampled from a 3D Gaussian Splat-
ting. To summarize, our main contributions are:

e We introduce a generalized representation for procedural models
that is both invertible and differentiable since it is based on a
simple but versatile neural network.

e We demonstrate that our architecture is applicable to various pro-
cedural models implemented in different manners, and can be
used for both forward and inverse problems given that it learns
latent spaces with meaningful structures.

e By reconstructing 3D shapes from images, we show that our dif-
ferentiable representation can also be used in optimization-based
tasks for inverse mapping.

2. Related work

Procedural modeling can be used to generate a variety of geometry,
including man-made objects, organic shapes, terrains, and architec-
tural shapes. Smelik et al. [STBB14] summarize a number of pro-
cedural modeling systems for a wide range of types of shapes. In
many cases, the procedural model can be viewed as a grammar or
a set of rules. Some of these models define the grammar using ge-
ometric constraints [MM11,KMG*21], while others use high-level
specifications [TLL*11]. Lipp et al. [LWWO08] and Patow [Pat12]
also investigated methods that enable visual editing of the gram-
mar. The primary focus of all of these methods is shape generation.
In contrast, we also consider other related tasks such as parameter
inference for given shapes. Thus, we discuss related previous work
as follows.
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Parameter Inference: Assuming that a procedural model is given,
one group of works in the literature propose methods for discover-
ing the parameters that reproduce input shapes, which is one task
related to inverse procedural modeling. Stava et al. [SPK*14] in-
troduce a procedural model of trees and propose to use simulated
annealing to find optimal parameters for given shapes of trees. Yuan
et al. [YBP*24] proposed using differentiable rendering in order to
infer parameters of a given procedure for a given target 3D shape.
Parameter prediction from sketches has also been investigated for
shape modeling [NGDA*16, HKYM17]. Additionally, parameter
prediction can also be performed for objects other than 3D shapes,
such as knitwear and texture [TMK™*19, HDR19]. However, the
methods proposed in this body of work only address the issue of
inferring parameters for a given input and are not well suited for
being plugged into a setup where parameters can be optimized for
various representations of shapes.

Instead of performing parameter prediction for given shapes, a
few works let the user directly edit shapes generated by the pro-
cedural models and then transfer back the changes to the parame-
ters. For example, Lipp et al. [LSL*19] propose a method for dis-
covering good local edit operations in procedurally created shapes,
which have a known mapping to the model’s parameters. Michel et
al. [MB21] and Pearl et al. [PLH*22] propose systems that propa-
gate edit operations to the parameters of procedural models, while
Cascaval et al. [CSQ™22] introduce a bidirectional editing system
for CAD models. On the other hand, Yumer [YAMKI15] proposes
to circumvent the parameter prediction by instead exploring an em-
bedding space linked to the parameter space. Although these meth-
ods allow to connect parameters to shapes more efficiently, the rep-
resentations are quite specialized to the procedural models at hand,
and the user is not able to provide a shape in some other modality
as a starting point for editing. In comparison, our method enables a
fully differentiable representation of procedural models that is not
specific to one application.

Procedure Inference: Beyond the prediction of shape parameters,
another body of work proposes methods to automatically derive the
procedural model itself from given shapes. Stava et al. [SBM*10]
and Guo et al. [GJB*20] investigated automatic inference of L-
systems for organic shapes. Wu et al. [WYD*14] and Nishida et
al. [NBA18] proposed different techniques to automatically infer
a grammar for building facades. Demir et al. [DAB14, DAB16]
also explored this direction, but for architectural shapes. Bokeloh et
al. [BWS10] inferred the grammar by discovering partial symme-
tries in the shapes, while Guérin et al. [GDGP16] adopted a sparse
representation of terrains. Merrell [Mer23] proposed a method that
infers graph-grammars from example shapes drawn from both the
2D and the 3D domain. Mathur et al. [MPZ20] proposed a sys-
tem where procedures for CAD programs are generated via user
edits on an interface. In the domain of materials, Guerrero et
al. [GHS*22] developed a transformer based method for generat-
ing node-graphs for materials. Hu et al. [HGH23] also proposed a
node-graph generation technique based on text or image prompts,
while Hu et al. [HHD*22] proposed an inverse procedural pipeline
based on a hierarchical decomposition of an input material.

Another group of work takes a different approach to inverse pro-

cedural modeling, representing shapes as individual programs and
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framing the problem of inverse procedural modeling as a program
synthesis problem. Sharma et al. [SGL*22] proposed a method that
predicts Constructive Solid Geometry programs for 2D and 3D
shapes. In many cases, the programs are written following some
Domain Specific Language (DSL). Tian et al. [TLS™19] proposed
such a DSL, along with a method that learns both to generate and
execute programs. Jones et al. [JBX*20] also put forth their own
DSL and program-synthesis method. In subsequent studies, Jones
et al. [JCG*21,JGMR23] extended their work by proposing tech-
niques to discover macros and abstractions from shape programs. In
another work, Jones et al. [JWR22] proposed a generalized frame-
work for learning to generate DSL-based programs.

Given that inferring procedures is a challenging and often ill-
posed problem, the approaches discussed above tend to be quite
specialized to the DSLs involved and still require parameter infer-
ence when fitting the models to input data. In contrast, in our work,
we focus on the problem of parameter inference, which is of im-
portance when detailed procedural models with a large number of
parameters are already available and intended for reproducing data
given in different modalities.

Differentiable Procedural Modeling: A relatively smaller num-
ber of works explore the idea of using a differentiable procedural
model and/or its inverse to perform tasks other than shape gener-
ation. Shi et al. [SLH*20] and Hu et al. [HGH™22] use differen-
tiable building blocks in their node-graphs for material design, so
that the entire procedural models are also differentiable. Gaillard
et al. [GKG™22] propose a differentiable procedural model that fa-
cilitates shape editing. The method creates a proxy differentiable
representation of a procedural model encoded as a node graph, but
requires that the nodes be differentiable operations. Although our
method is inspired by elements from these studies, instead of re-
quiring differentiable building blocks or modifying a given proce-
dural model into a differentiable form, our main idea is to train a
neural network to approximate the model, which allows us to be
agnostic to the implementation of the model and learn both the for-
ward and inverse mappings of the model. This makes the approxi-
mation applicable to a wide range of use cases.

Shape Inversion and Editing: Some recent studies explore the
idea of performing shape inversion and exploration with genera-
tive models of shapes. For example, Zeng et al. [ZVW *22] propose
a diffusion-based method for point cloud generation that enables
conditional shape synthesis and exploration of the latent space. Hu
et al. [HHL*24] introduce a wavelet-domain diffusion model for
shape generation, which also allows to regenerate shape parts. Lin
et al. [LMW™*22] put forth an adaptive overfitting technique for
neural representations of shapes that facilitate shape synthesis and
shape editing. Shen et al. [SSW*24] establish forward and back-
ward mappings between an image latent space and a shape latent
space to enable shape editing in a generated image. Kusupati et
al. [KGTK24] fit a parametric implicit surface template to an input
mesh in order to enable editing of the input mesh via the param-
eters of the proxy geometry. These methods enable shape genera-
tion from latent codes or editing. However, no procedural model
is linked to these types of models. We make use of some of these
ideas in our work and map shapes and parameters to latent spaces
which are then aligned to each other.
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3. Approximation of procedural models

Overview. Given a procedural model PM that takes a parameter
vector as input and produces a shape as output, our goal is to ap-
proximate PM as a differentiable function. To be more specific, the
procedural model PM establishes a mapping from the parameter
space P to the shape space S, where PM(p) = s, with p € P and
s € S. Usually, the mapping is unidirectional and such a procedu-
ral model can only be used for shape generation. However, when
we are interested in the inverse mapping PM ™! (s)=p, withs €S
and p € P, i.e., estimating the parameters for given shapes, this
cannot be obtained directly from the procedural model. One so-
lution is to pose the inverse mapping as an optimization problem
and search for the optimal parameters for given shapes. However,
in most cases, the procedural model is not differentiable, and thus
efficient gradient-based optimization methods cannot be used.

To overcome this challenge, we aim to approximate the proce-
dural model as a differentiable function PM,. We achieve this by
representing PM, as a neural network which can generate shapes
from input parameters based on a learned latent space. Moreover,
to achieve inverse mapping, we similarly represent it with a neural
network encoding a latent space. Then, we combine both mappings
together in a single network and make the mappings consistent by
aligning the latent spaces for parameter and shape prediction. The
result is a network that approximately recovers both the forward
and backward mappings of the procedural model. We train the net-
work in a manner that is agnostic to the inner workings of the pro-
cedural model by automatically generating training data with the
procedural model. We describe our assumptions on the procedural
model, the network architecture, and training procedure as follows.

3.1. Procedural Model Assumptions

Since our goal is to represent a procedural model PM with a new
differentiable form PMy, and our method is agnostic to the imple-
mentation of the model, we only have assumptions on the input
of the model, i.e., the types of parameters that can be provided.
Specifically, we assume that the procedural model takes a vector of
parameters as input and creates a shape. We also assume that the
vector of input parameters to PM can have a mix of four different
kinds of parameters:

e A parameter can be a continuous scalar, e.g., a real value that
encodes the width of a shelf.

e A parameter can be an integer value, e.g., one that represents
how many columns a shelf contains.

e A parameter can be an item from a set, e.g., one that indicates
which type of leg a shelf has, out of three possible types.

e A parameter can be a binary value, e.g., to represent whether the
back of a shelf is open or not.

3.2. Network Architecture

The neural network for approximating the forward and inverse
mappings of the procedural model follows an architecture similar
to that of an Autoencoder. Figure 2 shows the overall architecture.
The network has separate encoders that encode the parameters (PE)
and the shapes (SE) into latent vectors zp and zs. The network is
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Figure 2: Architecture of our neural network NNProc that approx-
imates the forward and inverse mappings of a procedural model.
The network is composed of encoders and decoders for parameter
vectors and 3D shapes, which work on the latent spaces zs and zp
aligned to each other by L ens. Please refer to the text for details.

trained so that the latent spaces learned by the two encoders are
aligned to each other, based on the loss function described in Sec-
tion 3.4. Thus, in practice, the two decoders decode latent vectors
from a common latent space into parameters and shapes.

Note that the procedural model can use any encoding technique
for the output shapes, such as meshes, voxel-grids or Signed Dis-
tance Fields (SDF). Each technique comes with its own advantages
and limitations. For example, meshes can represent high quality
shapes, but their unstructured nature leads to more complex net-
work architectures. Voxel-grids are structured data but a good ap-
proximation of fine details requires high resolution voxel-grids,
which are computationally expensive. SDFs are resolution inde-
pendent, but they have to be represented either in an unstructured
form or as samples on a grid. For our network, we opt to use voxel-
grids since other shape representations can be easily transformed
into this format for encoding and grids are good enough for pre-
viewing shapes. Users can then run the original procedural model
with predicted parameters to obtain the final shape.

The encoder and the decoder for parameters are Multi-Layer Per-
ceptrons (MLPs), while the encoder and the decoder for shapes are
Convolutional Neural Networks (CNNs). Moreover, both of our de-
coders mirror the corresponding encoders in terms of how the lay-
ers are arranged. The parameter encoder has three fully-connected
ReLU-activated layers with 256, 256, and 128 neurons. The shape
encoder consists of five convolutional ReLU-activated layers with
8, 16, 24, 32, and 40 channels, followed by two fully connected lay-
ers with 256 and 128 neurons. The continuous and binary values
in the input parameter vector are normalized to [0, 1] and {0,1},
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Figure 3: Examples of a variety of (a) chairs created by the primitive-based procedural model and (b) sofas obtained with the node graph-

based procedural model.

respectively, and the categorical values are one-hot-encoded. The
output layers corresponding to continuous and binary values are
sigmoid-activated. This approach also ensures that the predicted
parameters are always valid. The input voxel values are in {0,1}
and the last layer in the shape decoder is also sigmoid-activated.

3.3. Training Data

The training dataset T = {P',S’ = PM(P’)} consists of shapes
paired with their corresponding parameter vectors. Training data is
generated by first obtaining P, which is a randomly-sampled sub-
set of P, and then invoking the procedure on the sampled parameter
vectors to obtain the corresponding subset of shapes S’. As an ex-
ample, assuming the parameter vector has 3 elements and they are
sampled into 6, 3 and 5 steps, we sample 6 X 3 X 5 possible vectors.
In addition, all scalar parameters are not necessarily sampled into
equal number of steps. For instance, it may suffice to sample the
thickness of the tabletop into 3 steps, but more samples are needed
for the width-to-height ratio of the table. In our experiments, the
number of steps used to sample scalar parameters vary between 3
and 8. The binary parameters are sampled into 2 steps. The integer
and set element parameters are sampled into a number of steps de-
termined from their allowable range and set-size respectively. The
output shapes generated by the procedural models are represented
as triangle meshes. However, our network expects the shapes to be
represented as voxels, which is why the shapes are then voxelized
into 64 X 64 x 64 voxel-grids for encoding by the network.

3.4. Loss Function

We design the loss function so that the network learns a common
latent space for parameter and shape prediction while also follow-
ing the principles of Variational Autoencoders (VAE), i.e., the la-
tent vectors come from a normal distribution, as this regularizes the
latent space and enforces it to be more continuous.
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The loss function used for optimizing the network is defined as:
L= £param + L:shape + ‘CKL + ‘Csim + £latenta

where L param is the loss between the original parameter vector and
the reconstructed parameter vector, L4y, is the loss between the
original shape and the reconstructed shape, Lk, is the KL diver-
gence for a standard Gaussian distribution, Ly, is the loss incurred
by similar parameters being encoded to dissimilar vectors in the la-
tent space, and L, is the loss between the latent vector encoded
by the parameter vector (zp) and the mean encoded by the shape
encoder (u). Thus, Lparam and Lgp,p, ensure that the network pre-
dicts the correct output for the forward and inverse mappings based
on the training data, Lk regularizes the latent space, Ly, further
regularizes the latent space by bringing latent vectors of similar
parameter vectors close together, and L., aligns the two latent
spaces to each other.

Specifically, Lparam = Yyes Yie1 Li, where L] represents the
loss for the i-th element of the parameter vector of shape s,
and n is the size of the parameter vector. For scalar parame-
ters, L; is a squared-difference loss and for other kinds of pa-
rameters, L; is a cross-entropy 10ss. Lghape = Ysesr LCE (S Srecon)
where Lcg (s, Srecon) represents the cross-entropy loss between
shape s and its reconstruction Srecon. Lk = — % Yocs (1+1og c—

2 .
u? — €89 where u; and o2 are the mean and variance for

shape s respectively, encoded by the shage encoder. Ly =
L, ses [[CosSim(uy, p2) — CosSim(py, p2)||”, where py,up are
encoded means for shapes sy, 52, the parameter vectors correspond-
ing to the shapes are pp, py, and CosSim is the cosine similarity

2 .
between two vectors. Ligren = Loesr H Us —Zpg||» where zp  is the
latent vector encoded by the parameter encoder for shape s.
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4. Results

One of the advantages of our approach is that the network approx-
imation of the procedural model can be used for various tasks. As
follows, we first provide details on the procedural models used in
our experiments and then explore examples of possible tasks.

4.1. Procedural Models and Training Setup

We test our method on two procedural model implementations that
generate five classes of 3D man-made furniture shapes, specifically,
beds, chairs, shelves, tables, and sofas. Both models are similar in
the sense that they take a vector of parameters as input and create a
shape represented as a triangle mesh as output. However, the design
and implementation of the two procedural models and the sizes of
the input parameter vectors are different.

The first procedural model used in our experiments is a
primitive-based procedural model. The model assembles primitives
such as cubes and cylinders of different scales and orientations in
order to create more complex shapes. The procedural model utilizes
the internal data structures used by Blender to create and manipu-
late the primitives. The transformations applied to the primitives are
governed by the parameters to the procedure. The procedural model
primarily uses the cube and the cylinder primitives, with scaling,
rotation and translation applied to them. In some cases, geometry-
modifying operations such as edge bevelling and face extrusion are
applied as well. The model is composed of 894 lines of Python code
in total (excluding the code of the Blender libraries). Figure 3(a)
shows some examples from the chair class that were created using
this procedural model. More details about the procedural model are
provided in the supplementary material and the code can be found
athttps://github.com/ihossain-cu/ProcShapes.

The second procedural model is a Blender geometry node-based
model [Bas21], which creates shapes from the sofa class. The node
graph used by the model consists of 830 individual nodes. The
model comes with 19 adjustable parameters. However, allowing
some of the parameters, especially the ones that control leg-related
attributes, to assume arbitrary values can result in implausible ge-
ometry. We opt to set 7 such parameters to constant values and
allow the remaining 12 to vary. Figure 3(b) shows some examples
from the sofa class generated with this model.

For training-data, we use 3,000 example shapes from each cate-
gory of shapes generated by the primitive-based procedural model.
The geometry-node-based procedural model has more parameters
and with our approach for sampling parameter vectors, the num-
ber of possible parameter vectors is also very large. In this case,
we limit the number of training samples to 10,000 in order to keep
the training time within acceptable range. The primitive-based pro-
cedural model takes approximately 4ms on average to generate
a shape, while the geometry-node-based procedural model takes
160ms on average. Thus, generating the training data takes approx-
imately 28 minutes in total. We train a separate neural network for
each category of shapes, and use a held-out set of 300 example
shapes to test each network. It takes approximately 8 hours to train
all 5 models on an NVIDIA RTX3090 GPU.
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Figure 4: Network components involved in shape generation. The
dashed lines indicate that the parameters for the corresponding
component are frozen.

4.2. Applications of NNProc

We demonstrate in this section how our network can be used in
various configurations to perform different tasks. The tasks can
be broadly divided into two categories, shape generation (forward
procedural modeling) and shape reconstruction. Shapes can be re-
constructed by first predicting parameters for given shapes (inverse
procedural modeling) and then using the procedural model to repli-
cate the shapes from predicted parameters. We also show that there
is more than one approach that can be taken with our network for
predicting shape parameters. Parameters can be predicted directly
by means of inference, or via optimization. The latter approach al-
lows us to use our network in various other applications, for in-
stance, parameter prediction from images. As follows, we show
how our network can be used to perform the following tasks:

e Task 1: Generating 3D shapes from given parameters.

e Task 2: Reconstructing 3D shapes using parameters predicted
from 3D shapes via inference.

e Task 3: Reconstructing 3D shapes using parameters predicted
from 3D shapes via optimization.

e Task 4: Reconstructing 3D shapes using parameters predicted
from images via optimization.

We also compare the results of our parameter-prediction techniques
with a baseline method based on optimization. Specifically, we use
the COBYQA method available in the scipy package in Python,
which is a derivative-free method that minimizes given objec-
tive functions [Rag22, RZ24]. For the objective function, we use
the Chamfer distance between the original shapes and the recon-
structed shapes. We opt to use this baseline in particular because
the procedural models in their original forms are not differentiable,
and this method is the best-performing optimization method among
all the methods available in the package. We would like to point
out that our method is GPU-accelerated while the baseline method
is not and it may be challenging to adapt the currently available
implementation of the baseline method to take advantage of spe-
cialized hardware. However, the main goal of this comparison is to
provide a general idea of the performance of the methods.

4.2.1. Task 1: Shape Generation

We evaluate how well the neural-network approximation of the
procedural model (NNProc) works when the task is to generate
shapes from input parameters. As illustrated in Figure 4, for this
task, once the original network is trained, we encode the input pa-
rameters of the test shapes into latent vectors using the parameter

© 2025 The Author(s).
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Figure 5: Results of the various tasks enabled by our neural approximation of procedural models (NNProc) on selected test shapes, including
approximating the procedural model (Column 3) and tasks related to inverse mapping for reconstruction (Columns 5-7). Please refer to

Sections 4.2.1-4.2.4 for details.
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Figure 6: Results of the various tasks enabled by our neural approximation of procedural models (NNProc) on selected test shapes, including
approximating the procedural model (Column 3) and tasks related to inverse mapping for reconstruction (Columns 5-7). Please refer to
Sections 4.2.1-4.2.4 for details.
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Figure 7: Network components involved in parameter prediction.

encoder PE and then use the shape decoder SD to decode shapes
from the latent vectors. Formally, given some parameter p, we cal-
culate SD(PE(p)). With this approach, on average, it takes approx-
imately 1ms to create one shape from its corresponding parame-
ter vector. Figures 5 and 6 show selected examples of generated
shapes for qualitative evaluation of the results. The first column
shows the original shapes in triangle mesh format and the second
column shows their corresponding voxel representations. The third
column shows the shapes generated in voxel format from their cor-
responding parameters using the network.

To provide a quantitative evaluation, we compare the shapes gen-
erated by the network with the voxelized representations of the
original shapes. The dissimilarity between an original shape and a
reconstructed shape is measured by the metric Dyoxe] = % Y sds,
where s @ s’ represents the logical XOR between the voxels s and
s" from each shape and R is the size of the voxel-grid. This met-
ric reports the percentage of erroneous occupancy with respect to
the total size of the voxel-grid. The fifth column of Table 1 shows
the average dissimilarity between the voxel representations of the
test shapes and the voxel representations generated from their cor-
responding parameters. For reference, the third column shows the
average dissimilarity between voxel representations over all pairs
of shapes from the same class. We see that the dissimilarity between
the original shapes and the reconstructed shapes is less than 1.1%.
The visual results are not perfect and have small-scale artifacts, for
instance, the network struggles to generate thin structures like the
inner walls of the shelves accurately at this resolution. However,
the results are sufficient for fast visualization and for verifying that
the model is learning to approximate the procedural model.

4.2.2. Task 2: Direct Parameter Prediction

Next, we test how well NNProc predicts parameters for given
shapes. In this task, we predict the parameters for voxel represen-
tations of unseen shapes and use the original procedural model to
reconstruct the shapes as meshes. We encode the test shapes into
latent vectors using the shape encoder SE from the trained network
and then decode the latent vectors into parameters using the param-
eter decoder PD, as illustrated in Figure 7. Formally, given a shape
s, we calculate PM(PD(SE(s))). The experiment is performed on
the same set of test shapes used in the experiments for the previous
task. The fifth columns in Figures 5 and 6 show qualitative exam-
ples of shapes reconstructed using the network, whereas the fourth
columns show examples of shapes reconstructed using the baseline
method. To compare an output mesh with the ground truth mesh,
we compute the Chamfer distance (D¢pamfer) between the shapes,

© 2025 The Author(s).
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where the shapes are first normalized into a unit cube. We report
the average distances for all the shapes in the test set in the second
column of Table 1.

We see in the visual examples that the reconstructions are quite
close to the original shapes, differing only in a few fine details such
as the number of pillows on the beds, or the fine details on the
surface of the couches. The average Chamfer distances for all the
categories are at most 0.0014. For reference, the second column
shows the average dissimilarity between mesh representations over
all pairs of shapes from the same class. Table 1 also shows that our
method significantly outperforms the baseline method in terms of
reconstructing shapes faithfully. Our method is also considerably
faster than the baseline method, with an average inference time of
0.6ms per shape. For the baseline method, the average time taken
for parameter prediction varies between 1s and 18s per shape on an
Intel 19-10900KF CPU, depending on a number of factors, such as
the number of parameters and the number of triangles.

To show that the alignment of latent spaces in our network does
not interfere with the quality of the inverse mapping, we also com-
pare our results with those of a simplified network that only learns
the mapping from shapes to parameters. In other words, the net-
work consists of a shape encoder and a parameter decoder. Note
that, in contrast to NNProc, such a network is neither suitable for
shape generation nor can it be used to optimize parameters for un-
seen shapes. However, it provides a reference for the inverse map-
ping. Table 1 shows that the results of the simple network are com-
parable in quality to the results of NNProc. The inference time is
also comparable.

4.2.3. Task 3: Parameter Prediction via Optimization

The approach taken in Section 4.2.2 for parameter prediction is
based on the inverse mapping learned by the network. Thus, it is
inference-based and does not involve any optimization. The same
task can also be performed using an optimization-based approach,
which is possible since the components of the network are differ-
entiable. The optimization mainly requires the shape decoder SD
from the original network and the parameter decoder PD at the end
of the optimization. This approach is relevant in situations where
direct prediction via the shape encoder is not possible, but only in-
direct prediction, e.g., when other modalities of data are used.

In this approach, we optimize y and o? for the voxel repre-
sentation of each unseen shape. Then, we sample a latent vec-
tor from the distribution (u,6%), which is input into the trained
shape decoder. Figure 8 illustrates how the network is used in
this optimization task. During the optimization, we calculate the
loss between the predicted shape and the target shape, and then
back-propagate the error to update u and 6% while keeping the
decoder parameters frozen. The values of u and o are initially
set to 0 and 1, respectively. Formally, given a shape s, we find
ot = argming, g Leg (SD(zs ~ N (u,6°),s). We observe that,
with this approach, u* is a local minimum of the reconstruction er-
ror. Then, we can generate a shape using the decoded parameters
with the original procedural model, i.e., PM(PD(u*)).

The sixth columns in Figures 5 and 6 show visual examples of
test shapes reconstructed with this approach. We observe in the vi-
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Table 1: Quantitative evaluation of the various tasks enabled by our network (Ours) on a test set, along with a comparison to a baseline
method based on optimization (Baseline), a simple inverse mapping network (Simple), and an ablation study on the regularization of the

latent space with various loss terms. We highlight the best result for each shape class and task.

Avg Avg
dissimilarity dissimilarity Task 1 Task 2 Task 3 Task 4
Shape class Method
P among meshes  among voxels (Dvoxel)  (Dchamfer) ~ (Dchamfer) — (Dchamfer)
D hamfer Dyoxel
Baseline 0.0209
Simple 0.0003
Ours 0.75 0.0003 0.0031 0.0117
Table 0.0658 6.38 wlo L1 0.65 00007 00199  0.0257
w/o Lgim 1.09 0.0003 0.0158 0.0144
w/o Lx1. & Lgim 0.63 0.0007 0.0185 0.0318
Baseline 0.0013
Simple 0.0002
Ours 0.34 0.0002 0.0005 0.0016
Sofa 0.0033 598 wio L 0.51 0.0003 00018  0.0028
w/0 Lgim 0.49 0.0002 0.0006 0.0016
w/o Lxr & Lgim 0.28 0.0002 0.0021 0.0028
Baseline 0.0048
Simple 0.0001
. Ours 0.08 0.0001 0.0007 0.0057
Chair 0.0191 385 wlo L 0.07 00003 00061  0.0125
w/0 Lyim 0.15 0.0001 0.0008 0.0073
w/o Lx1, & Lgim 0.07 0.0002 0.0041 0.0107
Baseline 0.0260
Simple 0.0008
Ours 0.25 0.0006 0.0031 0.0063
Shelf 0.0361 303 w/o Lkr, 0.22 0.0025 0.0235 0.0231
w/0 Lim 0.41 0.0014 0.0047 0.0073
w/o Lx1, & Lgim 0.24 0.0016 0.0173 0.0268
Baseline 0.0060
Simple 0.0003
Ours 0.23 0.0004 0.0015 0.0109
Bed 0.0136 10.17 wlo Lkr, 0.13 0.0006 0.0044 0.0078
w/o Lgim 0.15 0.0004 0.0016 0.0119
wlo Lxr & Lgim 0.12 0.0006 0.0047 0.0075
_ T I sual examples that shapes reconstructed with our network via op-
B | o timization are again quite close to the original shapes, with differ-
< I o 8 | % % ences only in some localized features. The average Chamfer dis-
8T | S o tances (D, ) between the output h d th d truth
» =0 chamfer put meshes and the ground tru
8 (5(: % | % = meshes are reported in the 7th column of Table 1. We note that the
o | o | 2@ Chamfer distances are slightly higher than those provided by the
°
I - s | o network in Task 1, but still in acceptable ranges. This is reason-
T~y able since we are not relying on the learned mapping but search-

Figure 8: Network components involved in parameter prediction
via optimization. Mainly the shape decoder SD is required.

ing it via optimization, which implies that we may not converge to
the learned optimum. However, the results are still competitive, es-
pecially when comparing to the baseline. The average time taken
for parameter prediction using this approach is 1.7s per shape. Al-
though the inference time is higher than the previous approach, it is
also still on par with that of the baseline method. This indicates that
optimization for inverse mapping also works satisfactorily and we
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Figure 9: Examples of silhouette images from which shapes are
reconstructed.

can use it to enable a variety of other tasks. We explore one such
task in the next section.
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Figure 10: Network components used in the parameter prediction
from silhouette images via optimization.

4.2.4. Task 4: Shape Reconstruction from Silhouette Images

In this experiment, we reconstruct shapes from their silhouette im-
ages. Figure 9 shows example images used in this experiment.

To reconstruct shapes from silhouette images, we use the shape
decoder SD as described in Section 4.2.3 with the additional modi-
fication that the output of the shape decoder is rendered into silhou-
ette images by a differentiable renderer [LB 14, RRN*20], as illus-
trated in Figure 10. The target can be a single image or an image-
stack consisting of multiple views of the same object. The differen-
tiable renderer can be set up with matching number of cameras and
their poses, each rendering a different view. The output is a stack
of rendered images. In our experiment, we set the number of views
ny = 4. Then, we calulate the L, loss between the output images
and the ground truth images and backpropagate to update u and o
Once the loss has been minimized, the shapes are reconstructed by
decoding u with the parameter decoder PD and then using the pro-
cedural model with the decoded parameters. The last columns in
Figure 5 and Figure 6 show examples of shapes reconstructed from
silhouettes of the original shapes, while Table 1 reports the average
Chamfer distances (D¢hamfer) between the output meshes and the
ground truth meshes for all the test shapes.

We observe that the reconstructions are not as accurate as re-
constructions from 3D shapes. However, the overall shape of the
objects is still recovered from the little information provided by
the silhouettes. The Chamfer distances are also still relatively low
(overall below 0.03), implying that the general shapes are recov-
ered. The average time taken for parameter prediction using this
approach is 10s per shape. The increase in inference time is pri-
marily due to the network complexity added by the differentiable
renderer. This shows the potential of the network for reconstruc-
tion from other modalities of data, which we explore more in Sec-
tion 4.3.

© 2025 The Author(s).
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Figure 11: Reconstructions of shapes from ShapeNet objects (in
mesh or point cloud format) and Pix3D images using our method.

4.3. Applications Enabled by Optimization

Our neural approximation of procedural models is applicable to
a diverse range of applications and fares reasonably well with
data that was not generated using the same procedural models. To
demonstrate this, we reconstruct shapes from various forms of input
data, such as meshes, point clouds, and single-view photographs,
which are obtained from publicly available sources. In the first ex-
periment, we train our network with data generated by the procedu-
ral models described before, and as discussed in Section 4.2.2, we
use the trained network to predict parameters for example shapes
taken from the ShapeNet dataset [CFG™ 15]. We selected 10 shapes
for each of the bed, chair, shelf, and table classes, respectively. The
procedural models then use the predicted parameters to reconstruct
the shapes. We perform this experiment on both meshes and point
clouds extracted from meshes, both of which can be transformed
into voxel-grids and then used by the network. In the second ex-
periment, to reconstruct shapes from photographs, we extract the
silhouette of the object we would like to reconstruct and use the
method described in Section 4.2.4 to infer the parameters of the
shape. Specifically, for each object, we use its photograph and its
object mask provided in the Pix3D dataset [SWZ* 18] and only a
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Table 2: Chamfer distance between ShapeNet and Pix3D shapes
and their reconstructions using different types of input.

Shape class Bed Chair Shelf Table
Input type

Mesh 0.0023  0.0021 0.0079  0.0030
Point cloud 0.0106  0.0057 0.0593 0.0134
Photograph 0.0072  0.0452  0.0129  0.0055

single image is used (n, = 1). After obtaining the parameters, we
use the procedural models to generate the reconstructed shapes.

Figure 11 shows selected results from this experiment. Table 2
shows Chamfer distances between the original shapes and their re-
constructions. The first column in Table 2 represents input type and
the first row shows the class of shapes. In most cases, the recon-
structions are fairly close. There are some failure cases, for exam-
ple, the sparsity of point clouds can lead to inaccuracies in the pre-
diction of fine structures such as the inside of shelves or the chair
backs. On the other hand, more standard shapes such as the round
table and chair given in the photographs are reconstructed well.

One limitation with reconstructing shapes from images is that
the reconstruction quality is heavily dependent on the number of
images and the camera poses used by the images. If the right cam-
era poses are available, only a handful of images can lead to good
reconstruction. However, this is usually not the case. On the other
hand, one can expect a better reconstruction when a large number of
images with more variation in camera poses are available. A good
example of such a case is when the target shape is available via
a novel-view-synthesis method, such as a Neural Radiance Field
(NEREF) or a 3D Gaussian Splatting (3DGS) scene. With such rep-
resentation, an arbitrary number of images of the target shape can
be rendered with varying camera poses, which can yield a better
reconstruction using our network.

To demonstrate this idea, we show how our method can be used
to reconstruct shapes from 3DGS scenes. For this experiment, we
record a video by moving a physical camera around a real chair
with the camera always pointed towards the chair. We then sam-
ple frames from the video and construct a 3DGS representation of
the scene from the sampled frames. We select a set of 50 cam-
era poses that are not used during the training process and ren-
der the 3DGS scene using the camera poses. From the rendered
images, the silhouette of the chair is extracted using pretrained
YOLO (You Only Look Once) and SAM (Segment Anything) mod-
els [Joc20, KMR*23]. The silhouette images are then used to re-
construct the 3D shape with the same process described in Sec-
tion 4.2.4. However, we use 50 images instead of 4 (n, = 50). Even
though in this particular instance we could directly sample these
images from the video, constructing a 3DGS scene from them al-
lows us to synthesize views that are not readily available from the
video. Figure 12 shows the results from this experiment. The top
row of images on the left are images rendered from the 3DGS
and the bottom row shows the silhouettes extracted from the cor-
responding images. Several views of the reconstructed shape are
shown on the right.

1. Hossain, 1. Shen, and O. van Kaick / Approximating Procedural Models of 3D Shapes with Neural Networks

Table 3: Average Chamfer distance between original shapes and
their reconstructions for ShapeAssembly and our method. We high-
light the best result for each shape class.

Shape class .
m Chair  Shelf  Table

ShapeAssembly 0.0068 0.0048 0.0071
Ours 0.0081 0.0187  0.0065

4.4. Comparison with ShapeAssembly

To provide a comparison to state-of-the-art methods aimed at re-
constructing 3D shapes in a procedural manner, we compare shapes
reconstructed by our method and ShapeAssembly [JBX*20]. For
this comparison, we use the chair, shelf and table classes in the
ShapeNet dataset of 3D shapes. In order to reconstruct ShapeNet
shapes with ShapeAssembly, the original triangle-mesh shapes are
transformed into point clouds first. The point clouds are encoded
into latent vectors using the point cloud encoder and then decoded
into shape generating programs using the pre-trained decoder. The
programs are subsequently parsed into triangle meshes. It is worth
mentioning here that the pre-trained point cloud encoder is no
longer compatible with the latest version of the code, which is why
it is retrained and the results may vary from the ones shown in the
original paper. With our method, the original shapes are voxelized
and encoded into latent vectors, and then decoded into parame-
ter vectors. The procedural model then generates the shapes from
the parameter vectors. For this experiment, we reconstructed 5617,
1768 and 7654 shapes for chair, shelf and table shapes respectively,
using both methods. Figure 13 shows some of the reconstructed
shapes. The top row shows the original shapes. The second and the
third rows show shapes reconstructed by ShapeAssembly and our
method, respectively. Table 3 shows the quality of the reconstruc-
tions for all the shapes in the dataset.

The results show that ShapeAssembly performs better on the
shelf category, while the two methods are comparable on the other
two categories. We see in the visual results that both methods can
provide good reconstructions for certain shapes. ShapeAssembly
has the advantage of providing a method for automatically extract-
ing shape programs from a dataset and predicting programs for 3D
shapes, while our method allows any procedural model to be used
in an agnostic manner, and can perform inverse mapping via op-
timization, enabling inverse mapping from partial views (images).
One limitation of ShapeAssembly is that it is possible for the net-
work to generate shape programs that result in implausible geom-
etry, illustrated by the second chair example. Our method on the
other hand ensures valid reconstructions since the predicted param-
eters are provided to a procedural model.

4.5. Ablation Study

We conduct an ablation study where we investigate the effect of
regularizing the latent vectors. Regularization on the latent space
is done using two separate techniques. We sample the latent vec-
tor z from a normal distribution and we penalize the network if
similar parameter vectors are encoded to dissimilar latent vectors.

© 2025 The Author(s).
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Figure 12: Results showing how our method can reconstruct shapes with a procedural model from 3D Gaussian Splats.
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Figure 13: Comparison between shapes reconstructed by ShapeAssembly and our method on selected shapes.

In this experiment, we study their effect by removing the restric-
tions, both individually and combined. In other words, we train
one network where z is deterministic and the term Lk is omitted
from the loss function (“w/o Lg;” in Table 1), and another net-
work where the term Lg;;,, from the loss function is omitted (“w/o
Lsim” in Table 1). We train yet another network with both of these
modifications (“w/o Lgr & Lyi,,” in Table 1). We repeat the above
mentioned experiments with these modified networks and measure
which network performs better. Table 1 summarizes the findings,
which indicate that regularizing the latent space results in overall
better performance for all the tasks.

5. Limitations

There are some limitations to the approach taken in this work. Care
needs to be taken when designing the procedural model, so that the
output shapes do not suffer from bad geometry. One way to ensure
this is by specifying manual constraints as part of the procedural
model. However, this can affect the performance of the neural net-
work representation of the procedural models. Another limitation
is that voxels do not capture fine details very well. This restricts the
applicability of our method to procedural models where the out-
put shapes do not have intricate details. Lastly, procedural models
with large numbers of parameters pose a challenge to our approach,

© 2025 The Author(s).
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since the neural network needs to be trained on a large dataset,
which requires more computation.

6. Conclusions and future work

We introduced a neural network architecture to approximate pro-
cedural models of 3D shapes. We demonstrated that the network
is able to learn the forward and inverse mappings of procedural
models implemented in different manners, making the network
implementation-agnostic, and can also be used in optimization-
based inversion tasks such as reconstruction from images.

In future work, we would like to evaluate our method for ap-
proximating procedural models of organic shapes such as vegeta-
tion, which tend to have finer multi-scale features. Thus, we would
also like to investigate whether other shape representations can be
used to better capture fine details of shapes, and explore how our
approach scales with the number of parameters. In addition, we
would like to experiment with using stochastic gradient estimates
for inverse procedural modeling [DHB24]. Finally, although our
current method focuses on predicting parameters of the procedural
model, it would be an exciting direction if we can further align our
latent space with the CLIP [RKH*21] latent space in order to also
offer the flexibility to the user of manipulating the parameters and
shapes through textual inputs.
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