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Fig. 1. We introduce a data-driven approach for learning a part mobility model, which enables to predict the motion of parts in a 3D object based only on

a single static snapshot of the object. The learning is based on a training set of mobility units of diferent motion types, M1, M2, . . ., as in (a). Each unit is

represented by multiple snapshots over its motion sequence, along with associated motion parameters. The part mobility model (b) is composed of the start

and end snapshots of each unit and a static(snapshot)-to-dynamic(unit) (S-D) mapping function learned from training data. Given a query 3D shape, shown at

the botom of (b), we find the closest mobility unit from the training set via the S-D mapping (b). Aside from motion prediction, the unit also provides a means

to transfer its motion to the query shape, as shown in (c)-let. In (c)-right, we show mobility prediction and transfer on five diferent parts of a static scooter

model, along with the units found via S-D mapping.

We introduce a method for learning a model for the mobility of parts in 3D

objects. Our method allows not only to understand the dynamic function-

alities of one or more parts in a 3D object, but also to apply the mobility

functions to static 3D models. Speciically, the learned part mobility model

can predict mobilities for parts of a 3D object given in the form of a single

static snapshot relecting the spatial coniguration of the object parts in 3D

space, and transfer the mobility from relevant units in the training data. The

training data consists of a set ofmobility units of diferent motion types. Each

unit is composed of a pair of 3D object parts (one moving and one reference

part), along with usage examples consisting of a few snapshots capturing

diferent motion states of the unit. Taking advantage of a linearity character-

istic exhibited by most part motions in everyday objects, and utilizing a set

of part-relation descriptors, we deine a mapping from static snapshots to

dynamic units. This mapping employs a motion-dependent snapshot-to-unit

distance obtained via metric learning. We show that our learning scheme

leads to accurate motion prediction from single static snapshots and allows

proper motion transfer. We also demonstrate other applications such as

motion-driven object detection and motion hierarchy construction.
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1 INTRODUCTION

Recently in the ield of shape analysis, increasing eforts have been

devoted to obtaining a functional understanding of 3D objects from

their geometries and interactions [Hu et al. 2016, 2015; Kim et al.

2014; Pirk et al. 2017; Zhao et al. 2014]. In this setting, the function-

ality of an object is learned by analyzing how humans or virtual

agents may interact with the object and how close-by objects are

related to it geometrically. Typically, such knowledge is acquired

from static snapshots of the object and its surroundings, e.g., a chair

with a human sitting on it, or a table with several objects on top.

In a irst attempt, Pirk et al. [2017] describe object functionalities

by capturing and analyzing dynamic object trajectories, e.g., the

motion of a moving agent attempting to sit on a chair. Yet, in all of

these previous works, the central object maintains its rigidity.
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Fig. 2. Comparing mobility unit prediction by using our part mobility model

obtained with metric learning (łOursž) to geometry-based retrieval using

the LFD descriptor (let) and to our part mobility model but with uniform

weights in the snapshot-to-unit distance (right).

In this paper, we are interested in dynamic functionalities of 3D

objects characterized by the movements of one or more object parts,

which we term part mobility. The presence of part mobilities is ubiq-

uitous in our daily lives, e.g., the opening/closing of the drawers

in a chest, or the rotation of the cap of a bottle or the seat of a

swivel chair. One could analyze part mobilities from time-varying

representations of part motions in 3D. However, the acquisition, as

well as distillation and encoding, of dynamic interaction data for

functionality analysis is costly and challenging [Pirk et al. 2017].

The intriguing question is whether it is possible to predict dynamic

part mobilities from only a single static snapshot of the spatial con-

iguration of object parts in 3D space. Perhaps even more intriguing

would be the prospect of executing proper part motions on a given

static 3D model. Under these settings, part mobility analysis would

involve not only recognizing the type of motion that an object part

can undergo, but also inferring appropriate motion parameters to

enable the execution of motions.

Without any prior knowledge, the part mobility analysis problem

may very well be ill-posed. However, in our daily lives, we, humans,

apply motion inferences all the time. In general, we can predict the

functionality of unseen objects by prior experiences or knowledge

on similar objects. In the same spirit, our work shows that it is

possible to infer part mobilities of a static 3D object by analyzing

and learning from motion sequences of parts from the same and

diferent classes of objects.

This problem is challenging not only because a mapping from

static to dynamic is inevitably under-constrained, but also due to the

large geometric diversity of 3D shapes which may support a similar

motion. As shown in Figure 1(c), while the handles of the faucet

and drawer both involve rotations, the rotations are of diferent

motion types. Geometrically, doors, wheels, and handles could all

come in diferent shapes and sizes. Even the same motion type can

be parameterized diferently based on diferent geometries and part

conigurations. Simply searching for geometric similarity between

individual snapshots of the dynamic movements means that we

need to store examples of all possible motion types, and in all spatial

and temporal conigurations for each type, which is impractical.

We introduce the idea of learning a speciicmetric for eachmotion

type, which enables a mapping from a given static query snapshot

to the closest dynamicmobility unit in the training set. The training

data consists of a set of mobility units classiied by motion types

such as wheel rotation, drawer sliding, etc., where each mobility

unit is composed of a pair of parts of a 3D object (a moving part,

and a part that serves as reference to the motion), along with usage

examples consisting of few, typically 2-4, snapshots capturing the

geometry coniguration in diferent motion states of the unit. We

develop a data-driven approach to learn the static-to-dynamic or

S-D mapping and our part mobility model; see Figure 1. With the

learned snapshot-to-unit distance, the mapped unit from the query

static snapshot not only exempliies the motion type, e.g., formotion

prediction, but also comes with the necessary motion parameters to

allow motion transfer from the dynamic unit to a static 3D object.

We observe that many part mobilities aforded by everyday ob-

jects exhibit some form of linearity, but in diferent spaces. For

example, drawers undergo linear translations in the spatial domain,

while rotations about a hinge are linear in angle space. Linearity

makes it possible to characterize and learn part mobilities from few

static snapshots. In the łcorrectž space which relects the linearity of

a motion type, the sum of distances from any intermediate snapshot

of a linear motion, to the start and end snapshots of the motion,

by means of linearity, would remain approximately invariant. Thus

we can characterize a motion type by the sum of distances to the

appropriate start and end states and rely on these distance sums for

motion prediction. The remaining challenge however is that we do

not know the correct space within which to measure distances.

With the motion types exhibiting much diversity in their tem-

poral and geometric characteristics, we resort to machine learning,

and speciically metric learning, to approximate the correct spaces

for measuring distances. The S-D mapping requires measuring dis-

tances from a query snapshot of a 3D object to mobility units of

other objects. We deine the snapshot-to-unit distance as the sum

of distances from the query snapshot to the start and end snapshots

of target units. Under the linearity assumption, this sum should

be invariant for snapshots within the unit. Moreover, this sum for

snapshots with the same type of motion should be smaller than

the sum for snapshots with other types of motion. Thus, the prob-

lem of deining a snapshot-to-unit distance is reduced to deining

a meaningful distance between snapshots based on our chosen set

of descriptors. However, if we simply apply uniform weighting of

the descriptors for all motion types, we would obtain unsatisfactory

prediction results, as shown in Figure 2 (right). On the other hand,

using diferent descriptor weights learned from data, we can deine

a distance that approximates the correct motion space. Indeed, our

metric learning allows us to deine a motion-dependent distance for

each motion type.

We show that our learning scheme is able to predict dynamic

part mobilities from single static snapshots with high accuracy and

the predicted dynamic units provide information on the motion

parameters to allow efective motion transfer; see Figure 1(c). Our

prediction model also enables other applications, such as motion-

driven object detection in 3D scenes, as well as understanding the

mobility of an entire object, forming a motion hierarchy of the

object parts. Such a motion hierarchy can be used either to generate

animations of objects, or to create static scenes with objects in

diferent motion states.
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2 RELATED WORK

Object functionality from static snapshots or agents. In comparison

to previous works on functionality analysis, the interactions we

consider are dynamic (the mobility of parts) and are not limited

to those involving human agents. For example, afordance-based

methods simulate a human agent to predict the functionality of

objects [Grabner et al. 2011; Kim et al. 2014], or to recognize the re-

gions of a scene to enable a human to perform certain actions [Savva

et al. 2014, 2016]. Thus, although some of these methods involve the

dynamics of human interactions, they do not extend to more general

types of object afordances. The interaction context descriptor [Hu

et al. 2015] and functionality models learned for categories [Hu et al.

2016] consider more general object-object interactions. However,

these object-object interactions are static in nature. In contrast, we

analyze the part-part interactions for part mobility prediction.

Object functionality from dynamic interactions. The recent work

of Pirk et al. [2017] performs functionality inference from dynamic

interaction data. The key diference to our work is that they char-

acterize functionalities of static objects by analyzing dynamic in-

teractions, e.g., how a cup can be used in the dynamic action of

drinking cofee. Similarly, Hermans et al. [2013] introduce an ap-

proach to learn the dynamic interactions that a robot can perform

with rigid objects, in the form of pushing an object to displace or

rotate the object. However, the analyzed objects in these approaches

are not dynamic themselves. As a consequence, their analyses are

performed at the object level, and not at the part level as in our

work. Moreover, dynamic interaction data is not only diicult to

acquire and process, but may also be unavailable altogether.

Another line of works in the literature target the capture of dy-

namic interactions. Kry and Dinesh [2006] propose a method to

acquire the details of hand interactions. Their work focuses on the

use of specialized hardware for acquiring the interactions, and does

not leverage the motion information to represent the functionality

of objects. Recent works in computer vision aim at capturing the

functionality of tools [Zhu et al. 2015] or representing general hu-

man interactions [Wei et al. 2017]. However, the focus of these works

has been on recognition Ð the derived functionality representations

are not intended for grouping or transferring part mobility.

Motion inference from geometry. In earlier work along this di-

rection, Gelfand and Guibas [2004] infer slippage motions from

the geometry of shapes. Although the method is applied to shape

segmentation rather than motion analysis, the slippage analysis

discovers sliding motions that kinematic objects can undertake. In

subsequent work, Xu et al. [2009] employ slippage analysis to dis-

cover joints in articulated models. Moreover, Mitra et al. [2010]

analyze mechanisms to infer their motion. They predict the possible

motion of mechanical parts from their geometry and spatial conig-

uration, and use the result of the analysis to illustrate the motion of

mechanical assemblies. Guo et al. [2013] follow a similar approach

to illustrate the disassembly of 3D models, while Shao et al. [2013]

create animated diagrams from a few concept sketches. Although

these methods can be used to automatically discover the mobility

of parts, we remark that most of the 3D shapes available in online

repositories are not modeled with all the mechanical parts needed

Fig. 3. Training data setup: given a segmented shape, shown on the top-let,

we define several mobility units by pairing the parts into (moving, reference)

pairs, as shown on the top row. The botom row shows several snapshots of

the motion of the highlighted unit.

to infer their motion. Similarly, the animation of sketches requires

user assistance to provide the missing motion information.

Part mobility from indoor scenes. Sharf et al. [2013] build a mo-

bility tree to summarize the support relations between objects or

parts in a scene, and their relative mobility. First, the input scene is

searched for repeated instances of objects. Next, given a repeated

model detected in distinct conigurations, the method discovers

possible motions the model can undergo. One limitation of this

approach is that it relies on the occurrence of repeated models in

the input scene, appearing in diferent states of motion, e.g., open

and closed drawers. Thus, the detected mobility cannot be easily

transferred to objects that do not appear in the scene, since the

motion is discovered separately for each instance. In contrast, we

learn a model that groups together similar types of motion coming

from diferent objects, and can then be used to transfer the motion

to new objects, which do not necessarily have the same geometry

as the analyzed models.

Mobility itting from motion sequences. Li et al. [2016] capture the

part mobility of an articulated object by searching for a set of joints

that determine the motion. Bypassing geometry reconstruction of

the model, they directly solve an optimization to ind the joints and

motion parameters. On the other hand, Pero et al. [2016] identify

parts that move together in video sequences to extract articulated

object parts, while Stückler et al. [2015] use random forest classiiers

and expectation-maximization to identify rigid parts. In comparison

to our work, these approaches are restricted to articulated models,

and require dynamic data in the form of a scan or video sequence.

Tevs et al. [2012] present a method for reconstructing dynamic

shapes which enables the acquisition of more general motions than

just articulated parts. Their input is also required to be a scan se-

quence with a considerable number of intermediate snapshots. In

recent work, Xue et al. [2016] synthesize future frames from single

input images using a cross convolutional network. However, their

method requires a considerable amount of dynamic data for training,

in the order of tens of thousands of image pairs, and the training of a

deep neural network. In contrast, our method requires the learning

of the S-D mapping, which can be accomplished with signiicantly

less data.
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Fig. 4. Classification of the training units into motion types. We show one

example unit for each motion type. See text for labels.

3 TRAINING DATA SETUP

The input to the training is a set of shapes in upright orientation

and with parts segmented into separate geometries. The parts are

grouped intomobility units, where each unit is composed of amoving

part and a reference part, e.g., a drawer that moves and the furniture

frame that serves as a reference for the motion. The complete input

consists of a few static conigurations of each mobility unit, which

we call snapshots. The snapshots are given at diferent states of the

motion, e.g., drawer fully-open, drawer half-open, etc. An example

of the input is shown in Figure 3. We ensure that the start and end

snapshots of each unit are included, and order all snapshots in a

unit according to the chronological motion of the parts.

Each unit in our dataset is associated with a set of motion parame-

ters represented as a quadruple (t , a, p, r), where t is the transforma-

tion type, a and p are the direction and position of the motion axis,

and r is the transformation range, stored as a start and end position

(for translations) or angle (for rotations) relative to the center of

mass of the moving part and the upright axis.

The units can then be roughly classiied into 8 diferent motion

types, according to the irst three parameters. The classiication is

based on labeling the units according to their transformation type

(translation, rotation, or both, denoted as T, R, and TR), the general

direction of the translation or rotation axes (horizontal or vertical,

denoted as H and V), and the location of the axes (close to the center

of the units or to one of their sides, denoted as C or S). Note that

the transformation range parameter, which is determined by the

start and end snapshots, is not used for the motion classiication

since it is more related to the semantics of the given object, while

our classiication is mainly intended for facilitating the learning of

a motion-dependent distance measure. We show one example unit

for each motion type in Figure 4. We provide this classiication as

an initial grouping to our method, and also use the motion type and

the associated motion parameters as ground-truths to evaluate the

results of motion prediction and transfer, respectively, in a cross-

validation scheme.

4 METRIC LEARNING

The key to enable the S-D mapping is to learn a distance between

a snapshot and a unit. To ensure accurate motion prediction for

unseen snapshots, we learn a separate distance for each motion

type. In the following, we irst detail the diferent distance measures

we use in our method, and then describe the metric learning.

Snapshot descriptors. We use a set of descriptors to represent the

coniguration of the moving and reference parts appearing in a

snapshot. First, we capture the interaction between the two parts

with the interaction bisector surface or IBS [Zhao et al. 2014]. The

IBS is a subset of the Voronoi diagram computed between the two

objects, which captures the spatial region where the objects interact

with each other. Moreover, as the geometry of the parts themselves is

relevant to their motion, we also capture the regions on the surfaces

of the objects that correspond to their IBS, called the interaction

regions or IRs [Hu et al. 2015]. We represent the IBS and IR with the

same descriptors as in Hu et al. [2015]. We also represent the relative

coniguration of the parts with the RAID descriptor [Guerrero et al.

2016], which captures inter-region relations based on the spatial

distribution of point-to-region relationships. The descriptors used

to encode IBS and IR and the details on how we adapted RAID to

our setting can be found in Appendix A.

Distance measures. We will deine three distance measures that

are used by our mobility model.

Snapshot-to-snapshot distance. The distance between two snap-

shots is a weighted combination ofN individual descriptor distances:

DS
W (si , sj ) =

N
∑

f =1

wf D
S
f
(si , sj ), (1)

where DS
f
(si , sj ) is the distance between snapshots si and sj for

the f -th descriptor, normalized to the range [0, 1],wf ∈W lies in

the range [0, 1] and is the weight for descriptor f , and
∑

f wf = 1.

Since the sum of weights is one, DS
W

is also in the range [0, 1]. Note

that this distance depends on the chosen weightsW . If we choose

diferent weights, we can obtain diferent distance measures as will

be described below.

Snapshot-to-unit distance. This measure compares a snapshot to

a unit by combining our linearity assumption with the snapshot

distance deined above:

DSU (s,uj ) =
1

2

(

DS
Wj

(s, s
j
1) + D

S
Wj

(s, s
j
m )

)

, (2)

where s is an arbitrary snapshot, s
j
1 and s

j
m are the start and end

snapshots of unit uj , respectively, andm is the number of snapshots

used to represent each unit. The snapshot-to-unit distance is the

main tool used in the S-D mapping, where we compute the distances

of a snapshot to the units in the training data, and select the unit

closest to the snapshot. Note that we use the weightsWj learned for

the unit uj when invoking the snapshot-to-snapshot distance DS ,

since we do not necessarily know the source unit of the snapshot s ,

especially if s is a query during motion prediction.

Unit-to-unit distance.We also deine a distance between two units,

which is used to cluster similar types of units as explained below:

DU (ui ,uj ) =
1

m

∑

s i
k
∈ui

DSU (si
k
,uj ). (3)

This distance is asymmetric since it considers the snapshots of unit

ui and the weightsWj learned for the unit uj when invoking DSU .
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(a) Type 1 constraints (b) Type 2 constraints

Fig. 5. Metric learning constraints: (a) Type 1 between a snapshot and two

units: DSU (sj , ui ) < DSU (sj , uk ); (b) Type 2 between two snapshots and

a unit: DSU (sj , ui ) < DSU (sk , ui ). Diferent snapshot colors indicate

diferent motion types. The distances indicated with green lines should be

smaller than the distances of orange lines.

Fig. 6. Selected clusters of motion type R_H_C, one per cell, obtained by

performing afinity propagation clustering according to our unit distance

measure. Note how the units in a cluster have similar local geometry and

part interactions.

Metric learning. The goal of this step is to learn a diferent set

of weights for each motion type, as each type of motion may be

better described by diferent descriptors. The weightsW for the

snapshot distance DS are learned from a set of constraints derived

from the snapshots in the training data and their speciied motion

types. While learning the weights, we take into account the efect

that the weights have when comparing snapshots to units with

DSU . Thus, the constraints used in the learning ensure that units

and snapshots with the same type of motion are kept closer to each

other than to units or snapshots with a diferent type of motion. We

achieve this with two types of constraints.

Suppose that we have three diferent mobility units ui , uj and uk ,

where any of their snapshots can be denoted as si , sj and sk , respec-

tively. Let us assume that units ui and uj belong to the same motion

class, while unit uk is from another class. The Type 1 constraints

(illustrated in Figure 5(a)) capture the notion that snapshots (e.g.,

sj ) should be kept closer to units with the same type of motion as

themselves (e.g., ui ), rather than to units with a diferent type of

motion (e.g., uk ). Therefore, we derive a constraint on comparing

one snapshot to two diferent units: DSU (sj ,ui ) < DSU (sj ,uk ).

Type 2 constraints (illustrated in Figure 5(b)) capture the notion

that the distance from snapshots to units of the same motion type

should be smaller than the distance from snapshots to units of a

diferent type. Therefore, we derive a constraint on comparing two

snapshots to the same unit: DSU (sj ,ui ) < DSU (sk ,ui ).

For realizing the S-D mapping, it is suicient to perform the

metric learning only with Type 1 constraints, as they ensure that

the nearest neighbor unit provided by the snapshot-to-unit distance

+

+ +

+

+
+

+

+ +

+
+

+
...

Fig. 7. Subsampling the constraints using finer clustering of motion types.

Each motion type is drawn in a diferent color and shown in a dashed square,

while the clusters of units in a motion type are the colored circles, where the

centers are marked by crosses. The only constraints we use for snapshots

of a given unit uj involve the unit’s cluster center ui and cluster centers of

other motion types (e.g., uk ).

is meaningful. However, as we demonstrate in Section 7, there are

applications that beneit from Type 2 constraints, as they require

the distance from diferent snapshots to a unit to be comparable.

Clustering of units. If the training data is large, the number of

derived constraints may be prohibitive for learning the distance

in practice. Thus, we systematically subsample a tractable number

of constraints. To subsample, we irst cluster each input motion

type into smaller groups of similar units (see Figure 6 for examples).

This allows us to reduce the number of constraints by deining

constraints only in terms of clusters, where the number of clusters

is signiicantly lower than the number of units. Each cluster is

composed of iner variations of the same type of motion.

We estimate the similarity between units with the unit distance

measure deined in Eq. 3, which considers the motion and geometry

of the part interactions of the units, while assuming equal weights

for all descriptors. As we will see in Section 6, equal weights do

not provide the best indication of motion similarity, but lead to a

reasonable clustering of units. We perform the clustering with the

ainity propagation method [Frey and Dueck 2007]. The advantage

of this method is that it does not depend on a good initial guess

to yield reasonable clustering results, and it automatically selects

the number of clusters based on the distance between units and

an estimate of how likely each unit is a cluster center. We set this

estimate for a unit as the median distance from the unit to all other

units in the set. The output of this process is a clustering of mobility

units for each motion type, and a unit selected as the center of each

cluster, which are then used for deining the constraints.

Constraint subsampling. To deine the constraints that involve

snapshots sj of any unit uj in our dataset, we choose ui to be the

center of uj ’s cluster, and take uk to be the center of one of the

clusters of a diferent motion type; see illustration in Figure 7. Since

we use the nearest neighbor to deine the S-Dmapping, it is suicient

to ensure that any snapshot is close to its cluster center. Thus, we do

not use additional constraints between snapshots and other cluster

centers within the same motion type. This subsampling reduces the

total number of constraints signiicantly.

Optimization.We use the constraints deined above to learn the

distancewith amethod similar to that of Schultz and Joachims [2003],

where the main diference is that we constrain the sum of weights

with respect to each motion to be one.
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More details on the constraint subsampling and optimization are

given in the supplementary material.

Algorithm 1 MotionTransfer (q,u,n, l ) → (t , a, p, r)

Input: query snapshot q, top retrieved unit u , maximum iteration number

n, initial sample step size l

Output: motion parameters (t, a, p, r) of q

1: M ← GenerateCandidateParams(q, u )

2: bestDist← ∞, bestM← ∅

3: foundSample← false, iterNum← 1, checkValidity← true

4: while foundSample = false do

5: if iterNum = n then

6: checkValidity← false

7: end if

8: for eachm ∈ M do

9: S ← SampleMotion(q,m, l, checkValidity)

10: if S , ∅ then

11: foundSample← true

12: end if

13: for each s ∈ S do

14: d ← DSU (s, u ) /* snapshot-to-unit distance */

15: if d < bestDist then

16: bestDist← d

17: bestM←m

18: end if

19: end for

20: end for

21: l ← l/2

22: iterNum← iterNum + 1

23: end while

24: return bestM

5 MOTION PREDICTION AND TRANSFER

To perform the motion prediction, given a query snapshot q from

an unknown unit, we use the snapshot-to-unit distance deined in

Eq. 2 to compare the query to the units in the training data, and

select the unit u that is the most similar to q. After that, we can

transfer the motion from u to the parts of the query q. The goal is

to ind a set of motion parameters for q, such that the motion of q is

consistent with the parameters of u, but is adapted to the geometry

of q’s parts. Note that the motion parameters of training units are

not used during the prediction, but for motion transfer only.

Motion transfer overview. The general idea of the motion transfer

procedure is to generate candidate motion parameters for q, and

select the candidate parameters that provide the best it with the

motion of u. More speciically, we sample candidate parameters for

q according to the motion parameters of u. To verify the quality

of the it, we generate additional snapshots for q using the motion

deined by the candidate parameters, and compute the distances

from the new snapshots to the unit u, according to the snapshot-

to-unit distance. Finally, we select the parameter set that generated

the snapshot with the smallest distance, and use it to deine the

motion on q. An overview of the motion transfer is presented in

Algorithm 1. The steps of the method are explained in more detail

as follows.

Candidate motion parameters. To generate the candidate sets of

motion parameters for q, we determine the four motion parameters

Fig. 8. Motion transfer: we sample diferent candidates for the motion axis

of a query snapshot, based on the OBB and the IR of the moving part in

the snapshot. We then select the best candidate as the motion axis of the

query shape.

one by one. First of all, the transformation type of all the candidates

should be exactly the same as the transformation type of u.

For the candidate axis, we observe that most man-made objects

possess some kind of symmetry and the transformation axis direc-

tion and position of the movable parts are usually highly related

to the symmetry. Thus, we irst compute the symmetry-aligned

oriented bounding box (OBB) of the moving part in q, with the OBB

computation of Fish et al. [2014]. Then, based on the axis direction

label of u, which is either łhorizontalž or łverticalž, each edge of the

OBB which follows the prescribed direction provides a candidate

direction for the translation or rotation axis. We assume that the

input shapes are upright-oriented, thus an edge direction can be

easily classiied as vertical or horizontal by computing the angle

between the edge direction and the upright direction.

For each candidate axis direction, we further sample multiple

candidate positions based on the axis position label of u. For łsidež

axes, we take all the edges of the OBB that are parallel to the candi-

date direction and use the edge centers to determine the position

of the axis. For łcentralž axes, we select two points to generate

two candidate axes passing through those points. One point is the

center of the OBB, while the other is the weighted center of the

interaction region (IR) on the moving part, computed according to

the weights of points on the shape that indicate the likelihood of the

points belonging to the IR [Hu et al. 2015]. One candidate selection

example is illustrated in Figure 8.

For the transformation range, since the shapes are not aligned,

we cannot directly transfer the motion range from u to q. Thus, we

transfer the extent of the range temporarily, and determine the exact

motion range for q during motion sampling, as explained below. In

the case of rotations, we transfer the rotation angle extent, deined

as the diference between the start and end angles. This strategy

does not apply to translations, since translation depends on the scale

of the shapes, which can difer among units. Thus, for translations,

we deine the extent as the length of the translation vector from the

start and end positions of the motion. Then, we compute the ratio

between the extent and the projection length of the moving part

along the motion axis of u. Finally, the extent for q should be the

projection length of its moving part along the candidate axis, scaled

by the ratio.

Motion sampling and selection. To generate additional snapshots

for q using a candidate axis, we treat q as the center of the motion

and extend the motion to each łsidež of q according to the motion

axis and transformation type. That is, we either translate the moving
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Fig. 9. Examples of motion ranges estimated for test snapshots with difer-

ent motion types. We show the start and end snapshots of the estimated

motion (drawn with transparency) for the given snapshot (drawn in solid

color).

part along the two possible directions of a translation axis starting

from q, or rotate the part around a rotation axis at q into the two

rotational directions. The motion range of q is determined from how

far the expansion went; see Figure 9.

During the expansion from q, we sample the geometry to create

additional snapshots and check if the newly sampled snapshots are

valid or not. Speciically, we start with a sample interval distance

l , and create a new motion snapshot a distance l away from q to

each side of q. The snapshot is created by either translating the

moving part l units along the translation axis and sampling direction,

or by rotating the moving part an angle of l degrees around the

rotation axis. Next, if a snapshot is valid, we attempt to continue

the expansion along its side. We stop when no further expansion

can be done.

If no valid snapshots were found for any of the candidate axes,

we divide the step size l by half to sample a iner set of motion

snapshots. In this way, we adaptively adjust the step size to ind

valid motions, while preferring large motions irst. The initial l is

set as 0.4 times the motion range extent of u. If after the maximum

number of iterations n = 3 of adaptive sampling we still cannot ind

any valid snapshot for all the candidates, we disable the validity

checking and sample two snapshots for each candidate axis on both

sides of q.

A snapshot is valid if the moving part remains connected to the

reference part during the motion, but without signiicant intersec-

tion between the parts. In more detail, a snapshot is valid in two

cases: (i) If the two parts collide, most of the intersection should

be conined to the IR of the reference part, since it is expected that

collisions can happen in this region. (ii) If there is no collision, the

moving and reference parts should remain as close as possible. The

closest distance between the moving and reference parts in the

query snapshot provides a reasonable threshold for this closeness

constraint. In our implementation, a sampled snapshot is valid as

long as the two parts are not further apart than twice this threshold.

If the threshold is zero, the parts should remain connected during

the motion.

6 RESULTS AND EVALUATION

In this section, we demonstrate the use of our part mobility model

for motion prediction and transfer, and evaluate diferent aspects

of the learned part mobility model. We show additional example

applications of our model in the next section.

Dataset. We evaluate our method on a set of 368 mobility units

with diverse types of motion encountered in our daily lives. As

described in Section 3, we use the classiication of the units into mo-

tion types (Figure 4) and their motion parameters as a ground-truth

to perform a quantitative evaluation. The full dataset and the classi-

ication of units into motion types are shown in the supplementary

material.

Dataset preparation. We collected the shapes in our dataset mostly

from the ShapeNetCore repository, and complemented this sample

with shapes from other repositories like SketchUp, to ensure that

the dataset contains a variety of motions. Then, we manually seg-

mented the shapes into parts. To further complement the shapes

with motion information, we implemented a tool to manually add

motion parameters to shape parts, so that motion sequences can be

generated automatically from the parameters. A non-expert user

can employ the tool to select a unit from a segmented shape and

manually specify the motion parameters. The construction of our

dataset took about 5 hours with this tool, with less than 1 minute

per shape on average.

By sampling snapshots from the motion sequences, we create

the sparse set of two snapshots used for training, and denser sets

of snapshots used as ground-truth in the evaluation. Note that, al-

though our dataset would allow us to also train a model with a

denser set of samples, using a sparse set of samples can provide

comparable results as we explore in Section 3 of the supplemen-

tary material. Moreover, there are many sources of data for which

performing such manual motion assignment would be prohibitive,

e.g., for processing large-scale datasets or 3D scans which are not as

clean and easy to manipulate as our models. In these more diicult

scenarios, using our method is beneicial for reducing the amount

of manual efort required to collect the motion sequences.

Snapshot-to-unit distance measure. As the key contribution of our

paper is a new snapshot-to-unit distance which enables the map-

ping between the static and dynamic domains, we irst evaluate

the overall performance of the distance measure we learned. We

perform a 10-fold cross validation experiment, that is, we divide the

units in the training data into 10 folds of equal size and evaluate

the distance measure when taking each fold as the test set while

training on the other nine folds. For this and the subsequent ex-

periments, we use four snapshots per unit for training, and nine

snapshots per unit for testing. We evaluate the distance measure

in two directions, i.e., snapshot-to-unit and unit-to-snapshot direc-

tions. For the snapshot-to-unit direction, given a test snapshot, we

rank all the training units according to their distance to the given

snapshot and then verify whether the units with same motion type

are consistently ranked before units with other motion types. For

the unit-to-snapshot direction, given a training unit, we rank all the

test snapshots according to the distance measure, and evaluate the

ranking.

We evaluate the quality of the ranking with the ranking consis-

tency (RC) measure [Hu et al. 2016]. We take the snapshot-to-unit

direction as an example to explain the computation of the RC mea-

sure, while the unit-to-snapshot direction can be derived in a similar

manner. The RC evaluates in a quantitative manner how well a set

of retrieved items is ordered according to ground-truth labels, by

comparing the relative ordering between pairs of items. We deine
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Fig. 10. Ranking consistency for diferent snapshot-to-unit distances. Please

refer to the text for details.

the RC for a test snapshot s as:

RC(s ) =
∑

ui ∈I

∑

uj ∈O

C (DSU (s,ui ),D
SU (s,uj ))

/

|I | |O|, (4)

where C (di ,dj ) =

{

1, if di < dj ,

0, otherwise,
(5)

with I being the set of training units with the same motion type as

s , and O the set of training units with diferent motion types. The

RC ranges in [0, 1] and captures the global quality of the ranking

according to the ground-truth. Note that the RC tests whether posi-

tives are ranked higher than negatives and thus is equivalent to the

area under the receiver operating characteristic (ROC) curve [Steck

2007].

We compute the average RC for test snapshots and report it as

the graph on the left of Figure 10, while the result for the unit-to-

snapshot direction is shown on the right. In this evaluation, we

study the efect that using diferent types of weights and metric

learning constraints have on the model. The bar labeled Uniform

denotes the accuracy of motion prediction when using a set of equal

descriptor weights for the snapshot distance. Our Type 1 and Our

Type 2 denote the cases when only Type 1 or Type 2 constraints are

used, and inally Our both denotes the use of both constraints for

the metric learning. We note that the RC is best preserved when

both constraints are included in the optimization (Our both).

Comparison to a baseline method. To further evaluate our distance

measure, we compare it to other distance choices. First, we com-

pare to a baseline that uses only the geometry of shape parts for

prediction. Speciically, we use the light ield descriptor (LFD) to

compute the distance between two snapshots, which is taken as

the sum of the LFD descriptor distances between the moving and

reference parts of the two snapshots. Since all the snapshots of a

unit have the same moving and reference parts, it is suicient to use

one snapshot as representative of each unit. Then, we match a query

snapshot to the unit in the training set with the lowest distance to

its representative snapshot, and assign the motion of the unit to the

query snapshot. The result is shown in Figure 10 and denoted LFD.

Metric learning applied to the snapshot-to-snapshot distance. To

show the efectiveness of our linear assumption on the S-D map-

ping, we also evaluate the scenario where we apply the metric

learning directly to the snapshot-to-snapshot distance, instead of

the snapshot-to-unit distance. We then derive a snapshot-to-unit

distance by exhaustively computing the distance from the query to

0.7

0.8

0.9

1
LFD

Snapshot

Uniform

Our Type 1

Our Type 2

Our both

0.95

0.83

0.91 0.90

0.95
0.93

Fig. 11. Motion prediction accuracy for our method when using diferent

sets of weights. We also include a comparison to a baseline method (LFD).

See the text for details.

Table 1. Size (in number of units) and average prediction accuracy for all

motion types.

Motion type R_H_C R_H_S T_H TR_H

Cluster size 85 71 54 28

Prediction accuracy 0.98 0.91 0.95 0.98

Motion type R_V_C R_V_S T_V TR_V

Cluster size 21 29 16 64

Prediction accuracy 0.90 0.96 0.86 0.98

each snapshot of a unit with the optimized snapshot-to-snapshot dis-

tance, and picking the unit corresponding to the snapshot with the

minimum distance. The result is denoted as Snapshot in Figure 10.

Discussion. From these comparisons, we conclude that our part

mobility model takes into consideration not only the geometry of

the parts, but also the correct motion that the parts can possess.

Thus, our method provides more accurate results when compared to

the LFD baseline that only considers the geometry of parts. With the

linearity assumption that simpliies the distance measure between

a snapshot and a unit, our method not only saves time during train-

ing and when computing the distance measure, but also provides

better performance than when the snapshot-to-snapshot distance is

optimized directly, since only very few snapshots are sampled for

each training unit. Finally, when using diferent types of weights

and metric learning constraints, we observe that the metric learning

has a beneit in the prediction accuracy when compared to uniform

weights. The best prediction accuracy is obtained when both types

of constraints are incorporated into the learning.

Motion prediction. Since our main focus is to use S-D mapping for

motion prediction and transfer, we speciically evaluate the motion

prediction accuracy of the top retrieved unit for a test snapshot,

which is the most relevant for motion prediction. We perform the

same 10-fold cross validation experiment described above and verify

the accuracy of motion prediction for all the test snapshots in a fold.

The accuracy is evaluated according to the ground-truth labels,

and we report the average accuracy for the ten tested folds. The

comparison results with diferent distance measures are shown in

Figure 11.We see that the best prediction accuracy of 0.95 is obtained

when either constraints of Type 1 or both types of constraints are

satisied. Using only the snapshot-to-snapshot distance or uniform

weights provides a slightly lower accuracy (0.91), while LFD has

the lowest accuracy (0.83). Figure 2 shows a few visual examples of

units predicted by our model, in comparison to other options.
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Fig. 12. Failure cases for motion prediction. Each example is the query

snapshot on the let and the predicted unit to the right. As can be seen, a

wrong type of motion is inferred.
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Fig. 13. Linearity for the snapshots of the units shown to the let of each

graph, where the distances to the start and end snapshots of the unit are

indicated along the x and y axis, respectively. We observe that the sum of

distances remains almost constant.
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Fig. 14. Average accuracy for motion prediction when using diferent motion

assumptions for defining the snapshot-to-unit distance.

Table 1 shows the size and prediction accuracy for each motion

class in our dataset. We observe that the accuracy for all motion

types is above 0.86. The lowest accuracies appear in the classes

R_H_S, R_V_C and T_V, where T_V has the smallest set of training

data, whichmakes the prediction unstable compared to other motion

types. Figure 12 presents a few examples of incorrect predictions

for these classes. We see how the geometry and interaction of parts

in the query and unit are similar, although the motion supported

by the parts is diferent. We also evaluate the diferent components

and parameters of our model as follows.

Linearity assumption. In Figure 13, we investigate our assump-

tion that the distances from snapshots to the their units exhibit a

form of linearity. We see in these examples with diferent types of

motion that, after learning, the snapshot-to-unit distance exhibits

the assumed linearity. In general, we observe a similar result for the

other types of motion in our dataset.

Moreover, we compare our linearity assumption to other possible

motion assumptions. More speciically, we deine snapshot-to-unit

Fig. 15. Three prediction results when certain semantic classes are missing

from the training data. For each pair, the query snapshot is shown to the

let and the predicted unit to the right.
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Fig. 16. Average accuracy for motion prediction in a cross-validation experi-

ment. We measure the accuracy when performing the metric learning with

diferent numbers of snapshots per unit.

distances that consider diferent k as follows:

DSU
k

(s,uj ) =
1

2

(

(

DS
Wj

(s, s
j
1)

)k
+

(

DS
Wj

(s, s
j
m )

)k
)

. (6)

Note that our previous deinition in Eq. 2 is the special case when

k = 1. We show the comparison to these distances in Figure 14.

We see that the linearity assumption provides the best prediction

results, while our metric learning is able to improve the prediction

accuracy under all of the diferent motion assumptions.

Prediction for missing semantic classes.One question related to our

model is whether we can ind a suitable motion for a snapshot even

if its exact semantic class is not present in the training set. To study

this scenario, we perform an experiment where we remove an entire

semantic class from the training data, and then verify what motion

is predicted for snapshots from this removed class. We present a

few example results in Figure 15. We see that, although we do not

have the correct semantic class in the model, we map the snapshots

to classes where the motion is relevant and has similar parameters,

such as a rotating fan mapped to rotating wheels on a chair’s legs.

Number of training snapshots per unit.We perform an experiment

to investigate the efect that using diferent numbers of snapshotsm

per training unit has in the accuracy of motion prediction. To ensure

that the results for diferentm are comparable, we always repre-

sent test units with nine snapshots when computing the prediction

accuracy. The results are shown in Figure 16. We observe that the av-

erage accuracy lies around 0.95 when using four or more snapshots

per training unit. Using more than four snapshots does not improve

the accuracy much more for the types of motion encountered in our

dataset.

Efect of training set size. We investigate the relation between

the size of the training set and the accuracy of motion prediction.

For this experiment, we perform cross-validation experiments as

explained above, except that we vary the number of units in the

training set to be a percentage of the entire dataset. We then evaluate

the accuracy of prediction on a ixed set of 10% of units randomly

sampled from the dataset and left out for testing. As observed in
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Fig. 17. Average accuracy for motion prediction when using training sets of

increasing size, where more units are included.

Figure 17, with approximately 40% of our dataset (148 units), we

obtain an accuracy of 0.9 or higher for the selected random sample.

Thus, we can obtain a general model that covers a variety of part

mobility types with only 148 units stored in the model.

Motion transfer. We evaluate the quality of the motion transfer

to verify that, after correctly predicting the motion type for a snap-

shot, we can also successfully transfer the actual motion from the

retrieved unit. Figure 18 shows examples of motion transfer results.

We see how motions with diferent types of transformations and

axes can be transferred successfully to diverse objects. The sup-

plementary video accompanying this submission shows animated

examples of results.

We evaluate the quality of the motion transfer by comparing the

transferred transformation axis to the ground-truth axis with two

measures. First, we measure the distance between the supporting

lines of each axis. However, to obtain a distance that takes the parts

into account, we consider only the portions of the lines that lie inside

the bounding box of the snapshot, in fact measuring the distance

between two line segments. This ensures that we get an accurate

distance even for co-planar lines that have a zero distance because of

intersection points far from the snapshot. Next, we also evaluate the

angle between the transferred and ground-truth axes. We evaluate

these two measures for all the snapshots of our dataset also in a

cross-validation scheme with 10 folds.

We ind that the distance between axes is on average 0.03, with

a standard deviation of 0.08, where the shapes are normalized so

that the moving part its into a bounding box that has a diagonal of

length 1. Thus, the distance is small as it corresponds to 3% of the

part’s bounding box diagonal, implying that the errors are more on

a iner scale. The angle between the axes is on average 8.14 degrees

with a deviation of 32.93. Further analysis reveals that the errors

for angles typically concentrate around 0 and 90 degrees, where

90 degrees is the case where the two possible horizontal axes are

lipped with each other. We found that 92% of the errors concentrate

around 0 degrees, with a deviation of 4.37, implying that the angle

is well approximated. The remaining 8% of the errors are lipped

axes. Figure 19 shows representative failure cases.

To obtain more insight into the performance of each step of the

motion transfer, we also pose the motion transfer as a classiication

task and evaluate the accuracy of the transfer. First, we set parameter

diference thresholds of 5.0 and 0.3 for the transformation axis

direction and position, respectively. Then, given a snapshot, if the

distance between the transferred parameters and the ground-truth

parameters is below the given thresholds for the two parameters,

and the transformation type is the same as in the ground-truth, then

Fig. 18. Examples of motion transfer obtained with our method ater pre-

dicting the correct motion type for each snapshot. The transformation axes

(for rotation or translation) are denoted with the dashes lines, while the

motion is indicated by the arrows.

Fig. 19. Failure cases of motion transfer where the transformation axes

were flipped.

we classify the motion transfer of the snapshot as correct. We then

compute the transfer accuracy for the candidate parameter sets and

for the inal selected motion. To evaluate the candidate generation,

we verify whether any of the generated candidates is classiied as

correct. To evaluate the inal motion, we simply verify whether the

inal candidate selected is correct.

The accuracy of the candidate generation step in isolation is 0.96.

Given that the initial accuracy for the prediction of motion type

using the S-D mapping is 0.95, the overall accuracy of candidate

generation is 0.91 = 0.95 ∗ 0.96. Moreover, the accuracy of the

inal transfer after selecting one candidate is 0.94 in isolation, or

0.86 = 0.91 ∗ 0.94 when considering the previous steps. Thus, we

observe that, for each step, the accuracy of the prediction is relatively

high. However, the error accumulates providing a inal performance

of 0.86.

Timing. The entire learning takes around 11 minutes on our

dataset of 368 mobility units with 4 snapshots per unit, where the

clustering for constraint subsampling takes 14s, and the metric learn-

ing takes 617s with both types of constraints. With only one type

of constraint, the learning takes around 69s for Type 1 constraints

and 422s for Type 2. When only constraints of Type 2 are used,

parallelism can be explored to reduce the timing to 70s. Mapping a

query snapshot to the most similar unit after learning is fast, taking

only 1ms. The timing for motion transfer depends on the number

of candidate sets of motion parameters we generate. It typically

takes less than 30 seconds to transfer the motion from one unit to

a snapshot when 6 candidate sets are sampled. The motion trans-

fer is highly parallelizable and holds the potential for a signiicant

speed-up.
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Fig. 20. Failure cases for motion prediction on shape surfaces. Each example

is the query snapshot on the let and the predicted unit to the right. As can

be seen, a wrong type of motion is inferred.
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Fig. 21. Motion prediction for two scans of a toolbox. The unit predicted

for each pair of parts is indicated by a number.

7 APPLICATIONS

In this section, we explore diferent applications of the motion pre-

diction and our part mobility model.

Prediction from surface representations. In situations where a 3D

object is only available as a segmented surface model, we show that

we can still use our mobility model for motion prediction. For this

type of shape representations, the internal structures of the object

were not modeled, e.g., the internal structure of a drawer is missing

and we only have a patch with the outer front of the drawer. To

evaluate the performance of our method in this scenario, we learn

the model also with surface representations, and then evaluate the

prediction accuracy with the same cross-validation procedure as for

models with internal structures. In practice, we use the same dataset

as before for the learning, except that we only sample points from

the visible portions of the shapes to compute the descriptors, which

simulates the absence of internal geometry. We obtain an average

prediction accuracy of 0.94 when performing the learning with 4

snapshots per unit. We note that this is only 1% lower than the

average prediction on full shapes with internal structures. Figure 20

shows a few failure cases for the prediction. For example, a syringe

is predicted to have the motion of a roll, since the surface geometry

is similar, although the motion is a translation and not a rotation.

An extension to work with real scanned data with annotated

segmentations is also possible, which can be promising for robotic

applications. The added challenge would come from surface imper-

fections and incomplete data. Figure 21 shows an example of the

predicted motion for diferent units of a shape scanned in two dif-

ferent conigurations. The scans were obtained with an Artec Space

Spider scanner, which directly provides a reconstructed triangle

mesh as output.

The prediction over surface shapes is potentially applicable to ill

in the missing geometry in these shapes. In Figure 22, we show a

few examples where we manually completed the missing geometry

and then automatically assigned motion to the new parts based on

the prediction. Automating such motion-driven shape completions

would be an interesting future work.

(a) (b)

Fig. 22. Completing internal structures from surface representations. (a)

The input shape, the segmented surface, rendered with transparency to

show the empty space inside, and the final result with completed internal

parts. (b) Units predicted for the surface of the door and drawers.
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Fig. 23. Precision and recall of snapshot retrieval with our model, which

can be potentially used for object detection. Note the high precision for

recall rates under 0.5.

Object retrieval. Instead of detecting objects based on geometry

only, we can also consider what motions may be applied to the

objects, to search for objects that are most suitable for a speciic

task. Such an application can be useful in a recognition setting, e.g.,

a robot searches for the top objects that can satisfy a certain type of

motion, such as a handle rotation, which could indicate the location

of a door handle. We motivate the potential of our model for such

an application by evaluating the retrieval of snapshots according

to a given motion type. Figure 23 reports the recall and precision

when ranking all test snapshots in our dataset according to their

distance to a motion type, which is deined as the minimal snapshot-

to-unit distance to the training units with such motion type, also

in a cross-validation setting. We observe that the precision is quite

high, over 0.95, for recalls under 0.5.

Motion hierarchies of shapes. The basic use of our model is to

predict the mobility of snapshots composed of pairs of parts. We

can further use the model to predict the motion of all parts in a

shape, and encode it in the form of a motion hierarchy that reveals

the dynamic properties of the shape. Given a segmented shape, we

irst create a connectivity graph for the parts of the shape. Next,

we predict the motion for every possible edge in this graph, which

corresponds to two adjacent parts. Since we have no information

on which is the moving part and which one is the reference, we

predict the motion for both possibilities, and select the one with

the lowest snapshot-to-unit distance as the moving part. Finally,

we select the part that was never chosen as a moving part in a

pair as the root of the hierarchy, while edges of the hierarchy are
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Fig. 24. Construction of the motion hierarchy for a shape. (a) We start with

a connectivity graph for the shape parts. (b) We predict the motion for every

pair of parts, determining which part is moving or reference in the pair. (c)

From the information of all pairs, we establish the root node and motion

hierarchy of the shape.

derived by propagating the reference-to-moving part relations we

just identiied. The process is illustrated in Figure 24. Note how the

chosen units have the same type of motion as the query part pairs.

In Figure 25, we present examples of the motion predicted for the

parts of selected shapes and their corresponding hierarchies. Note

how we are able to ind the most relevant motion for the parts.

8 DISCUSSION, LIMITATION, AND FUTURE WORK

We introduced a part mobility model and a supervised method

to learn it based on metric learning. We showed that the model

can be learned from few static snapshots of mobility units, not

requiring the use of dense snapshot sequences capturing the motion

of the units. Moreover, we showed with a detailed analysis that

the learning creates a meaningful model of part mobilities, which

can be used for various applications, including motion prediction,

motion-driven object detection, and motion hierarchy construction.

The key ingredient of the model is the S-D mapping from static

snapshots to dynamic mobility units, which can be used to predict

the motion of static pairs of parts appearing on one 3D snapshot of

an object.

Limitations. The approach we have developed represents a irst

step in the direction of learning part mobilities of shapes. Thus, the

model has limitations arising from our assumptions that helped

simplify the learning scheme. First, we focus on mobility units

composed only of pairs of parts. Some objects in the real world may

possess units composed of three or more parts, such as those from

complex mechanical assemblies, which cannot be modeled with our

current approach. Moreover, we assume that each unit satisies the

assumption of linearity, and thus bilinear part mobilities, such as a

ball-in-a-socket joint, or nonlinear part mobilities are not captured

by our model. In addition, when the model is extended to encode

the mobility of an entire shape in the form of a motion hierarchy,

we assume that the motion of each unit is independent from each

other. Thus, we do not capture the co-dependency of mobility units,

e.g., when opening an umbrella, the parts that compose the frame

of the umbrella can only move in a coordinated manner.

Another technical limitation of our learning pipeline is that we

assume that the input shapes are segmented. Thus, the use of the

model in a fully-automatic system for motion prediction will depend

on the quality of automatic segmentation. In terms of the evaluation

and applications, we only showed preliminary results for motion

prediction on scans or surface shapes. We created training data by
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Fig. 25. Examples of motion prediction for all the parts of diferent shapes,

and the corresponding motion hierarchies for the shapes. The query shapes

are shown in the middle of the various groups, and the units in the training

data closest to diferent pairs of parts are indicated by numbers. The colors

of nodes in the hierarchy indicate the correspondence to the shape parts.

sampling points on the visible surfaces of the models, to simulate

complete scans with the absence of internal geometry. It would

be ideal to use real scans for training, whose geometry and part

relationships can be quite diferent from clean data. However, to

collect such data, we must face typical diiculties with scan com-

pletion and registration. Especially for dynamic motion data, the

visible portions of the surfaces change during their motion, requir-

ing the acquisition and merging of multiple scans. More research is

required to obtain a fully reliable prediction in such scenarios. Also,

additional research is needed on the problem of automatically com-

pleting the missing geometry of shape surfaces, which we consider

an orthogonal problem to motion prediction.

Future work. Some of the limitations discussed above are interest-

ing directions for future work. For example, bilinear or nonlinear

part mobilities may be reduced to a composition of multiple lin-

ear mobilities, which would allow us to also model these types of

motion. Learning the dependency among mobility units in shapes

with complex mechanisms may be achieved with a learning-based

method that incorporates cues derived from the geometry of the

shapes [Mitra et al. 2010]. Recently, there have been many works

on learning CNNs for semantic segmentation of 3D models and

RGBD scans, which can potentially provide segmented input to our

method. The extraction of motion hierarchies for entire shapes may

also beneit from a method that combines part segmentation with

mobility prediction, so that parts are extracted based on their poten-

tial motion. We also believe that more applications that make use

of our snapshot-to-unit distance can be explored, especially applica-

tions that beneit from both types of constraints used in the learning

of the distance measure. Finally, we expect part mobility analysis

to be an essential task for VR/AR and robotics applications, where

an extension of our learning and processing framework applied to

real-time depth or RGBD scans can play a critical role.
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A SNAPSHOT DESCRIPTORS

To represent the IBS and IRs of parts in a snapshot of a mobility unit,

we compute a set of geometric descriptors as proposed by Zhao

et al. [2014]. We compute: (i) The point feature histogram (PFH)

descriptor, which is encoded as the mean and variance of the relative

rotation between each pair of normals in the IBS. The PFH captures

the general geometry of the IBS; (ii) A histogram that collects the

angle between the IBS normals and the +z vector (Dir). This his-

togram captures the general direction of the boundary between the

parts, since the input shapes are upright-oriented along the +z axis;

(iii) A histogram that captures the distribution of distances between

the IBS and the parts (Dist). These descriptors are also computed for

the IRs by considering the surface of each IR rather than the IBS, as

proposed in the work of Hu et al. [2015]. In addition, we compute a

histogram of height values along the +z axis for each IR.

To adapt RAID to our setting, we extend it from 2D to 3D. We

replace pixels by voxels and circles by spheres in the descriptor

construction. For the space partitioning within each sphere, we

use the three canonical planes to subdivide 3D space, obtaining 8

spatial partitions. Using an inner and an outer sphere, we obtain

16 partitions in total. Given that we have a larger dimensionality

than in the original work, we sample 40, 000 points for histogram

computation instead of 10, 000, and compare descriptors with the

earth-mover’s distance rather than the L1 metric.
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