
Evaluation of Latent Space Learning
with Procedurally-Generated Datasets of Shapes

Sharjeel Ali Oliver van Kaick
School of Computer Science, Carleton University, Canada

{sharjeel.ali,oliver.vankaick}@carleton.ca

Abstract

We compare the quality of latent spaces learned by dif-
ferent neural network models for organizing collections of
3D shapes. To accomplish this goal, our first contribution
is to introduce a synthetic dataset of shapes with known
semantic attributes. We use a procedural method to gen-
erate a dataset comprising four categories, with a total of
over 10,000 shapes, providing a controlled setting for study-
ing the properties of latent spaces. In contrast to previous
work, the synthetic shapes generated with our method have
a more realistic appearance, similar to objects in manually-
modeled collections. We use 8,800 shapes from the gener-
ated dataset to perform a quantitative and qualitative eval-
uation of the latent spaces learned with a set of representa-
tive neural network models. Our second contribution is to
perform the quantitative evaluation with measures that we
developed for numerically assessing the properties of the la-
tent spaces, which allow us to objectively compare different
models based on statistics computed on large sets of shapes.

1. Introduction

Recently, a variety of methods have been introduced
for synthesizing 3D shapes with deep neural networks [4].
Most of these methods are based on the idea of learning a la-
tent space that organizes an existing collection of 3D shapes
and allows the generation of new shapes. Specifically, each
shape is represented as a low-dimensional latent represen-
tation, e.g., a small vector of numbers. Then, a decoder
neural network can decode the latent vector back into a 3D
shape with rich detail. In addition, the latent vectors can be
interpolated/extrapolated and then decoded into new shape
variations, allowing users to explore the shape space at a
high-level by manipulating the latent vectors. These meth-
ods have attracted much interest in the literature since the
latent spaces can be learned without pre-defining features
or computing correspondences among the shapes.

Different types of deep network architectures can be

used for learning latent spaces of shapes, such as au-
toencoders (AEs) [1, 11, 6, 5], variational autoencoders
(VAEs) [17], auto-decoders [18], and generative adversarial
networks (GANs) [22, 1, 6]. AEs and VAEs allow to ex-
plicitly encode shapes into the latent representation. GANs
implicitly learn a latent space, where the input noise vector
can be seen as a latent encoding, although arbitrary shapes
cannot be directly mapped to this space; the latent space
has to be explored in an indirect manner. Thus, GANs have
been extended to also include an encoder, such as in the Bi-
GAN [8] and VAE-GAN [15] models used for image syn-
thesis. While most previous work on shape synthesis with
deep networks has focused on improving the visual quality
of the synthesized shapes by using different shape represen-
tations and network architectures, few works have studied
the capabilities and limitations of the latent spaces learned.

In this work, our goal is to investigate the quality of the
latent spaces learned by existing deep neural networks for
3D shapes and their potential for shape modeling. Specifi-
cally, our goal is to study the quality of the organization of
shapes in the latent spaces and also the quality of interpo-
lated shapes. A meaningful organization of the latent space
would imply that certain directions in this space capture
the variation of particular semantic attributes of the shapes,
while good interpolation capabilities would imply that the
generated shapes are smooth and plausible variations of the
training shapes [8]. Although these properties are not ex-
plicitly optimized for in most neural networks, they are of-
ten seen as an expected output of the learning process, given
that these properties are evaluated in previous works [22].

To perform this investigation, our first contribution is to
introduce a synthetic dataset of shapes with known struc-
ture and semantic attributes (Figure 1). We use a procedural
method [19] to generate a large dataset where the shapes
gradually differ in their semantic attributes and correspond-
ing visual appearance. The datasets generated with our
method then serve as a controlled setting for our study of
latent spaces. In contrast to previous work [14], the shapes
generated with our method have a more realistic appear-
ance, rather than being just a collection of boxes or proxies.

mailto:sharjeel.ali@carleton.ca
mailto:oliver.vankaick@carleton.ca

Figure 1: A gallery of 40 shapes sampled from our 4 procedurally-generated datasets.

We introduce a dataset with four categories of shapes,
which we use to evaluate how well the latent spaces learned
by different variations of autoencoders organize the seman-
tic attributes of the shapes. We focus on networks that
learn the embeddings from non-structured 3D content, such
as volumes, rather than structured content [4]. We use
non-structured representations as they require minimal data
preparation, compared to structured content that is often
represented in the form of graphs of parts with labels.

Moreover, our second contribution is to introduce a set of
measures to evaluate the learned latent spaces in a quantita-
tive manner. Specifically, we measure the distance correla-
tion of a parametric representation of the shapes with the la-
tent vectors, to compare the shape attributes with the shape
organization in the latent space. Secondly, we examine how
well the latent space directions organize the shape attributes
by measuring how well the latent dimensions group specific
shape attributes. Finally, we also evaluate the interpolation
capabilities of the networks by measuring the similarity be-
tween interpolated and expected shapes.

In summary, our contributions are:

• Four synthetic datasets of 3D shapes with known se-
mantic attributes, which can be used in controlled ex-
periments or for learning in general;

• Three procedures for evaluating how well learned
latent spaces conform to the semantic attributes of
shapes;

• An evaluation of the latent embeddings learned by four
variations of autoencoders;

2. Related work
In this section, we discuss the previous work most related

to our study: learning of latent spaces for encoding and syn-

thesizing 3D shapes, and the evaluation of such spaces.

Encoding of 3D shapes. A variety of deep network archi-
tectures have been proposed for learning latent spaces, such
as AEs, VAEs, and GANs. These architectures have also
been applied to 3D shapes, based on different shape repre-
sentations. The simplest type of AE has a symmetric archi-
tecture, where an input shape is encoded into a latent repre-
sentation and then decoded back into the same type of shape
representation. For example, Achlioptas et al. [1] use a sym-
metric AE to encode shapes represented as point clouds.
However, hybrid architectures are also possible, where the
encoder and decoder use different representations. In prac-
tice, this can be achieved by first training the encoder with
a symmetric decoder, and then exchanging the decoder for
a network generating a shape in a different type of repre-
sentation. For example, Chen and Zhang [6] use an AE for
learning a latent space of shapes, where the encoder can
process different types of input while the decoder generates
shapes represented as implicit occupancy fields.

In addition, Groueix et al. [11] use an AE to synthesize a
shape as a set of parametric surface patches. Park et al. [18]
introduce a method for shape generation based on a signed
distance implicit function and auto-decoder network, which
does not require the use of an encoder network. Chibane et
al. [7] propose the use of an unsigned distance function to
represent open surfaces and objects with internal structures.

Moreover, GANs have improved the visual quality of
synthesized data with the use of adversarial learning, and
thus this type of method has also been applied to the syn-
thesis of 3D shapes. For example, Wu et al. [22] gener-
ate shapes with a GAN based on a volumetric represen-
tation. The works of Achlioptas et al. [1] and Chen and
Zhang [6] discussed above also experimented with the use

Figure 2: Procedural generation of man-made shapes with
split grammars. An initial box is refined recursively with a
set of rules into a set of boxes that define the fine structure
of a shape. The final boxes are then refined with patches
and deformed to define the final meshes of the shapes.

of GANs for shape generation, achieving smoother visual
results. Chen et al. [5] extend the use of an implicit repre-
sentation to generate shapes with binary space partitioning.

Note that, since standard GANs do not train an encoder,
the latent spaces are implicitly defined and cannot be explic-
itly explored. Thus, a few methods have been developed for
adding an encoder network to a GAN and using it in image
synthesis tasks [8, 15]. However, these encoder GANs have
not been extended yet to synthesize 3D shapes.

Evaluation of latent spaces. An important question when
considering different models for learning latent spaces is
how to evaluate and compare such models. Thus, a few
methods have been proposed in the machine learning liter-
ature for this task. One of the earliest forms of evaluation
proposed is to show a 2D embedding of the learned rep-
resentation where each data point is colored with its class
label [13]. This method enables a visual inspection of the
grouping of points in the 2D latent space, but is only appli-
cable to datasets with a single label per point.

Theis et al. [20] discuss different methods for the evalua-
tion of generative models, such as Parzen window estimates
and visualizing samples and nearest neighbors to assess the
generalization capabilities of the model. The inspection of
samples and nearest neighbors allows to detect overfitting to
some extent when appropriate metrics are used, but the eval-
uation is mainly qualitative. Burgess et al. [3] evaluate the
disentanglement of learned image representations by creat-
ing a dataset of Gaussian blobs with known positions, and
then verifying how well the latent spaces are organized ac-
cording to the blob parameters. We follow a similar idea by
creating a dataset with known properties, although we focus
on 3D shapes and create more complex and realistic data.

(a) box (b) round (c) deform (d) b+c

Figure 3: Examples of rounding and deformation rules.
Starting with a box (a), the method can apply a rounding
(b) or deformation (c) function. Both rules can then be com-
bined to create a rounded and deformed shape (d).

Figure 4: Example of a chair generated with our procedural
method. The figure shows the different levels of recursive
refinement of the boxes and the final generated shape.

3. Procedural generation of man-made shapes
Overview of the procedural modeling system. In this
section, we provide some background on the procedural
system to explain how we generated the shapes in our
datasets. Different methods have been proposed for the
procedural generation of shapes [16, 19]. In our work, we
generate man-made shapes in a procedural manner with a
method inspired by the split grammar of Wonka et al. [21],
which was originally introduced for the procedural genera-
tion of buildings. The idea of the split grammar is to recur-
sively split pieces of geometry into smaller units based on
a set of rules. For the generation of man-made shapes, our
idea is to define rules that operate at the box and patch level,
as shown in Figure 2. That is, given an initial box enclosing
the entire space where the shape will reside, the box is re-
cursively split into smaller boxes to define the fine structure
of the shape. Then, the resulting boxes are transformed into
a set of surface patches that define the mesh geometry of
the shape. Finally, the patches can undergo deformation to
enable the creation of curved surfaces as shown in Figure 3.

The use of boxes and patches allows us to generate com-
plex shapes with detailed geometry, as opposed to shapes
represented only by cuboids, and allows us to generate
shapes without involving expensive operations such as con-
structive solid geometry operations or surface reconstruc-
tion. The box splitting, patch creation and deformation are
all carried out with a set of rules. We loosely call the set of
all rules that generate shapes of a specific category a gram-

mar. A rule takes as input one piece of geometry (box or
patch) and outputs a set of refined geometry (one or more
boxes or patches). Thus, the implementation of rules is not
complicated as it involves considering only a small amount
of information at a time. Figure 4 shows an example of the
recursive splitting of boxes and the final shape created.

In addition to its geometry, a box or patch can be as-
signed a set of tags, which are considered by the rules dur-
ing the refinement of the shape. Tags can be used to at-
tach semantic meaning to the shape parts. For example, the
box on top of a future chair can be assigned the tag “back”,
which then ensures that only rules that create chair backs
are applied to this box. By defining multiple rules that ac-
cept the same sets of tags, we can add stochasticity into the
system and generate a large variety of shapes.

Shape generation. The method for recursive application
of split rules uses a list structure to store all active geometry,
i.e., boxes or patches that can still be further refined. The list
is initialized with a box enclosing the allowed work space.
The main execution step of the method involves iteratively
taking a piece of geometry G from the list and applying a
rule that: 1. Handles the type of G (box or patch); 2. Re-
quires the same tags that G has been assigned. If multiple
rules can be applied, we randomly select a rule to generate
stochastic shape variations. The newly generated geome-
try is appended to the list if it can be further refined. The
method terminates when the list is empty.

4. Generated datasets
Shape parameters. The rules in the shape grammar con-
trol different aspects of the shape generation, such as the
presence of certain types of parts or the style and visual
look of the parts. Before creating the datasets in our study,
we first associate a set of parameters with all of the gram-
mar rules for a category, so that a shape can be encoded as
a parameter vector. We consider three types of parameters:
binary (encoding whether a shape feature exists or not), in-
teger (a feature is of a certain type denoted by a finite set
of integer numbers), or scalar (a continuous varying feature
such as the height of a part, sampled into a set of s steps).
In order to accurately compare vectors with differing inte-
ger parameters, we convert each integer parameter with a
set of t types into t binary parameters, in which only the
parameter corresponding to a given integer is set to 1.

Shape generation. To generate the shapes in our datasets,
we systematically create all the possible combinations of
parameters and generate the corresponding shapes. In this
manner, we create four datasets. We list the datasets and
their statistics on Table 1. Examples of shapes in the
datasets are shown in Figure 1. Then, we stochastically

Dataset # shapes # parameters # parts # steps
B S I

Beds 2,430 0 5 3 1 3-6
Chairs 2,592 0 3 13 4 3
Tables 2,880 0 4 6 2 3-5
Shelves 2,916 2 5 3 3 3

Table 1: Characteristics of the datasets generated with the
procedural method for our study. We report the number of
shapes (# shapes), number of binary (B), scalar (S), and in-
teger (I) parameters, number of semantic parts (# parts), and
the number of steps (# steps) sampled per scalar parameter.

sample a subset of 2,200 shapes from each category for our
study, to arrive at datasets that fit within the memory limits
of the hardware used for training the different models. The
final datasets are then given by the sampled shapes and their
associated parameter vectors.

5. Shape encoding architectures
Since GAN architectures combined with encoders have

not yet been extended to 3D shapes, in our evaluation, we
consider mainly different variations of autoencoders. We
evaluate the following network architectures.

3D-AE. This is the classic autoencoder architecture
adapted to 3D volumes of shapes. We use the implementa-
tion provided by Guan et al. [12], where the network takes
as input a 323 voxelized shape that is encoded through 4
convolutional layers into a 128-dimensional vector. The
model is trained with the mean squared error loss function.

3D-VAE. This is an implementation of the 3D variational
autoencoder introduced by Brock et al. [2], with an archi-
tecture similar to the 3D-AE. The model is trained with the
KL divergence loss.

3D-GAE. We also consider the 3D generalized autoen-
coder (GAE) introduced by Guan et al. [12]. Their archi-
tecture takes as input a 323 volume and encodes it into a
128-dimensional latent vector through 3 convolutional lay-
ers. The GAE learns to reconstruct a set of instances rather
than just a single instance from a given training sample. The
set of instances is defined by the training sample and its
nearest neighbors (NNs), where the NNs are determined by
the Chamfer distance computed on the shape volumes [10].

3D-PGAE. We modify the original 3D-GAE model by
changing the method for determining the NNs. Instead
of using the Chamfer distances computed on the voxelized
shapes, we use the parameter vectors to determine the NNs.

This constrains the learning of the latent space according
to the parameter attributes and represents a method that is
given prior knowledge about the shape similarity for learn-
ing the latent space.

6. Evaluation procedures

In this section, we discuss the evaluation procedures that
we introduce for evaluating the learning of latent spaces.
Our first goal is to study the quality of the organization of
shapes in the learned latent spaces. A meaningful organi-
zation of a latent space implies that the space accurately
captures the variation of semantic attributes of the shapes,
which is reflected in at least two properties: (i) Shapes that
are similar in terms of their semantic attributes should be
close together in the latent space; and (ii) Certain directions
in this space should capture the variation of particular se-
mantic attributes of the shapes. Moreover, our second goal
is to evaluate the quality of interpolated shapes, i.e., shapes
generated by walking in the latent space. Good interpola-
tion capabilities would imply that the generated shapes are
smooth and plausible variations of the training shapes. We
introduce measures to quantitatively evaluate these proper-
ties as follows. Note that, these properties are not explicitly
optimized for in the loss functions of most neural networks
and thus in principle they should not be expected. However,
in practice, latent spaces learned by deep networks tend to
reflect some of the shape semantics, and thus our goal in this
work is to quantify how well these properties are learned.

Semantic organization. In our work, we define the se-
mantic similarity of shapes based on their parameter vectors
(defined in Section 4). Since each parameter defines the ex-
istence or type of a semantic feature of the shapes, we define
the semantic similarity of two shapes as the Euclidean dis-
tance between their parameter vectors. For example, two
shapes that differ by exactly one binary parameter would
have a distance of 1; shapes differing by two binary param-
eters a distance of

√
2, and so on. Thus, to evaluate the

quality of the organization of shapes in the latent space, we
compare the Euclidean distances of pairs of shapes in the
parameter space to the distance of the corresponding shapes
in the latent spaces. Since the two spaces can have different
scales and numbers of dimensions, we perform the compar-
ison via the distance correlation [9].

Specifically, given as input two sets of vectors X and
Y , where X are the parameter vectors and Y the learned
latent vectors for a set of shapes, with |X| = |Y | = n, our
goal is to compute the correlation among all the pairwise
distances aj,k = ‖Xj − Xk‖ and bj,k = ‖Yj − Yk‖. We
can compute this correlation using the distance correlation

dCor(X,Y) [9] defined as:

dCor(X,Y) =
dCov(X, Y)√

dCov (X,X)dCov(Y, Y)
, (1)

where dCov is the distance covariance defined as:

dCov2(X,Y) =
1

n2

n∑
j=1

n∑
k=1

Aj,k Bj,k, (2)

with Aj,k and Bj,j being doubly-centered distances, i.e.,
Aj,k = aj,k− āj,·− ā·,k− ā·,·, where āj,· is the mean of the
j-th row, ā·,k is the mean of the k-th column, and ā·,· is the
mean of all the distances. Bj,k is defined in an analogous
way for the set Y .

We compute multiple distance correlations per model
and dataset by keeping only the N smallest pairwise Eu-
clidean distances in parameter space, and using the same
pairwise indices to also filter the corresponding distances
in the latent space. We can then compute the distance cor-
relation as described above on the filtered distances. The
rationale for this method is that usually the accuracy of dis-
tances among shapes that are highly dissimilar is less im-
portant than that of similar shapes, which should be grouped
closely in the latent space.

Latent space directions. One common manner of eval-
uating whether the directions in a latent space capture the
variation of specific semantic attributes is to vary a single
dimension of a latent space and analyze how the attributes
change. This type of evaluation has been typically per-
formed only in a qualitative manner, e.g., see Figure 5 of
Wu et al. [22]. Given that we have a controlled experimen-
tal setting, we generalize this approach to perform a quanti-
tative evaluation of this property.

Specifically, for each dimension d of the latent space, we
sort all the parameter vectors for the training shapes accord-
ing to the values in dimension d of the corresponding latent
vectors. Then, we record the number of times different at-
tributes of the parameter space change along this order for
all dimensions. If a dimension d groups an attribute in a
meaningful manner, then we can expect that the number of
changes of the corresponding parameter will be small com-
pared to other parameters along this dimension. Thus, in our
evaluation, we count the dimensions where there are param-
eter changes that are low outlier values, which signify large
distributions over the dimension.

To find the low outliers, we identify how many parame-
ters have changing values below the lower quartile, where
the lower quartile is simply the middle number between the
minimum and median of the change values, as commonly
defined. To further filter these dimensions, we only include
ones where the number of values greater than the upper

Dataset 3D-GAE 3D-PGAE 3D-AE 3D-VAE
Beds 0.8652 0.8916 0.8878 0.8219
Chairs 0.7234 0.7394 0.7100 0.6243
Tables 0.6410 0.6537 0.6204 0.5641
Shelves 0.7870 0.8163 0.8147 0.7378

Table 2: Distance correlation between the parameter vectors
and the latent spaces learned with different models. Largest
(best) values are marked in bold.

quartile does not exceed the lower quartile count. The exis-
tence of low outliers implies that the dimension d groups
specific parameter values in a meaningful manner, com-
pared to other dimensions.

Since our parameter vectors include both scalar and bi-
nary elements, this creates an imbalance when computing
the number of changes, as scalars containing more than two
steps will outweigh their binary equivalents. In order to mit-
igate this, we divide each scalar element by its number of
steps, and divide binary elements by 2, so that both types of
elements have the same weight on the computation.

Interpolation quality. To evaluate the quality of interpo-
lated shapes, we create new latent vectors according to vec-
tor arithmetic, and evaluate how similar the shapes gener-
ated from the new latent vectors are to the expected shapes.

We consider only scalar parameters for this evaluation.
For example, suppose that we are given the latent vectors for
chairs differing only by their leg length. Moreover, suppose
that we compute the average of the latent vectors for shapes
with leg lengths 0.2 and 0.6. We would expect that the shape
generated from this average vector would correspond to a
shape with leg length 0.4. Since we have such a shape with
leg length 0.4 in the training set, we can compute the dif-
ference between the interpolated and ground-truth shape to
quantify the quality of the interpolation.

Given that our shapes are encoded as volumes, we sim-
ply take the Euclidean distance between these two volumes
as a measure of their dissimilarity. Suppose that a shape Z
has semantic neighbors X and Y . Following the example
above, if Z corresponds to the shape with leg length 0.4, X
would correspond to the shape with leg length 0.2 and Y to
the shape with leg length 0.6. Then, the distance between
the interpolated shape and the expected shape Z is given
by d

(
X+Y

2 , Z
)

where d is the Euclidean distance between
two volumes. In our evaluation, we perform this compu-
tation for all the possible intermediate values of all scalar
attributes in the dataset (back width, back height, etc., for
chairs), and report the average of all experiments. Specifi-
cally, this is given by:

dInterp =
1

n

n∑
i=1

d

(
Xi + Yi

2
, Zi

)
, (3)

2 4 6 8 10
0.88
0.9

0.92
0.94
0.96

Beds

2 4 6 8 10

0.7

0.8

Chairs

2 4 6 8 10
0.65
0.7

0.75
0.8

0.85

Tables

2 4 6 8 10

0.9

0.92

0.94

0.96

Number of pairwise distances included × 100k

Shelves

D
is

ta
nc

e
C

or
re

la
tio

n

3D-GAE 3D-PGAE
3D-AE 3D-VAE

Figure 5: The distance correlation based on the number N
of lowest Euclidean distances included in the computation.

where n is the total number of interpolation instances
considered (tuples formed by an Xi, Yi and Zi). To pro-
vide a reference for the values of dInterp, we also report the
average of the distances of Xi to Yi, computed as d(Xi, Yi).

7. Results
Before training, we first convert the meshes in the dataset

into voxelized data of 323 voxels. Each pair of a model and
dataset was trained for 200 epochs with batch sizes of 10.
Most of the models use a learning rate of 0.001, whereas
the VAE uses an initial learning rate of 0.0001 with a mo-
mentum of 0.9. All networks are trained on a Linux server
with an RTX 2080 Ti graphics card equipped with 10 GB of
GPU memory and 22 GB of CPU memory.

Semantic organization. Table 2 reports the distance cor-
relation between the parameter vectors and the latent spaces

Dataset 3D-GAE 3D-PGAE 3D-AE 3D-VAE
Beds 88 93 92 95
Chairs 17 17 28 0
Tables 17 25 19 14
Shelves 24 27 22 22

Table 3: The number of latent dimensions that group the
shape attributes in a meaningful manner, according to an
analysis of outliers of parameter changes. Largest (best)
values are marked in bold.

learned by different models for different datasets. We see
that the learned latent spaces of each model encode the
semantic characteristics of the shapes reasonably well for
some sets such as beds, with correlations over 0.82, while
for other sets such as tables, the correlations can be as low
as 0.56. We also note that the first three AE-based models
do not have much of a difference among their correlations,
performing much better than the VAE, with the 3D-PGAE
model performing the best.

When analyzing the correlations in more detail by se-
lecting only the N smallest Euclidean distances, as seen in
Figure 5, we see that the 3D-VAE model produces the low-
est correlations for different values of N . We also note that
the 3D-PGAE model produces consistently the best results
for different values of N , surpassing the 3D-GAE. Finally,
certain datasets such as beds and shelves have large correla-
tions, given their lower diversity in structures.

Latent space directions. In our second experiment, we
evaluate the number of dimensions out of 128 that group
parameters in a meaningful manner, according to the anal-
ysis of low outliers described in Section 6. The results are
shown in Table 3. Our results indicate that the quality of
the latent space directions depends on the specific category
of shapes, as seen with the beds dataset, which contains the
most latent dimensions where parameters change a small
number of times. We also note that, overall, the 3D-PGAE
results contain the most amount of meaningful dimensions,
which correlates with the semantic organization experiment
discussed above.

Interpolation quality. Finally, we show the quality of in-
terpolations between two latent vectors compared to the ex-
pected shapes, by calculating the Euclidean distance be-
tween the volumes of the interpolated and expected shapes.
Table 4 presents the average of all distances for each dataset
and architecture, compared to the average distances be-
tween the neighboring shapes. We note that, for all the
datasets and architectures, the distances between the inter-
polated vectors and the expected vectors all lie within the
distance between their two neighbours, with the bed dataset

having much lower interpolated distances due to the lower
diversity between shapes. In general, the performance of
the 3D-GAE is higher or close to that of other models given
that the GAE considers neighboring shapes during learning.

In Table 5, we also show selected visual examples of
the interpolated reconstructions compared to the expected
shapes, where the interpolation is based on the width pa-
rameter of the shapes. We do not present examples for the
beds and shelves datasets, as these have limited diversity
compared to tables and chairs. We note that the interpolated
shapes tend to be noisy, with the results for the 3D-VAE be-
ing of the lowest quality.

Code and datasets. The datasets, as well as the
code to compute the evaluation measures, are avail-
able at our github page (https://github.com/
SharjeelAliCS/3D-latent-space-eval). This
page also includes links to the implementations of the dif-
ferent architectures.

8. Discussion

We introduced a dataset of shapes with known seman-
tic structure to better study the quality of the latent spaces
learned by various autoencoder models. By studying the
latent space organization, we determined that, in general,
autoencoder-based networks organize their latent spaces
generally to the same high degree of correlation to the se-
mantic parts of the shapes, with no single network perform-
ing the best in all experiments. Moreover, we also deter-
mined that the VAE provides the lowest-quality latent space
organization compared to the other types of autoencoders.

We also evaluated latent space directions to better under-
stand the latent space organization. We demonstrated that
each dataset has a specific number of dimensions that or-
ganize parameters in a meaningful manner, from which we
conclude that the latent spaces are organized fairly well de-
spite some possible redundancy in the dimensions. The la-
tent space organization also varies for types of shapes, such
as beds having the largest number of meaningful dimen-
sions. This is attributed to the low diversity of beds in the
parameter vectors, specifically, the low number of binary
parameters, which results in each parameter element having
a greater impact on the shape.

Our second goal was evaluating the quality of interpo-
lated shapes. We used the scalar attributes of the shapes to
create a control group of shapes, which we used to com-
pare interpolated shapes to the expected shapes. We found
through both quantitative and qualitative evaluations that
the GAE based models provide the most plausible interpo-
lations, while the VAE provides the interpolations of lowest
quality, similarly as found in the image synthesis literature.

Finally, we demonstrated that parameter attributes can be

https://github.com/SharjeelAliCS/3D-latent-space-eval
https://github.com/SharjeelAliCS/3D-latent-space-eval

Dataset 3D-GAE 3D-PGAE 3D-AE 3D-VAE
Interpolated Neighbour Interpolated Neighbour Interpolated Neighbour Interpolated Neighbour

Beds 3.780 17.126 4.236 18.061 4.205 18.130 10.560 18.924
Chairs 15.668 27.950 15.690 27.955 15.117 28.000 19.466 28.123
Tables 16.666 24.855 17.238 24.731 16.802 25.340 21.669 26.812
Shelves 21.605 27.216 21.283 27.667 22.055 27.684 22.247 27.679

Table 4: Average Euclidean distances between interpolated and expected shapes for different architectures, shown in the
columns denoted as “Interpolated”, with the lowest (best) values marked in bold. The average distances between the pairs of
shapes used in the interpolation are also shown in the columns denoted “Neighbour”. In order to be meaningful, the distances
between the interpolated and expected shapes should have a smaller value than the distances between the neighbours.

Type Chairs Tables

3D-GAE 3D-PGAE 3D-AE 3D-VAE 3D-GAE 3D-PGAE 3D-AE 3D-VAE

Neighbour 1

Interpolated

Expected

Neighbour 2

Table 5: Two examples of interpolations based on a shape’s width scalar parameter, compared to the expected shape.

used to constrain the learning of a GAE to provide a better
organization of shapes in the latent spaces.

Limitations. One limitation of our evaluation is that the
scale of the experiments had to be limited by memory con-
straints. We had to limit each dataset to 2,200 shapes, and
represent the shapes as volumes of at most 323 voxels. This
resulted in a loss of detail in some of our models, such as
the headrests and boards for both beds and chairs, where
fine details such as vertical or horizontal bars could not be
represented in the volumes. Thus, we removed these shapes
from our training sets. This problem also happens for a few
instances of the shelves dataset, in which certain shelves
become filled instead of being hollow. The model diversity
is also low for certain datasets, such as beds and shelves,
which could be improved upon by adding a greater variety
of semantic parts and synthesizing asymmetric shapes.

Another limitation of our evaluation is that we experi-
mented only with volumetric representations of shapes. It
would be interesting to also evaluate the encoding of struc-
tured representations such as graphs or hierarchies of parts.

On the other hand, several recent works still use image and
volume-based encoders in their architectures [6], although
the decoders can use other types of representations such as
implicit functions to generate higher-quality shapes. Thus,
our conclusions on the organization of latent spaces would
still apply to these hybrid architectures.

Future work. One of our goals for future work is to ex-
pand the number of categories of generated datasets by cre-
ating procedural rules for other classes of shapes. Another
direction for future work is to use higher-resolution volumes
of 643 voxels to represent shapes, in order to preserve the
finer details of the shapes, and possibly use a decoder based
on an implicit representation to better assess the quality of
shape interpolations.

Acknowledgements. We thank the anonymous reviewers
for their comments. This work was supported by the Natu-
ral Sciences and Engineering Research Council of Canada
(NSERC) via an Undergraduate Research Student Award
(URSA) and a Discovery Grant.

References
[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and

Leonidas Guibas. Learning representations and generative
models for 3D point clouds. In Proc. Int. Conf. on Machine
Learning, pages 40–49, 2018. 1, 2

[2] Andrew Brock, Theodore Lim, James M. Ritchie, and Nick
Weston. Generative and discriminative voxel modeling
with convolutional neural networks. CoRR, abs/1608.04236,
2016. 4

[3] Christopher P. Burgess, Irina Higgins, Arka Pal, Loic
Matthey, Nick Watters, Guillaume Desjardins, and Alexan-
der Lerchner. Understanding disentangling in β-VAE. In
NIPS Workshop on Learning Disentangled Representations,
2017. 3

[4] Siddhartha Chaudhuri, Daniel Ritchie, Jiajun Wu, Kai Xu,
and Hao Zhang. Learning generative models of 3D struc-
tures. Computer Graphics Forum, 39(2):643–666, 2020. 1,
2

[5] Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. BSP-
NET: Generating compact meshes via binary space partition-
ing. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition, 2020. 1, 3

[6] Zhiqin Chen and Hao Zhang. Learning implicit fields for
generative shape modeling. In Proc. IEEE Conf. on Com-
puter Vision and Pattern Recognition, pages 5939–5948,
2019. 1, 2, 8

[7] Julian Chibane, Aymen Mir, and Gerard Pons-Moll. Neural
unsigned distance fields for implicit function learning. In Ad-
vances in Neural Information Processing Systems (NeurIPS),
2020. 2

[8] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Ad-
versarial feature learning. In Proc. Int. Conf. on Learning
Representations, 2017. 1, 3

[9] Dominic Edelmann, Tamás F. Móri, and Gábor J. Székely.
On relationships between the pearson and the distance
correlation coefficients. Statistics & Probability Letters,
169:108960, 2021. 5

[10] Haoqiang Fan, Hao Su, and Leonidas Guibas. A point set
generation network for 3D object reconstruction from a sin-
gle image. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition, pages 2463–2471, 2017. 4

[11] Thibault Groueix, Matthew Fisher, Vladimir G. Kim,
Bryan C. Russell, and Mathieu Aubry. A papier-mâché ap-
proach to learning 3D surface generation. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition, pages
216–224, 2018. 1, 2

[12] Yanran Guan, Tansin Jahan, and Oliver van Kaick. General-
ized autoencoder for volumetric shape generation. In CVPR
Workshop on Learning 3D Generative Models, pages 1082–
1088, 2020. 4

[13] G. E. Hinton and R. R. Salakhutdinov. Reducing the
dimensionality of data with neural networks. Science,
313(5786):504–507, 2006. 3

[14] R. Kenny Jones, Theresa Barton, Xianghao Xu, Kai Wang,
Ellen Jiang, Paul Guerrero, Niloy Mitra, and Daniel Ritchie.
ShapeAssembly: learning to generate programs for 3D shape

structure synthesis. ACM Trans. on Graphics (Proc. SIG-
GRAPH Asia), 39(6):234:1–20, 2020. 1

[15] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo
Larochelle, and Ole Winther. Autoencoding beyond pixels
using a learned similarity metric. In Proc. Int. Conf. on Ma-
chine Learning, pages 1558–1566, 2016. 1, 3

[16] Paul Merrell and Dinesh Manocha. Model synthesis: A gen-
eral procedural modeling algorithm. IEEE Trans. on Visual-
ization and Computer Graphics, 17(6):715–728, 2011. 3

[17] C. Nash and C. K. I. Williams. The shape variational au-
toencoder: A deep generative model of part-segmented 3D
objects. Computer Graphics Forum, 36(5):1–12, 2017. 1

[18] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. DeepSDF: Learning
continuous signed distance functions for shape representa-
tion. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition, pages 165–174, 2019. 1, 2

[19] Ruben M. Smelik, Tim Tutenel, Rafael Bidarra, and Bedrich
Benes. A survey on procedural modelling for virtual worlds.
Computer Graphics Forum, 33(6):31–50, 2014. 1, 3

[20] L. Theis, A. van den Oord, and M. Bethge. A note on
the evaluation of generative models. In Proc. Int. Conf. on
Learning Representations, 2016. 3

[21] Peter Wonka, Michael Wimmer, François Sillion, and
William Ribarsky. Instant architecture. ACM Trans. on
Graphics (Proc. SIGGRAPH), 22(3):669–677, 2003. 3

[22] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and
Josh Tenenbaum. Learning a probabilistic latent space of ob-
ject shapes via 3D generative-adversarial modeling. In Ad-
vances in Neural Information Processing Systems, pages 82–
90, 2016. 1, 2, 5

