
RPM-Net: Recurrent Prediction of Motion and Parts from Point Cloud

ZIHAO YAN∗, Shenzhen University

RUIZHEN HU∗, Shenzhen University

XINGGUANG YAN, Shenzhen University

LUANMIN CHEN, Shenzhen University

OLIVER VAN KAICK, Carleton University

HAO ZHANG, Simon Fraser University

HUI HUANG†, Shenzhen University

We introduce RPM-Net, a deep learning-based approach which simulta-

neously infers movable parts and hallucinates their motions from a single,

un-segmented, and possibly partial, 3D point cloud shape. RPM-Net is a

novel Recurrent Neural Network (RNN), composed of an encoder-decoder

pair with interleaved Long Short-Term Memory (LSTM) components, which

together predict a temporal sequence of pointwise displacements for the input

point cloud. At the same time, the displacements allow the network to learn

movable parts, resulting in a motion-based shape segmentation. Recursive

applications of RPM-Net on the obtained parts can predict finer-level part

motions, resulting in a hierarchical object segmentation. Furthermore, we

develop a separate network to estimate part mobilities, e.g., per-part motion

parameters, from the segmented motion sequence. Both networks learn deep

predictive models from a training set that exemplifies a variety of mobilities

for diverse objects. We show results of simultaneous motion and part pre-

dictions from synthetic and real scans of 3D objects exhibiting a variety of

part mobilities, possibly involving multiple movable parts.

CCS Concepts: · Computing methodologies→ Shape modeling.

Additional Key Words and Phrases: Shape analysis, part mobility, motion

prediction, point clouds, partial scans.

ACM Reference Format:

Zihao Yan, Ruizhen Hu, Xingguang Yan, Luanmin Chen, Oliver van Kaick,

Hao Zhang, and Hui Huang. 2019. RPM-Net: Recurrent Prediction of Motion

and Parts from Point Cloud. ACM Trans. Graph. 38, 6, Article 240 (Novem-

ber 2019), 15 pages. https://doi.org/10.1145/3355089.3356573

1 INTRODUCTION

In recent years, computer graphics and related fields, such as com-

puter vision and robotics, have devoted much attention to the infer-

ence of possiblemotions of 3D objects and their parts, since this prob-

lem is closely related to an understanding of object affordances [Bo-

goni and Bajcsy 1995; Gibson 1979] and functionality [Caine 1994;

∗Zihao Yan and Ruizhen Hu are joint first authors.
†Corresponding author: Hui Huang (hhzhiyan@gmail.com)

Authors’ addresses: Zihao Yan, Shenzhen University; Ruizhen Hu, Shenzhen University;
Xingguang Yan, Shenzhen University; Luanmin Chen, Shenzhen University; Oliver van
Kaick, Carleton University; Hao Zhang, Simon Fraser University; Hui Huang, College
of Computer Science & Software Engineering, Shenzhen University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.
0730-0301/2019/11-ART240 $15.00
https://doi.org/10.1145/3355089.3356573

tim
e

RPM-Net

Fig. 1. Given an unsegmented, possibly partial, point cloud shape, our

deep recurrent neural network, RPM-Net, simultaneously hallucinates a

motion sequence (via point-wise displacements) and infers a motion-based

segmentation of the shape into, possibly multiple, movable parts. RPM-Net

predicts a non-trivial motion for the umbrella and multi-part motions for

both the cabinet (drawer sliding and door rotating) and the office chair (seat

moving up and wheels rotating). The umbrella and cabinet are synthetic

scans while the office chair is a single-view scan acquired with a Kinect

sensor. Input scans to RPM-Net were downsampled to 2,048 points.

Hu et al. 2018]. An intriguing instance of the problem is whether and

how a machine can learn to predict part motions or part mobilities1

when only few static states of a 3D object are given.

1The subtle difference between part mobility and part motion is that the term mobility
refers to the extent that a part can move; it emphasizes the geometric or transformation
characteristics of part motions, e.g., the types of the motions and the reference point or
axis of a rotation, etc. On the other hand, motion is a more general term which also
encompasses measures reflecting physical properties, such as speed and acceleration.
In our work, RPM-Net predicts movable parts and their motions simultaneously, while
the second network, Mobility-Net, further predicts part mobilities.

ACM Trans. Graph., Vol. 38, No. 6, Article 240. Publication date: November 2019.

240:2 • Z. Yan, R. Hu, X. Yan, L. Chen, O. Kaick, H. Zhang, and H. Huang

Hu et al. [2017] introduced a data-driven approach which learns

to predict part mobilities from a single static state of a 3D object,

but requires the object to be well segmented. More recently, in deep

part induction, Yi et al. [2018] developed a deep neural network to

infer articulated parts and their mobilities from an unsegmented

object, but requires a pair of mobility-equivalent objects in differ-

ent articulations as input. However, when functionality inference

needs to be carried out over raw scans of a 3D environment, e.g.,

during robotic navigation, it is unrealistic to expect either object

pre-segmentation or the availability of articulated object pairs.

In this paper, we introduce a deep learning-based approach which

simultaneously predicts movable parts and hallucinates their mo-

tions from a single, un-segmented, and possibly partial, 3D point

cloud shape. Hence, the key assumptions on input objects in the

works of [Hu et al. 2017] and [Yi et al. 2018] are both removed.

Our deep network, which is coined RPM-Net, is a novel Recurrent

Neural Network (RNN), composed of an encoder-decoder pair with

interleaved Long Short-Term Memory (LSTM) components, which

together predict a temporal sequence of pointwise displacements for

the input shape to reveal its motion. We also connect additional

layers to the network to learn one ormoremovable parts from the hal-

lucinated temporal displacement field, resulting in a motion-based

shape segmentation, as shown in Figure 1.

Our key observation is that hallucinating and tracking pointwise

movements over time represents arguably the most general form of

motion prediction for a point cloud shape. This allows the network

to process unstructured, low-level inputs and exploit the temporal

characteristic of motion. At the same time, we are not making any

assumption about the motion type or fitting the model to any spe-

cific motion parameters. This allows RPM-Net to learn non-trivial

motions beyond simple translation and rotation, e.g., see the um-

brella example in Figure 1. As well, the network can infer multiple

moving parts at the same time, possibly with each undergoing a dif-

ferent type of motion; see the cabinet in Figure 1 where the drawer

slides and the door rotates about a hinge; for the office chair, the

seat moves up while the wheels rotate. Note that our network can

handle different sources of data, such as the synthetic scans of the

umbrella and the cabinet and the single-view scan of the office chair

via Kinect. In addition, recursive applications of RPM-Net on the

obtained movable parts allow prediction of finer-level part motions,

resulting in a hierarchical motion-based object segmentation.

In concurrent work, Shape2Motion, Wang et al. [2019] also aim

for simultaneous motion and part prediction from an unsegmented

point cloud shape. The key distinction, however, is that their net-

work assumes that the part motion is either a translation, a rotation,

or a specific combination of translation and rotation. This assump-

tion allows the network to propose and then match these types

of motions, as well as the motion parameters (i.e., part mobilities),

based on training data. In contrast, RPM-Net makes no such assump-

tions and learns general shape movements. To infer part mobilities,

we develop a separate network, Mobility-Net, to estimate per-part

motion parameters from the output of RPM-Net. Thus, we decouple

motion and mobility prediction. Both RPM-Net and Mobility-Net

learn their predictive models from a training set that exemplifies a

variety of mobilities for diverse objects.

Our work is inspired by recent works from computer vision that

predict the temporal transformation of images [Tulyakov et al. 2018;

Xiong et al. 2018; Zhou and Berg 2016]. However, besides an ar-

chitecture adapted to the setting of part mobility prediction, we

also introduce two important technical contributions that make the

problem more tractable: (i) We introduce a loss function composed

of reconstruction and motion loss components, which ensure that

the predicted mobilities are accurate while the shape of the object

is preserved. (ii) The use of an RNN architecture allows us to pre-

dict not only subsequent frames of a motion, but also enables us

to decide when the motion has stopped. This implies that besides

predicting the mobility parameters, we can also infer the range of a

predicted mobility, e.g., how far a door can open.

We show results of accurate and simultaneous motion and part

predictions by RPM-Net from synthetic and real scans, complete or

partial, of 3D objects exhibiting a variety of part movements, possi-

bly involving multiple movable parts. We validate the components

of our approach and compare our method to baseline approaches. In

addition, we compare results of part mobility prediction by RPM-Net

+ Mobility-Net, to Shape2Motion, demonstrating both the generality

and higher level of accuracy of our method. Finally, we show results

of hierarchical motion prediction.

2 RELATED WORK

Methods have been proposed to acquire and reconstruct objects

along with their motion [Li et al. 2016; Stückler et al. 2015; Tevs

et al. 2012], represent and understand object motion [Hermans et al.

2013; Pirk et al. 2017], and even predict part mobilities from static

objects [Hu et al. 2017; Yi et al. 2018]. The motivation behind these

efforts is that a more complete understanding of object motion can

be used for graphics applications such as animation, object pose

modification, and reconstruction, as well as robotics applications

such as the modeling of agent-object interactions in 3D environ-

ments. In this section, we discuss previous works most related to

the task of mobility inference for objects and their parts.

2.1 Affordance analysis

In robotics, considerable work has focused on the problem of affor-

dance detection, where the goal is to identify regions of an object

that afford certain interactions, e.g., grasping or pushing [Hassanin

et al. 2018]. Recent approaches employ deep networks for label-

ing images with affordance labels [Roy and Todorovic 2016], or

physics-based simulations to derive human utilities closely related

to affordances [Zhu et al. 2016]. Although affordance detection

identifies regions that can undergo certain types of motion such as

rolling or sliding, the detected motions are described only with a

label and are limited to interactions of an agent. Thus, they do not

represent general motions that an object can undergo.

More general approaches for affordance analysis are based on the

idea of human pose hallucination, where a human pose that best fits

the context of a given scene is predicted to aid in understanding the

scene [Jiang et al. 2013]. Human pose hallucination can also be used

to infer the functional category of an object, based on how a human

agent interacts with the object [Kim et al. 2014]. Closely related

to affordance and human pose analysis is activity recognition, one

ACM Trans. Graph., Vol. 38, No. 6, Article 240. Publication date: November 2019.

RPM-Net: Recurrent Prediction of Motion and Parts from Point Cloud • 240:3

example being the detection of activity regions in an input scene,

which are regions that support specific types of human activities

such as having a meal or watching TV [Savva et al. 2014]. The focus

of these approaches is on understanding at a high-level the actions

that can be carried out with certain objects or in given scenes, while

the specific motions or part mobilities related to these actions are

not detected nor modeled by these methods.

2.2 Temporal transformation of images

In computer vision, methods have been proposed to infer the state

of an object in a future time, based on a depiction of the object in

the present. These methods implicitly predict the motion that the

objects in an image undergo and extrapolate the motion to a future

time. A common solution is to generate the future frames of an

input image with generative adversarial networks (GANs) trained

on video data [Xiong et al. 2018; Zhou and Berg 2016]. On the other

hand, Tulyakov et al. [2018] explicitly learn to decompose a video

into content and motion components, which can then be used to

create future frames of a video according to selected content and

motion. Moreover, Chao et al. [2017] introduce a 3D pose forecasting

network to infer the future state of the pose of human models

detected on images.

Similar to these approaches, we also introduce a learning-based

approach based on deep networks for motion inference. However,

we formulate the problem as segmenting input geometry and pre-

dicting the motion of movable parts. Thus, our deep network jointly

performs segmentation and prediction, while learning from 3D

shapes with prescribed segments and mobilities.

2.3 Motion inference for 3D objects

Works in computer graphics have also looked at the problem of mo-

tion inference for 3D objects. Mitra et al. [2010] illustrate the motion

of mechanical assemblies by predicting the probable motion of the

mechanical parts and the entire assembly from the geometric ar-

rangement of parts. Shao et al. [2013] create animations of diagrams

from concept sketches. For more general shapes, Pirk et al. [2017]

introduce interaction landscapes, a representation of the motion

that an object undergoes while being used in a functional manner,

e.g., a cup being used by a human to drink. This representation can

then be used to classify motions into different types of interactions

and also to predict the interactions that an object supports from a

few seconds of its motion.

Sharf et al. [2013] capture the relative mobility of objects in a

scene with a structure called a mobility tree. The tree is inferred

from finding different instances of objects in different geometric

configurations. Thus, while the method is able to infer the mobility

of objects in a scene, it is limited by the assumption that multiple

instances of the same objects appear in the input scenes.When given

a single 3D object segmented into parts, Hu et al. [2017] predict

the likely motions that the object parts undergo, along with the

mobility parameters, based on a model learned from a dataset of

objects augmented with a small number of static motion states for

each object. The model effectively links the geometry of an object

to its possible motions. Yi et al. [2018] predict the probable motion

that the parts of an object undergo from two unsegmented instances

of mobility-equivalent objects in different motion states.

Differently from these works, our deep neural network RPM-Net

predicts part motion from a 3D point cloud shape, without requiring

a segmentation of the shape or multiple frames of the motion. We

accomplish this by training a deep learning model to simultaneously

segment the input shape and predict the motion of its parts.

Concurrentlywith ourwork,Wang et al. [2019] also introduced an

approach for mobility prediction without requiring a segmentation.

Their approach first generates a set of proposals for moving parts

and their motion attributes [Wang et al. 2018], which are jointly

optimized to yield the final set of mobilities. In contrast to their work,

we break the analysis into motion prediction followed by mobility

inference, which allows us to predict part motions even in instances

when the motion cannot be described by a set of parameters. In

addition, we obtain the mobility parameters directly by regression

from the point cloud and predicted motion, rather than depending

on an initial set of proposals.

3 OVERVIEW OF MOTION PREDICTION

Our solution for motion and mobility prediction is enabled by two

deep neural networks. The first network, RPM-Net, performsmotion

hallucination, predicting how the parts of an object can move. This

network is the basic building block of our approach as it allows

one to infer the moving parts of an object along with their motion.

Moreover, if the user desires to summarize the predicted motion

with a set of low-dimensional parameters, a second neural network,

Mobility-Net, predicts the most likely transformation parameters

that describe the motion predicted by the first network. In Section 7,

we show that splitting the problem of mobility prediction into two

separate networks allows us to obtain higher accuracy in mobility

prediction, while also enabling the prediction of complex motions

that cannot be easily described with a set of parameters, e.g., the

opening of an umbrella. As follows, we first describe the datasets

that we use in our learning-based approach and evaluation, and

then describe our two neural networks.

4 PART MOBILITY DATASET

4.1 Dataset and mobility representation

Since we use a learning-based approach for the prediction of object

mobility, we require suitable training data. To create our training set,

we were inspired by the data setup of Hu et al. [2017] and obtained

our dataset by extending their mobility dataset. Specifically, our

dataset is a collection of shapes in upright orientation and segmented

into parts. Each part is labeled either as a moving part or reference

part, where a shape has one reference part and one or more moving

parts. For example, a bottle object could have a cap that twists

(moving part) and handle for carrying (moving part) which both

move in relation to a static liquid container (reference part).

For each shape in the dataset, we take each possible pair com-

posed of a moving and reference part, which we call a mobility unit,

and associate a ground-truth mobility to this unit, specified as a

set of parameters that describe the mobility of the moving part in

relation to the reference part. The parameters are represented as

a quadruple (τ ,d,x ,r), where τ is the transformation type (one of

ACM Trans. Graph., Vol. 38, No. 6, Article 240. Publication date: November 2019.

240:4 • Z. Yan, R. Hu, X. Yan, L. Chen, O. Kaick, H. Zhang, and H. Huang

Min
0° 30° 60° 90° 120°

Max

Displacement

Fig. 2. Training data generation. For each mobility unit, we sample n frames

from the start to the end of the motion and compute the displacement field

between each pair of adjacent frames. In this example, we see the sampling

of the rotational motion of an electric fan, where the rotation angle range

is defined to be [0◦, 120◦] due to the rotational symmetry of the shape.

translation T , rotation R, or the translation-rotation combo TR), d

and x are the direction and position of the transformation axis, and

r is the transformation range, stored as a start and end position (for

translations) or angle (for rotations) relative to a local coordinate

frame defined for each unit. Thus, the mobility information essen-

tially encodes the possible motion of the parts without prescribing a

specific speed for the transformation. The dataset containsm = 969

objects, where 291 objects have more than one moving part, which

results in 1,420 mobility units in total. Since our networks operate

on point clouds, we sample the visible surface of the shapes to create

point clouds with N = 2,048 points which we refer to as complete

scans.

Moreover, one of the key advantages of our RPM-Net is that it

is able to learn non-trivial motions beyond simple translation and

rotation. To demonstrate this property, we also built a small dataset

of shapes with non-trivial motions, which includes 24 umbrellas, 25

bows, and 21 balances.

4.2 Training set

To generate the training data for our approach, for the point cloud

of each shape in our part mobility dataset, we sample n frames from

the start to the end of the motion based on the motion parameters,

as illustrated in the top row of Figure 2. The selection of n has the

effect of adjusting the speed of the motions that will be learned and

predicted. For shapes with non-trivial motions, for which simple

motion parameters are not available, we generate the motion se-

quences separately for each category. For umbrellas, we generate

the motion sequence from the open to the closed state of each shape

by moving points on the cover toward the handle, similar to the

shrinking of a cone with linearly decreasing opening angles. For

bows, the motion sequence captures the bending of the string and

motion of the arrow, while the bow is kept rigid. Specifically, the

arrow is translated along a horizontal axis, while the string is de-

formed from a bent to a straight state while keeping two points

fixed. For balances, we first generate a rotational motion for the bar

and then set the motion of each pan to be the same as the motion

of the point that connects the pan to the bar.

We design our approach so that, for each input frame at timestamp

t ∈ {1,2, . . . ,n}, it predicts an output sequence consisting of the n−t

frames after t . To be able to predict n − t frames while ensuring that

all the training data has the same dimensionality, and also to be able

to infer when themotion stops, we duplicate the end frame a number

of times at the end of each sequence, to make the length of the entire

output sequence equal to n. In this manner, the relative motion of

all the duplicated frames compared to their previous frames will be

0, indicating that the end of the sequence has been reached.

Moreover, to generate ground truth data to guide our motion

generation through an RNN, we also compute the displacement

map between each pair of adjacent frames, which is simply defined

as the difference between two consecutive point clouds along the

motion, as shown in the bottom row of Figure 2. To obtain the

correspondence between moving points, we sample the point cloud

on the static mesh first, and then apply the ground-truth motion to

the point cloud to generate the individual frames. Thus, our training

data is composed ofmn training instances, where one instance is a

pair composed of the input frame and the output sequence of frames

that should be predicted by the network. Note that, for shapes with

multiple moving parts, each generated frame and displacement map

capture the simultaneous motion of the multiple parts. This enables

us to predict the simultaneous motion for multiple moving parts of

an object, as we will see in Section 7.

4.3 Evaluation datasets of partial point clouds

In addition to the set of complete point clouds described above, we

also use synthetic and real datasets of partial point clouds in our

evaluation. The synthetic dataset is generated by collecting virtual

scans from random viewpoints of the 3D models in our complete

dataset. More specifically, for each frame, we use the Kinect sensor

model of Bohg et al. [2014] and set random camera positions to

generate the synthetic partial scans. Then, we transfer the ground-

truth segmentation from the original mesh to the point clouds by

comparing the distance from each point to the moving part and

reference part in the mesh, and assigning the label of the closest part

to the point. Moreover, the real dataset was obtained by scanning a

variety of objects. We used a Microsoft Kinect v2 to scan big objects

like baskets, and an Artec Eva to scan smaller objects such as a flip

USB. For both datasets, since each partial scan can have a different

number of points, we randomly subsample N = 2,048 points from

each point cloud while ensuring that each part is represented with

at least 100 points.

5 RPM-NET FOR MOTION HALLUCINATION

5.1 Input and output

The input to the motion hallucination network RPM-Net is a point

cloud P0 ∈ R
N×3 that represents the sampling of a shape into a

fixed number of points N = 2,048. The output of the network is a set

of displacement maps of the points, along with their segmentation.

A single displacement mapDt ∈ R
N×3 represents the predicted mo-

tion of every point for a frame at time t , encoded as a spatial offset

for each point. The complete network predicts a set of displacement

maps {Dt } for n frames occurring after the input. For segmenting

the point cloud, the network first classifies each point as belonging

either to the reference part (Sref) or the moving part (Smov) of the

shape. Then, the network further segments the moving part into

isolated components {Simov}
C
i=1 with different sets of displacement

ACM Trans. Graph., Vol. 38, No. 6, Article 240. Publication date: November 2019.

RPM-Net: Recurrent Prediction of Motion and Parts from Point Cloud • 240:5

SA

LSTM

FPLSTM

...Shared

FP FP

FP

FP

FC

FC

FC

LSTM

LSTM

...

C

+

SA

FC

Distance
Matrix

Point
FeatureC

C Concatenation

K

ClusteringK

D

Pointwise distanceD

Addition+

.........

Fig. 3. The architecture of the motion hallucination network RPM-Net. Given an input point cloud P0, the network predicts displacement maps {Dt } along

with the segmentation S of the point cloud, which together provide the final segmented motion sequence {PS
t
}. The network is composed of set abstractions

(SA), feature propagations (FP), LSTM units, fully-connected layers (FC), and special operations denoted with the pink circles.

fields. Note that objects may differ in the number of moving com-

ponents C , which are determined automatically by clustering the

points based on a pointwise distance matrix.

5.2 Network architecture

The core of RPM-Net is a Recurrent Neural Network (RNN) that

predicts a displacement map. The RNN generates a displacement

map that represents the motion of the moving parts of the object

at a fixed time interval in the future. We employ this architecture

since RNNs have demonstrated high accuracy in tasks related to the

processing of sequential and time-series data. Specifically, RNNs

model an internal state that enables them to dynamically adjust

its processing according to temporal input, while at the same time

learning features that capture long-term dependencies in sequential

inputs. The specific RNN architecture that we use in our work

employs Long Short-Term Memory (LSTM) components that form

a type of temporal memory controlled with special gates connected

to its inputs.

A diagram of the full architecture of the motion hallucination net-

work is shown in Figure 3. The first part of the network is composed

of subnetworks that predict each of the n frames of the motion,

illustrated in the different rows of the figure, which provide a dis-

placement map for each frame. In each of these subnetworks, we use

the PointNet++ [Qi et al. 2017] encoder to create an R2048 feature

vector for the input point cloud P0, which represents the points

in a manner that is invariant to the order of points given in the

input. This feature vector is then fed to an LSTM that learns the

relationships between the features and the temporal displacement of

the points. More specifically, we set the initial state of the LSTM to a

vector of zeros. After feeding the feature vector and zero vector into

the LSTM, the unit returns the next state and another output that

represents the displacement map. A PointNet++ decoder and sets of

fully-connected layers then decode the output of the LSTM into a

displacement map. Next, we provide the next state along with the

feature vector as input to the LSTM again, to obtain the subsequent

displacement map. We repeat this procedure t times to obtain all

the displacement maps Dt .

In the second part of the network, the displacement maps {Dt }

are concatenated and passed with the input point cloud P0 to a

segmentation module that provides a motion-based segmentation

S =
{
Sref,S

1
mov, . . . ,S

C
mov

}
. More specifically, {Dt } is first passed

to additional fully-connected layers that predict the object-level

segmentation of the point cloud which segments the shape into a

reference part Sref and a moving part Smov. To further segment

Smov into multiple moving parts, we cluster Smov into separate

groups according to point set features. Specifically, {Dt } is concate-

nated with the input cloud P0 and then fed to a PointNet++ [Qi

et al. 2017] encoder-decoder that extracts a set of point features.

Next, a pointwise distance matrixM is obtained by computing the

Euclidean distance between corresponding point features. We de-

rive a submatrix Mmov for the points in Smov and cluster it with

DBSCAN [Ester et al. 1996], to separate the points in the moving

part into C groups corresponding to C moving components, where

C is automatically determined by the algorithm.

Note that our approach to obtain a variable number of segments

from a pointwise distance matrix is inspired by the similarity group

proposal network of Wang et al. [2018]. However, instead of consid-

ering the rows of the pointwise matrix as different group proposals

and then employing a non-maximum suppression step to generate

the final segmentation, we consider Mmov as a metric matrix and

ACM Trans. Graph., Vol. 38, No. 6, Article 240. Publication date: November 2019.

240:6 • Z. Yan, R. Hu, X. Yan, L. Chen, O. Kaick, H. Zhang, and H. Huang

apply a clustering algorithm directly to the matrix to produce the

segments. In this way, all the pairwise relationships between points

are considered when forming the clusters.

5.3 Network training and loss functions

To train this multi-output network, we design suitable loss func-

tions to account for each type of output. The loss for the motion

hallucination network is defined as:

L({Dt },S) =
1

n
*
,
n
∑

t=1

Lrec (Dt)+- + Lmot ({Dt }) + Lseg (S), (1)

where Lrec is the reconstruction loss, Lmot is the motion loss, and

Lseg is the segmentation loss. The first two terms ensure that an accu-

rate displacement map is generated for each frame in the sequence,

and the segmentation loss Lseg ensures the correct separation of the

moving and reference parts. We now discuss each term in detail.

5.3.1 Reconstruction loss. The loss Lrec quantifies the reconstruc-

tion quality of both the point cloud and displacement maps. Specifi-

cally, it measures the deviation of the point cloud from its original

geometry after motion with a term Lgeom, and the deviation of the

displacement maps from the ground truth with a term Ldisp:

Lrec (Dt) = Lgeom (Pt) + Ldisp (Dt), (2)

where Pt = Pt−1 +Dt is the point cloud after displacement.

The loss for the geometry is given by:

Lgeom (Pt) = ωref Lref (Pt) + ωmov Lmov (Pt), (3)

where Lref (Pt) is the loss of the reference part, Lmov (Pt) is a loss

that considers all the moving parts together, and the corresponding

weights are set as ωref = 10 and ωmov = 5.

To measure the geometric distortion, we use the ground-truth

segmentation to split P0 into reference and moving parts. For each

time-frame, the reference part should be kept static while the geom-

etry of the moving parts should only be transformed rigidly. Thus,

to measure the distortion of the reference part, we simply compare

its point positions in the original and predicted point clouds:

Lref (Pt) =
∑

p∈Pt
ref

∥p − pgt∥, (4)

where pgt is the original position of point p. To account for the

moving parts, we make use of a loss introduced by Yin et al [2018]

to measure the geometric difference between two point sets:

Lmov (Pt) = Lshape (P
t
mov,P

t,gt
mov) + Ldensity (P

t
mov,P

t,gt
mov), (5)

where the Lshape term penalizes points that do not match with the

target shape, while Ldensity measures the discrepancy of the local

point density between two corresponding point sets [Yin et al. 2018].

In practice, these terms are computed by finding the closest points

from the original to the transformed point cloud.

To compute the displacement loss Ldisp (Dt), we simply compute

the difference between the ground truth and predicted displacement

for each point:

Ldisp (Dt) =
∑

p∈Pmov

Dt (p) − D
gt
t (p)

 . (6)

5.3.2 Motion loss. The motion loss Lmot ({Dt }) is used to ensure

the smoothness of the hallucinated motion. More specifically, we

constrain the displacement of a point to be consistent across adjacent

frames of the motion, i.e., ∥Dti (p)∥2 = ∥Dti+1 (p)∥2, ∀p ∈ Pmov,

which we capture with a variance-based loss:

Lmot ({Dt }) =
∑

p∈Pmov

σ 2
(

{

Dt (p)

2}nt=0) , (7)

where σ 2 (. . .) is the variance of a set of observations.

5.3.3 Segmentation loss. Since the number of moving components

changes for different input shapes, we define the segmentation loss

over the intermediate results, i.e., the object-level segmentation

given by {Sref,Smov} and the pointwise distance matrix of the mov-

ing part Mmov, which is used to obtain the finer segmentation of

Smov. Thus, the segmentation loss is defined as:

Lseg (S) = ω
obj
seg L

obj
seg (Sref,Smov) + ω

mov
seg Lmov

seg (Mmov), (8)

where L
obj
seg is the object-level segmentation loss defined as the soft-

max cross entropy between the predicted segmentation and the

ground-truth segmentation, and Lmov
seg is the loss for the finer seg-

mentation of the moving part, defined as:

Lmov
seg (Mmov) =

Nmov
∑

i=1

Nmov
∑

j=1

l (mi ,mj), (9)

whereNmov is the number of points in themoving part and l (mi ,mj)

is defined as:

l (mi ,mj) =

Mmov (i, j), ifM

gt
mov (i, j) = 0,

max(0,K −Mmov (i, j)), ifM
gt
mov (i, j) = 1,

(10)

withM
gt
mov being the ground truth distance matrix, where an entry

(i, j) has the value 0 if points i and j belong to the same moving

part, and 1 otherwise. K is a constant margin which we set to the

default value of 80. The corresponding weights are set as ω
obj
seg = 2

and ωmov
seg = 0.2.

6 MOBILITY-NET FOR PARAMETER PREDICTION

6.1 Input and output

For the prediction of mobility parameters, the input to Mobility-

Net is the point cloud P0 together with the set of displacement

maps {Di
t } predicted by RPM-Net for the i-th moving component

Simov , for which we would like to infer the mobility parameters.

The output is a set of mobility parametersMi which describe at

a high level the mobility of the component through all the frames.

The parameters are encoded as a tupleMi = (τi ,di ,xi), where τi is

the transformation type, and (di ,xi) are the direction and position

of the transformation axis. Note that our method does not estimate

the remaining mobility parameter, the transformation range r , since

we can derive the range from the position of the moving part in the

start and end frames.

6.2 Network architecture

The architecture of Mobility-Net is shown in Figure 4. For each mov-

ing componentSimov , we take its corresponding set of displacement

maps {Di
t } and concatenate it with the point cloud P0 to obtain

ACM Trans. Graph., Vol. 38, No. 6, Article 240. Publication date: November 2019.

RPM-Net: Recurrent Prediction of Motion and Parts from Point Cloud • 240:7

FC

FC

SA× C

Multiplication×

Fig. 4. The architecture of the mobility prediction network Mobility-Net.

For each segmented moving component Simov , the network takes the point

cloud P0 and the corresponding generated displacement maps {Di
t
} as

input to predict the high-level mobility parameters (τi , di , xi). The network

is composed of an encoder (SA) and fully-connected layers (FC).

an input vector of dimension RN×(n+1)×3. This vector is passed

to a PointNet++ [Qi et al. 2017] encoder that extracts features of

the input, which are then passed to two additional fully-connected

layers, which provide the corresponding set of mobility parameters

Mi = (τi ,di ,xi). Since the transformation type τi is an integer,

while the other two mobility parameters axis direction di and posi-

tion xi are real values, we use two separate subnetworks for their

prediction.

6.3 Loss function

The loss for the mobility prediction network ensures the correctness

of the transformation type as well as the position and direction of

the transformation axis, for each segmented moving component

Simov . The loss of the mobility parametersMi for the i-th moving

part is defined as:

Lmob (Mi) = H (τi ,τ
gt
i) + ∥di − d

gt
i ∥2 + ∥xi − x

gt
i ∥2, (11)

where τi , di , and xi , are the predicted transformation type, motion

axis direction, and position, respectively, while τ
gt
i , d

gt
i , and x

gt
i , are

the ground-truth values, and H is the cross-entropy.

7 RESULTS AND EVALUATION

In this section, we show results of motion hallucination and mobility

prediction obtained with our networks RPM-Net and Mobility-Net,

and evaluate different components of the approach. As described in

Section 4, for our experiments, we use three datasets, which include

one dataset of complete points clouds that we split into a 90/10 ratio

for training/testing, and two additional evaluation sets composed of

synthetic and real partial scans. The three datasets consist of shapes

with single and multiple moving parts. Since for shapes with a single

moving part we only need to generate the motion sequences and

do not need to further segment the moving parts, we show results

for shapes with single and multiple moving parts separately.

We first present a set of qualitative results to demonstrate the

capabilities of our method. A quantitative evaluation and ablation

studies of the method are shown in Sections 7.2 and 7.3.

7.1 Qualitative results

We show results for synthetic shapes with single and multiple mov-

ing parts, and also results of motion hallucination for shapes with

non-trivial motion and hierarchical motion. To demonstrate the

generality our method, we also apply our networks to real scans.

7.1.1 Results on shapes with a single moving part. Figure 5 shows vi-

sual examples of mobility prediction on test units for both complete

and partial scans. For each example, we show the first four predicted

frames for each input point cloud with the predicted transformation

axis drawn as a green line on the segmented input point cloud. The

reference part is colored in gray while the moving part is red. We

observe how RPM-Net can generate correct motion sequences for

different object categories with different motion types and predict

the corresponding mobility of the moving parts.

For example, our method predicts rotational motions accurately

on shapes with different axis directions and position. This includes

the prediction of both horizontal and vertical axis directions, such

as the flip phone in the seventh row (left) versus the twist flash

drive in the eighth row (right), and the correct prediction of axis

positions, whether they are close to the center of the moving part

or to its side, as in the case of the scissors in the fourth row (left)

versus the pliers in the fifth row (left). Our method is able to predict

the correct motion and mobility parameters even for shapes where

the moving part is partially occluded by the reference part, e.g., the

fan on the third row (right), where a portion of the blade is occluded

by its protective case.

We can also see that, for translational motions, for example, the

cutter in the ninth row (left), RPM-Net is able to predict the correct

direction along which the blade opens by translation, although the

data only presents part of the blade while the reference part that

wraps around the blade is much more pronounced than the blade

itself. Moreover, we can see that the small button moves together

with the blade during the motion. We see a similar result of correct

translation detection for the syringe in the seventh row (right).

Our method can also correctly predict motions that involve a

combination of translations and rotations. For example, the head of

the bottle in the fifth row (right) is correctly rotated and translated

upwards. For other examples with more symmetric moving parts,

even when the rotational motion cannot be seen clearly by a human

from the static models, our network can generate the rotational

motion and correctly predict the motion type as shown for the

telescope in the eighth row (left) and the nut in the ninth row

(right). Moreover, we can see from the camera shown in the last

row (right) that, for input point clouds that are already close to the

end frame, our method learned to stop generating new frames after

finding the end state of the motion, which shows that our method

is able to infer the motion range.

Please see the accompanying video for a dynamic visualization

of these predicted motions.

7.1.2 Results on shapes with multiple moving parts. Given an object

with multiple part mobilities, RPM-Net can simultaneously predict

the motion of all the moving parts. Figure 6 shows examples of

simultaneous motion prediction, where we show four consecutive

frames of the predicted motion along with the predicted segmen-

tation and transformation axis, where each moving part is drawn

with a different color, while the reference part is shown in gray. The

transformation axis is drawn as a green line over each moving part

on the segmented point cloud shown in the last column.

ACM Trans. Graph., Vol. 38, No. 6, Article 240. Publication date: November 2019.

240:8 • Z. Yan, R. Hu, X. Yan, L. Chen, O. Kaick, H. Zhang, and H. Huang

Complete scan Partial scan

Input frame 1 frame 2 frame 3 frame 4 Prediction Input frame 1 frame 2 frame 3 frame 4 Prediction

R

R

TR

TR

TR

TR

R

R

R

R

R

R

R

R

R

R

T

T

T

T

Fig. 5. Motion prediction results on shapes with a single moving part. We observe how our method can be applied to a variety of shapes with diverse mobilities,

including both complete point clouds and partial scans. For each input cloud, we show the first four frames of the predicted motion, along with the predicted

transformation axis drawn as a green line, and moving and reference parts colored red and gray, respectively. We observe how RPM-Net can predict the

correct motion sequences for different inputs and estimate the corresponding part mobility parameters.

We see that our method can correctly segment moving parts in

several different configurations. For the gas stove shown in the

first row, our method successfully segments the three switches and

correctly predicts their corresponding mobility parameters. For the

TV bench shown in the second row, our method is able to recognize

different types of motion and segment the two doors and the drawer

into different moving parts. The other examples show similar results.

7.1.3 Results on shapes with non-trivial motion. Given that our

motion hallucination network RPM-Net is able to learn complex mo-

tions independently of whether these motions can be described by

mobility parameters and estimated by Mobility-Net, our method can

also perform hallucination for shapes with non-trivial motions, i.e.,

where the motion cannot be simply classified into translation, rota-

tion, or the translation-rotation combination. As a consequence, non-

trivial motions cannot be represented with a set of low-dimensional

mobility parametersM. Figure 7 shows four examples of non-trivial

motion hallucinated by RPM-Net, where our method correctly pre-

dicted motion sequences for two bows and two balances. In the

bow example, the motion captures the displacement of the arrow

as well as the shrinking of the bow’s string. The motion of the

balance includes the swinging of the pans. Note that, even though

the shapes of the two bows and two balances are quite different,

our method is able to generate correct motion sequences for these

shapes, which include synthetic inputs and real scans, demonstrat-

ing the robustness of our method. Moreover, most previous works

ACM Trans. Graph., Vol. 38, No. 6, Article 240. Publication date: November 2019.

RPM-Net: Recurrent Prediction of Motion and Parts from Point Cloud • 240:9

(a) (b) (c)

R

RR

R

R
R

R

R
R

TR
TR

TR

T

T

T

T

T

Fig. 6. Motion prediction results on shapes with multiple moving parts.

(a) Input point cloud, (b) Motion hallucinated with our method (four frames),

(c) Segmentation with predicted motion axis for each moving part.

Fig. 7. Non-trivial motion prediction results: motion hallucinated for two

bows (both synthetic) and two balances (one synthetic and one a real scan),

which cannot be described with a simple transformation.

cannot deal with such types of motion [Hu et al. 2017; Wang et al.

2019; Yi et al. 2018], demonstrating the generality of our motion

hallucination network. Note that, to obtain these results with more

complex motions, we trained our network separately for different

object categories that have different motions.

7.1.4 Results on shapes with hierarchical motions. We can apply

RPM-Net recursively to predict the mobility of parts organized

hierarchically (Figure 8). In the first example, we first detect the

rotational opening of the chest’s cover, followed by the detection

of the motion of the cover’s handle. In the second example, we

Fig. 8. Results of hierarchical motion prediction, where we detect mobility

at two levels of a hierarchy by applying RPM-Net recursively.

first detect the vertical rotation of the seat and wheels of the chair,

followed by the detection of the horizontal rotation of the wheels

at a finer scale.

7.1.5 Results on real scans. Figure 9 shows that we can also apply

our RPM-Net on real scans of objects. The last three rows show

objects scanned with a Kinect v2, while the other smaller objects

were scannedwith anArtec Eva scanner.We can see that ourmethod

can handle shapes with different complexity, different numbers of

moving parts, and different types of motions. Although the baskets

shown in the first three rows have quite distinct shapes, our method

can predict a meaningful motion for their handles and also predict

the correct motion type and axis position for the motion. Accurate

predictions can also be observed for the three following objects

which are of different categories including a laptop and two boxes.

Moreover, rotational motions can also be correctly predicted for

shapes with occluded parts, such as the fan shown in the seventh

rowwith an incomplete point cloud, and the flash drive shown in the

eighth row which has a different axis direction. Our method can also

predict translations and translation-rotation combo motions, and

the corresponding example results are presented in the ninth and

tenth rows, respectively. For shapes with more complex structures

and multiple moving parts, even if the scans are incomplete, our

method can still predict reasonable motions for most of the parts

scanned, as shown in the last three rows.

7.1.6 Results on out-of-distribution objects. To further evaluate the

generality of our method, we apply our method to shapes that do

not belong to any category in our dataset. A few example results

are shown in Figure 10. We see that, for the kettle and sprinkler in

the first two rows, our method can successfully predict the correct

motion of the handles, although the geometry of the bodies of these

shapes is quite different from shapes in our training set. For the four-

legged chair, we predict the folding motion of its back. Ultimately,

what is critical for obtaining successful results such as these is not

the coverage of the categories themselves, but how much similarity

exists between the test and training shapes.

7.2 Quantitative evaluation

We perform a quantitative evaluation of mobilities predicted by

RPM-Net + Mobility-Net for the test set by measuring the error in

mobility parameters and segmentation, for which we have a ground

ACM Trans. Graph., Vol. 38, No. 6, Article 240. Publication date: November 2019.

240:10 • Z. Yan, R. Hu, X. Yan, L. Chen, O. Kaick, H. Zhang, and H. Huang

R

R

R

R

R

R

R

R

R

R

R
R

R
R

TR

T

T

Fig. 9. Motion prediction results on real scans, where the moving parts are

shown with different colors and the reference part is colored gray.

truth available. Specifically, for each test moving part, we compute

the error of the predicted transformation axisM = (d,x) compared

to the ground-truth axisMgt
= (dgt,xgt) with two measures. The

Fig. 10. Motion prediction results for out-of-distribution objects, i.e., objects

from categories that do not exist in our dataset. We show results for a kettle,

a sprinkler, and a four-legged chair.

first measure accounts for the error in the predicted axis direction:

Eangle = arccos(
���dot(d/∥d ∥2,dgt/∥dgt∥2)���), (12)

which is simply the angle of deviation between the predicted and

ground-truth axes, in the range [0,π/2]. The second measure com-

putes the error for the position of the axis:

Edist = min(∥xgt − π (xgt)∥2,1), (13)

where π (xgt) projects point xgt from ground-truth transformation

axis onto the predicted transformation axis determined byM =

(d,x). Since all the shapes are normalized into a unit box, we truncate

the largest distance to 1. Note that translations do not have an axis

position defined. Thus, we only compute the axis direction error

for translations. The transformation type error Etype is set to be 1

when the classification is incorrect and 0 otherwise. For shapes with

multiple moving parts, we compute the errors for all the parts and

get the average error. To compute the error for each ground-truth

part, we find the predicted part with maximal IoU.

To measure the segmentation accuracy, we use the Average Pre-

cision (AP) metric defined as:

AP = Σ10
k=1 (Rk − Rk+1)Pk , (14)

where the pair (Pk ,Rk) is the precision-recall pair computed using

the threshold of index (11−k) from the set [0.5 : 0.05 : 0.95]. We set

the 11-th pair (P11,R11) as (1,0). Then, we define the segmentation

error as Eseg = 1 − AP. Note that AP defined in this manner is the

primary evaluation measure of the COCO challenge [COCO 2019].

When comparing to the baseline BaseNet, explained further down,

we consider only shapes with a single moving part, since BaseNet

does not handle multiple moving parts. We compute the mean for

each error measure for two test sets, complete point clouds and

synthetic partial scans, an report the result in Table 1. For the whole

dataset of shapes with one or more moving parts, we report the

averages on the set of complete shapes in the last row of Table 2.

We observe in these two tables that all the errors are relatively low,

confirming the trend seen in the qualitative results and indicating

that the accuracy of the predicted mobility is high throughout the

datasets. Moreover, for shapes with a singlemoving part, ourmethod

ACM Trans. Graph., Vol. 38, No. 6, Article 240. Publication date: November 2019.

RPM-Net: Recurrent Prediction of Motion and Parts from Point Cloud • 240:11

SA FP

FC

FC

FC

Fig. 11. The architecture of the baseline prediction network łBaseNetž.

Table 1. Errors in motion-based segmentation and mobility prediction for

our method and BaseNet.

Data type Method Eseg Eangle Edist Etype

Complete scans
BaseNet 0.182 0.260 0.301 0.074

Ours 0.161 0.126 0.166 0.014

Partial scans
BaseNet 0.235 0.319 0.289 0.086

Ours 0.199 0.20 0.198 0.020

reaches comparable performance for both complete and partial

scans, showing the robustness of our method to incomplete data.

7.2.1 Comparison to BaseNet. To show the advantage of using RPM-

Net, which generates the displacementmaps before predicting all the

mobility parameters, we compare our network to a baseline, which

we call łBaseNetž. BaseNet takes the point cloud P0 as input and

estimates the segmentation S and mobility parametersM directly

with a standard network architecture. The network is composed of

an encoder/decoder pair and fully-connected layers, illustrated in

Figure 11. The loss function for BaseNet is:

L(S,M) = L
obj
seg (S) + Lmob (M), (15)

which uses our losses defined in Equations 8 and 11.

Note that, since BaseNet cannot handle shapes with multiple

moving parts as different shapes may have different numbers of

moving parts, we perform our comparison only on shapes with a

single moving part. This is also the reason why the loss for BaseNet

does not involve a term for the moving part segmentation quality.

Table 1 shows the comparison between RPM-Net + Mobility-Net

and BaseNet on both complete scans and partial synthetic scans. We

see that the segmentation error Eseg of BaseNet is comparable to

our method, but the axis direction error Eangle, axis position error

Edist, and motion type error Etype of BaseNet are 48.9% higher than

ours or more.

The main reason for this discrepancy in the results could be that

segmentation and classification are an easier task than mobility

prediction. Network architectures like PointNet++ have already

shown good results on those two tasks, while for mobility predic-

tion, the single input frame may lead to ambiguities in the inference.

In our deep learning framework, RPM-Net uses an RNN to generate

sequences consisting of multiple frames that describe the motion,

which constrains more the inference. As a consequence, the predic-

tion of the parameters with Mobility-Net is much more accurate.

BaseNet

Ours

Complete scan Partial scan

Fig. 12. Visual comparison of our method to BaseNet.

Table 2. Errors in motion-based segmentation and mobility prediction for

our method and previous works (Shape2Motion (S2M) [Wang et al. 2019]

and SGPN+BL [Wang et al. 2018]) evaluated on two different datasets.

Dataset Method Eseg Eangle Edist Etype

Ours

S2M 0.463 0.261 0.279 0.064

SGPN+BL 0.688 0.319 0.294 0.085

Ours 0.205 0.147 0.176 0.019

S2M
S2M 0.272 0.175 0.192 0.033

Ours 0.211 0.138 0.145 0.016

Figure 12 shows a visual comparison of our method to BaseNet

on a few examples. Since BaseNet does not generate motion frames,

we show its segmentation and predicted axis on the input point

cloud, while for our method, we show four consecutive frames all

together with the predicted segmentation and axis. The moving

parts of the generated frames are shown in lighter color when they

are closer to the input frame. We can see that BaseNet tends to

provide inaccurate predictions, for example, predicting a rotation

axis along the wrong direction for the handle of the bucket.

7.2.2 Comparison to previous works. We compare our method to

two previous works: SGPN [Wang et al. 2018] and the concurrent

work Shape2Motion [Wang et al. 2019] on our dataset. Since SGPN

only performs segmentation, we evaluate it with the baseline de-

signed by Wang et al. [2019] that takes the segmentation and uses it

to estimate mobility parameters (denoted SGPN+BL). Shape2Motion

directly predicts the mobility of static shapes. We perform the com-

parison on our dataset of complete point clouds. By inspecting the

results in Table 2 on our dataset, we see that we obtain the lowest

errors in all the error measures, noticeably about half the error of

Shape2Motion.

Figure 13 shows visual comparisons of our method to these pre-

vious works. Note how the previous methods produce noisier seg-

mentations and detect spurious moving parts. In both examples,

SGPN+BL detects multiple moving parts that should be in fact a

single part. Shape2Motion displays a better performance, obtaining

a cleaner segmentation, but still detects spurious parts such as the

drawer on the desk of the second row, although no drawer is present

in this shape. Our method provides the best results by predicting

the segmentation together with the displacement maps, and then

estimating the mobility parameters from the displacement maps.

ACM Trans. Graph., Vol. 38, No. 6, Article 240. Publication date: November 2019.

240:12 • Z. Yan, R. Hu, X. Yan, L. Chen, O. Kaick, H. Zhang, and H. Huang

S2M SGPN+BL Ours

R

RR

R

R

R

T

T

TT
TT

R

R

R

R

R

T

Fig. 13. Visual comparison of our method to previous works (Shape2Motion

(S2M) [Wang et al. 2019] and SGPN+BL [Wang et al. 2018]) on example

shapes from our dataset.

S2M

Ours

R

R
R

R

R

R

R
R

R

R

R

R R

RR

R

R

R

T

T

Fig. 14. Visual comparison of our method to Shape2Motion (S2M) [Wang

et al. 2019] on example shapes from their dataset.

We further compare our method to Shape2Motion [Wang et al.

2019] on subsets of their dataset consisting of 1,885 objects belonging

to 33 different categories, which is double the size of our dataset. To

be able to train our networks, we added the motion range for each

moving part in their dataset, to set the start and end states of the

motion.We removed the categories of their dataset where shapes are

not aligned, such as swiss army knives, categories where the entire

shape moves without the existence of a static reference part, such as

rocking chairs, and categories where the shapes have more than one

moving part connected in a sequence, such as folding table lamps,

whose start and end states are ambiguous. We see in Table 2 that

our method can achieve comparable performance on Shape2Motion

dataset as on our own dataset, which shows the generality and

scalability of ourmethod.While Shape2Motion obtains better results

on their own dataset, the errors are still generally larger than ours.

Note that the errors of Shape2Motion are slightly larger than what

is reported in their paper. The main reason is that we generate the

wholemotion sequence for each object based on the specifiedmotion

parameters, and test objects in different states. In their evaluation,

only one state is tested, which is likely a median case that is less

ambiguous. Moreover, Figure 14 shows a visual comparison of our

method to Shape2Motion on a few examples. Our method obtains

better part segmentations for the bicycle and helicopter and more

accurate predictions for the rotational axes of the glass and scissors

and translational axis of the pen . Note that we also have the scissors

category in our dataset but with a different segmentation, as shown

in the fourth row of Figure 5. Our method can learn to predict the

right motion and corresponding segmentation in both cases.

20% 40% 60% 80% 100%

0.229 0.201 0.149 0.136 0.131

Prediction

Fig. 15. Prediction results on shapes with non-trivial motion, when learning

from increasing training sets. The first row shows the percentages of the

dataset that we used for training RPM-Net. The second row shows the

corresponding segmentation errors on the test sets. The last row shows

visual results obtained on a selected test shape.

Table 3. Ablation studies where we compare our RPM-Net to versions of

the network where we remove the RNN module or selected terms of the

loss function. Note the importance of all the components and loss terms in

providing the lowest errors for all the error measures (last row).

Method Eseg Eangle Edist Etype
w/o RNN 0.452 0.256 0.390 0.087

w/o Lgeom 0.236 0.151 0.187 0.028

w/o Ldisp 0.324 0.298 0.401 0.059

w/o Lmot 0.254 0.199 0.280 0.031

w/o Lseg 0.785 0.772 0.625 0.124

Ours 0.205 0.147 0.176 0.019

7.2.3 Generality of the method on shapes with non-trivial motion.

For shapes with non-trivial motions, since there are no mobility

parameters for which we can evaluate the prediction accuracy, we

only compute Eseg for evaluating the results. To evaluate how large

the dataset should be to so that the method generalizes well, we

train RPM-Net on datasets with increasing sizes and check how the

prediction results change for the shapes with non-trivial motion.

As we see in Figure 15, Eseg decreases when less than 60% of the

training data is used, but becomes stable whenmore data is used. The

same trend can also be seen in the visual examples of the prediction

results, where the results obtained with 20% and 40% training data

are not so desirable, but the results obtained with 60% of the data or

more are satisfactory, following the desired motion more closely.

7.3 Ablation studies

To further justify our network design, we perform five ablation stud-

ies for the motion hallucination network and two ablation studies

for the mobility prediction network. To compare different versions

of the method in these studies, we report the average of the error

measures computed on the test set of complete scans.

7.3.1 Importance of RNN. Using an RNN is important for generat-

ing dynamic sequences that illustrate the motion of the input objects.

To justify the benefit of generating a motion sequence, we compare

our RPM-Net to a version of the network that only generates one

displacement map with the LSTM and then combines it with the

input cloud to infer the segmentation and mobility parameters. The

comparison can be seen by contrasting the first and last rows in

Table 3. We see that a motion sequence hallucinated by our method

ACM Trans. Graph., Vol. 38, No. 6, Article 240. Publication date: November 2019.

RPM-Net: Recurrent Prediction of Motion and Parts from Point Cloud • 240:13

OursInput w/o w/ow/o w/o

Fig. 16. Ablation experiments of our method. The reference part is colored

gray while multiple frames of the moving part are colored in red.

provides a more accurate segmentation and parameter prediction

than when only a single frame is generated.

7.3.2 Importance of Lrec. To show the importance of Lrec consist-

ing of Lgeom and Ldisp, which are the terms of the loss function

comparing the predicted point clouds Pt and displacement maps

Dt to the ground-truth, we compare the result of our method to

results obtained without adding either of those two terms. We report

the error values obtained in this experiment in the second and third

rows of Table 3, compared to using our full loss function in the

last row. We see that Ldisp is quite important in lowering the error

rates for all the measures. Although the error values of mobility

prediction without using Lgeom are close to the values when using

the full loss function, the importance of this term is demonstrated

when measuring the quality of the segmentation Eseg.

In addition, when inspecting the visual example shown in Fig-

ure 16, we can see that without Lgeom, the points, especially those in

the reference part, tend to move into unexpected locations, although

the motion of the moving part looks reasonable thanks to the effect

of the displacement loss Ldisp. On the other hand, when Ldisp is

removed, the motion of the points on the moving part becomes

inconsistent, which results in distortion of the moving part. In com-

parison, our full method can predict a correct and smooth motion

for the moving part and also keep the reference part unchanged.

7.3.3 Importance of Lmot. Table 3 and Figure 16 also show the

importance of the motion loss in obtaining high-quality motion

hallucination results. When the term is removed, the average errors

increase, and the visual example in Figure 16 shows that the lack of

this term in the loss leads to motions that are less smooth, reflected

by the rough appearance of the predicted frames.

7.3.4 Importance of Lseg. To show the importance of the Lseg term

in the loss, we train a version of the network without this term. To

obtain the segmentation in this case, we filter points depending on

whether they move more than an appropriate threshold θ in the

displacement mapsDt , to segment the points into moving and static

(reference) points. In our experiments, we use a threshold θ = 0.01

for determining the segmentation. We see in Table 3 that without

Lseg the average errors increase significantly. When inspecting the

visual example in Figure 16, we see that the lack of the segmentation

loss leads to clear errors in the segmentation, especially for points

at the extremity of the scissors in this example.

Table 4. Ablation studies where we compare Mobility-Net to a method

which estimates the parameters directly from the displacement fields in-

stead of using neural networks (denoted łw/o Lmobž), and to a version of

the network where we remove the point cloud P0 from the input (denoted

łw/o P0ž). Note that our method provides the lowest errors (last row).

Method Eangle Edist Etype
w/o Lmob 0.722 0.684 0.115

w/o P0 0.569 0.631 0.097

Ours 0.147 0.176 0.019

OursInput w/o w/o

Fig. 17. Visual comparison of our method to results where the mobility

parameters are not obtained by network prediction (denoted łw/o Lmobž)

or the input point cloud was removed from the input (denoted łw/o P0ž).

7.3.5 Importance of Lmob. We justify the use of the mobility loss

Lmob by comparing our Mobility-Net to a method that algorithmi-

cally infers the mobility parametersM from the predicted displace-

ment maps. Specifically, we generate a point cloud motion sequence

Pt from the displacement maps Dt . Then, we compute the optimal

rigid transformation matrix with minimum mean square error that

transforms one frame into another, and extract the axis direction for

translations, and axis direction and position for rotations and the

combination of translation and rotation. We report the error values

for this experiment in the first row of Table 4.

By analyzing the errors in Table 4, we see that this motion fitting

approach is quite sensitive to noise, leading to large errors, while

the prediction obtained with our full network is more stable and

provides better results. Examples of the motion parameter fitting

results compared to our results are shown in Figure 17. We see that,

without the mobility loss Lmob, the noise in the displacements of

different points can also cause large errors in the axis fitting, as seen

by the incorrect location for the rotational axis of the flip phone, or

the incorrect angle for the axis of the ferris wheel.

7.3.6 Importance of P0. The second row of Table 4 shows that,

when we only provide the displacement maps and segmentation as

input to Mobility-Net, the mobility prediction leads to large errors.

Providing the point cloud P0 as additional input improves the accu-

racy considerably as shown in the last row of the table. Examples

of results obtained without P0 compared to our results are also

shown in Figure 17. We see in the two examples that the predicted

axes have noticeable errors in their direction when P0 is not given

as input. We conjecture that, when only displacements maps are

given as input to the network, these maps have small errors which

ACM Trans. Graph., Vol. 38, No. 6, Article 240. Publication date: November 2019.

240:14 • Z. Yan, R. Hu, X. Yan, L. Chen, O. Kaick, H. Zhang, and H. Huang

accumulate and yield large errors in the regression of the transfor-

mation axis. Providing the point cloud as input helps to anchor the

geometry of the shape and yield a better prediction of the axis.

8 CONCLUSION AND FUTURE WORK

We introduced RPM-Net, a recurrent deep network that predicts

the motion of shape parts, effectively partitioning an input point

cloud into a reference part and one or more moving parts. We

also introduced Mobility-Net, a deep network that predicts high-

level mobility parameters that describe the potential motion of the

moving parts detected by RPM-Net. The networks are trained on a

dataset of objects annotated with ground-truth segmentations and

motion specifications. However, once trained, the networks can be

applied to predict the motion and mobility of a single unsegmented

point cloud representing a static state of an object. We demonstrate

with a series of experiments that our networks can infer the motion

of a variety of objects with diverse mobility and coming from various

sources, including complete objects and raw partial scans.

As demonstrated in the experiments, our method displays a high

accuracy for predicting the motion of objects with one or more

moving parts, where all the parts are connected to a single reference

part. In addition, we showed the potential of our method in detecting

hierarchical motions where multiple moving parts are connected

in a sequence (Figure 8), and non-trivial motions that cannot be

described with a small set of transformation parameters (Figure 7).

However, as shown by Figure 18, RPM-Net can also provide incorrect

predictions when the input geometry is ambiguous. For example,

the network may produce incorrect part segmentations when two

parts with the same type of motion are well-aligned, like the two

doors of a cabinet that open with the same range shown in green,

or generate imperfect motion sequences with outlier points when

moving and reference parts are spatially too close.

Another limitation is that our method currently is not able to

hallucinate forward and reverse motions together, since adding the

training sequences in both directions will cause ambiguity. One

possibility to address this limitation is to train another network for

predicting reverse motions separately, and combine the prediction

from the forward and reverse networks for predicting the full range

of motion for shapes given in any state. It would also be interesting

to explore more sophisticated solutions to this problem.

Further experiments are needed to quantitatively evaluate our

method for these more complex tasks, which would also require cu-

rating a dataset of objects with hierarchical motions and non-trivial

motions, and their prescribed segmentations and ground-truth dis-

placement maps. In addition, our current dataset is relatively small,

composed of 969 object, and it assumes that the shapes are meaning-

fully oriented. Another more immediate direction to improve the

applicability of the method to more complex scenarios is to augment

our dataset by applying random transformations to the shapes, so

that our network can operate in a pose-invariant manner, or to train

our network with partial scans to further improve its robustness.

Another direction for future work is to leverage the mobility pre-

dicted by our method to synthesize motions for the input shapes. As

part of this motion synthesis problem, one interesting subproblem

is to learn how to complete the geometry of objects which may

Fig. 18. Example failure cases of motion prediction with RPM-Net. Left: a

cabinet with incorrect segmentation on the doors. Right: a closed laptop

with imperfect generated motion.

be missing when a motion takes place, e.g., a drawer being pulled

from a cabinet should reveal its interior, which will be missing if the

shape was scanned or did not have its interior modeled. A possible

approach would be to learn how to synthesize the missing geome-

try from the predicted motion and existing part geometry. Such an

approach would require at the minimum a training set in the form

of segmented objects with their interiors captured.

ACKNOWLEDGMENTS

We thank the reviewers for their valuable comments. This work

was supported in parts by 973 Program (2015CB352501), NSFC

(61872250, 61602311, 61861130365), GD Science and Technology Pro-

gram (2015A030312015), LHTD (20170003), Shenzhen Innovation

Program (JCYJ20170302153208613), NSERC (611370, 2015-05407),

Adobe gift funds, and the National Engineering Laboratory for Big

Data System Computing Technology.

REFERENCES
Luca Bogoni and Ruzena Bajcsy. 1995. Interactive Recognition and Representation of

Functionality. Computer Vision and Image Understanding 62, 2 (1995), 194ś214.
Jeannette Bohg, Javier Romero, Alexander Herzog, and Stefan Schaal. 2014. Robot arm

pose estimation through pixel-wise part classification. In Robotics and Automation
(ICRA), 2014 IEEE International Conference on. IEEE, 3143ś3150.

Michael Caine. 1994. The design of shape interactions using motion constraints. In
IEEE Conference of Robotics and Automation, Vol. 1. 366ś371.

Y. Chao, J. Yang, B. Price, S. Cohen, and J. Deng. 2017. Forecasting Human Dynamics
from Static Images. In Proc. IEEE Conf. on Computer Vision & Pattern Recognition.
3643ś3651.

COCO. 2019. Common Objects in Context. http://cocodataset.org/#detection-eval.
Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. 1996. A density-based

algorithm for discovering clusters in large spatial databases with noise.. In Kdd,
Vol. 96. 226ś231.

James J. Gibson. 1979. The ecological approach to visual perception. Boston: Houghton
Mifflin.

Mohammed Hassanin, Salman Khan, and Murat Tahtali. 2018. Visual Affordance and
Function Understanding: A Survey. arXiv:1807.06775 (2018).

T. Hermans, F. Li, J. M. Rehg, and A. F. Bobick. 2013. Learning contact locations for
pushing and orienting unknown objects. In Int. Conf. on Humanoid Robots. IEEE,
435ś442.

Ruizhen Hu, Wenchao Li, Oliver van Kaick, Ariel Shamir, Hao Zhang, and Hui Huang.
2017. Learning to Predict Part Mobility from a Single Static Snapshot. ACM Trans.
on Graphics 36, 6 (2017), 227:1ś13.

Ruizhen Hu, Manolis Savva, and Oliver van Kaick. 2018. Functionality Representations
and Applications for Shape Analysis. Computer Graphics Forum (Eurographics
State-of-the-art Report) 37, 2 (2018), 603ś624.

Yun Jiang, Hema Koppula, and Ashutosh Saxena. 2013. Hallucinated humans as the
hidden context for labeling 3D scenes. In Proc. IEEE Conf. on Computer Vision &
Pattern Recognition. IEEE, 2993ś3000.

Vladimir G Kim, Siddhartha Chaudhuri, Leonidas Guibas, and Thomas Funkhouser.
2014. Shape2pose: Human-centric shape analysis. ACM Trans. on Graphics 33, 4
(2014), 120:1ś12.

Hao Li, Guowei Wan, Honghua Li, Andrei Sharf, Kai Xu, and Baoquan Chen. 2016.
Mobility Fitting using 4D RANSAC. Computer Graphics Forum 35, 5 (2016), 79ś88.

Niloy J. Mitra, Yong-Liang Yang, Dong-Ming Yan, Wilmot Li, and Maneesh Agrawala.
2010. Illustrating How Mechanical Assemblies Work. ACM Trans. on Graphics 29, 4
(2010), 58:1ś12.

ACM Trans. Graph., Vol. 38, No. 6, Article 240. Publication date: November 2019.

RPM-Net: Recurrent Prediction of Motion and Parts from Point Cloud • 240:15

Sören Pirk, Vojtech Krs, Kaimo Hu, Suren Deepak Rajasekaran, Hao Kang, Bedrich
Benes, Yusuke Yoshiyasu, and Leonidas J. Guibas. 2017. Understanding and Exploit-
ing Object Interaction Landscapes. ACM Trans. on Graphics 36, 3 (2017), 31:1ś14.

Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. 2017. PointNet++: DeepHierarchical
Feature Learning on Point Sets in a Metric Space. In Advances in neural information
processing systems (NIPS).

Anirban Roy and Sinisa Todorovic. 2016. A multi-scale CNN for affordance segmenta-
tion in RGB images. In Proc. Euro. Conf. on Computer Vision. Springer, 186ś201.

Manolis Savva, Angel X. Chang, Pat Hanrahan, Matthew Fisher, and Matthias Nießner.
2014. SceneGrok: Inferring Action Maps in 3D Environments. ACM Trans. on
Graphics 33, 6 (2014), 212:1ś212:10.

Tianjia Shao, Wilmot Li, Kun Zhou, Weiwei Xu, Baining Guo, and Niloy J. Mitra. 2013.
Interpreting Concept Sketches. ACM Trans. on Graphics 32, 4 (2013), 56:1ś10.

A. Sharf, H. Huang, C. Liang, J. Zhang, B. Chen, and M. Gong. 2013. Mobility-Trees for
Indoor Scenes Manipulation. Computer Graphics Forum 33, 1 (2013), 2ś14.

Jörg Stückler, Benedikt Waldvogel, Hannes Schulz, and Sven Behnke. 2015. Dense
Real-time Mapping of Object-class Semantics from RGB-D Video. J. Real-Time Image
Process. 10, 4 (2015), 599ś609.

Art Tevs, Alexander Berner, Michael Wand, Ivo Ihrke, Martin Bokeloh, Jens Kerber,
and Hans-Peter Seidel. 2012. Animation Cartography ś Intrinsic Reconstruction of
Shape and Motion. ACM Trans. on Graphics 31, 2 (2012), 12:1ś15.

Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan Kautz. 2018. MoCoGAN:
Decomposing motion and content for video generation. Proc. IEEE Conf. on Computer
Vision & Pattern Recognition (2018).

WeiyueWang, Ronald Yu, Qiangui Huang, and Ulrich Neumann. 2018. SGPN: Similarity
Group Proposal Network for 3D Point Cloud Instance Segmentation. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

Xiaogang Wang, Bin Zhou, Yahao Shi, Xiaowu Chen, Qinping Zhao, and Kai Xu. 2019.
Shape2Motion: Joint Analysis of Motion Parts and Attributes from 3D Shapes. In
CVPR. to appear.

Wei Xiong, Wenhan Luo, Lin Ma, Wei Liu, and Jiebo Luo. 2018. Learning to Generate
Time-Lapse Videos Using Multi-Stage Dynamic Generative Adversarial Networks.
In Proc. IEEE Conf. on Computer Vision & Pattern Recognition.

Li Yi, Haibin Huang, Difan Liu, Evangelos Kalogerakis, Hao Su, and Leonidas Guibas.
2018. Deep Part Induction from Articulated Object Pairs. ACM Trans. on Graphics
37, 6 (2018), 209:1ś15.

Kangxue Yin, Hui Huang, Daniel Cohen-Or, and Hao Zhang. 2018. P2P-NET: Bidirec-
tional Point Displacement Net for Shape Transform. ACM Trans. on Graphics 37, 4
(2018), 152:1ś13.

Yipin Zhou and Tamara L. Berg. 2016. Learning Temporal Transformations from
Time-Lapse Videos. In Proc. Euro. Conf. on Computer Vision. 262ś277.

Yixin Zhu, Chenfanfu Jiang, Yibiao Zhao, Demetri Terzopoulos, and Song-Chun Zhu.
2016. Inferring forces and learning human utilities from videos. In Proc. IEEE Conf.
on Computer Vision & Pattern Recognition. IEEE, 3823ś3833.

ACM Trans. Graph., Vol. 38, No. 6, Article 240. Publication date: November 2019.

	Abstract
	1 Introduction
	2 Related work
	2.1 Affordance analysis
	2.2 Temporal transformation of images
	2.3 Motion inference for 3D objects

	3 Overview of motion prediction
	4 Part mobility dataset
	4.1 Dataset and mobility representation
	4.2 Training set
	4.3 Evaluation datasets of partial point clouds

	5 RPM-Net for motion hallucination
	5.1 Input and output
	5.2 Network architecture
	5.3 Network training and loss functions

	6 Mobility-Net for parameter prediction
	6.1 Input and output
	6.2 Network architecture
	6.3 Loss function

	7 Results and evaluation
	7.1 Qualitative results
	7.2 Quantitative evaluation
	7.3 Ablation studies

	8 Conclusion and future work
	Acknowledgments
	References

