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Fig. 1. Our method creates a sub-sampled point set that is optimized for different views of a SPLOM and per class. In contrast to
blue noise scatterplot sampling (and other sampling methods), which create different point sets for different views, our method uses
joint optimization to yield a single point set for multiple views. This way, it not only optimizes for multi-view and multi-class scatterplots
simultaneously, but also presents results perceptually similar to the original data distributions while reducing overdraw.

Abstract—We present a method for data sampling in scatterplots by jointly optimizing point selection for different views or classes.
Our method uses space-filling curves (Z-order curves) that partition a point set into subsets that, when covered each by one sample,
provide a sampling or coreset with good approximation guarantees in relation to the original point set. For scatterplot matrices with
multiple views, different views provide different space-filling curves, leading to different partitions of the given point set. For multi-class
scatterplots, the focus on either per-class distribution or global distribution provides two different partitions of the given point set
that need to be considered in the selection of the coreset. For both cases, we convert the coreset selection problem into an Exact
Cover Problem (ECP), and demonstrate with quantitative and qualitative evaluations that an approximate solution that solves the ECP
efficiently is able to provide high-quality samplings.

Index Terms—Sampling, Scatterplot, SPLOM, Exact Cover Problem

1 INTRODUCTION

Scatterplots are an important method for displaying high-dimensional
data. A scatterplot shows such data from a single view direction,
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capturing two selected dimensions of the data points. In a scatterplot
matrix (SPLOM), views from all main directions are combined. If
the dimensionality is high, such matrices can easily contain hundreds
of plots, therefore methods for selecting interesting views have been
developed [34]. Scatterplots can also be used to display data that
has already been reduced in its dimensionality [23], where the most
prominent aspects of such data are revealed when visualized [32].

A large problem for scatterplots is overdraw, when too many points
are drawn onto a region of the plot. Many methods have been proposed
to alleviate this, such as methods that alter the transparency, position,
density, size, color or form of the markers that are associated with each
point, even animating them. Overviews about such possibilities and
associated quality metrics are given by Bertini et al. [7] and Behrisch et
al. [3]. The problem becomes even more severe when points are labeled
and belong to different classes. Such multi-class scatterplots need to be
visualized with additional visual cues such as different colors or shapes
for the representation of points of different classes.



Overdraw of the scatterplots can also be alleviated by subsampling
the input set of points to reduce clutter in the plot. The classical
way of doing this is random sampling, where points are selected by
a random selection process. An improvement of this basic method is
non-uniform sampling [4] that treats different parts of the scatterplot
in different ways. This process can be further refined by considering
human perception, by ensuring that important aspects of the plots such
as cluster densities are seen by the viewer [6]. Chen et al. [9] employ a
multi-class blue noise sampling method [39], where points are selected
from the original plot in a way that an approximation of a blue-noise
point distribution is achieved. This way a smooth representation is
created, but local patterns are potentially missed.

In this paper we describe a new method for sampling scatterplots.
Our main contribution is to perform the sampling simultaneously for
different view directions. Our method uses a local binning strategy
proposed by Zheng et al. [42, 43] to select a proper fraction of the
points. In their work, a space filling curve (Z-order curve) is employed
to create bins and one point from each bin is then selected to represent
the entire point set. Such a set of sample points is called a coreset, since
it provides approximation guarantees in relation to the original point
set. For more than a single projection, a space filling curve and coreset
are produced for each view. In our work, we perform the selection of
coresets simultaneously for all views. Specifically, our goal is to sample
a coreset that considers the Z-order curves of all the individual views.
We show that the selection of the coreset converts into an Exact Cover
Problem (ECP) that is NP-complete [18], but can be solved efficiently
using heuristics [37].

In a similar way, multi-class sampling can be approached. When
multiple classes exist, we need a sampling strategy that is optimal for
each class and also for the distribution of all points. Therefore, we
obtain the Z-order for each class and the entire set, and then compute
an optimal set cover by considering all the point orders.

We show with an experimental evaluation that our method has several
advantages in relation to previous works. By computing a sampling
simultaneously for multiple views, we only need to store a single
sampling for any large scatterplot matrix, rather than an individual
sampling for each view. Moreover, the samplings can be computed
efficiently, e.g., a few seconds for a set of 20K points. Finally, in
comparison to previous works, the samplings obtained with our method
better reflect the density of points in the original dataset, while also
reducing overdraw problems and providing better class separation in
the multi-class setting (Figure 1).

In summary, the main contribution of this paper includes:

• A joint optimization framework for subsampling multiple views
in SPLOMs and multi-class scatterplots;

• A formulation of SPLOM and multi-class scatterplot sampling in
terms of the ECP, which can be extended for outlier inclusion;

• An efficient greedy algorithm that solves the ECP approximately,
with experimental evaluations and user studies to demonstrate that
the scatterplots obtained with our sampling are more informative
than those generated with existing methods.

2 RELATED WORK

2.1 Overdraw reduction for scatterplots

As mentioned above, quite a few methods have been proposed to alter
the graphical representation of the points in a scatterplot to reduce
overdraw.

A straightforward approach is to reduce the size of the markers that
represent the points [24,41], to change the shapes of markers [22], or to
make them translucent in order to allow the user to see through [26,40].
Recent publications alter different visual variables at the same time [28]
and optimize opacity, size, as well as aspect ratio of the plot based on
visual quality metrics.

For multi-class scatterplots, in addition, the class separability has
to be taken into account. Luboschik et al. [25] use weaving to show
overlapping regions of different classes. Wang et al. [38] find the best
color assignment from a given palette to optimize class separability.

Instead of altering the markers, other approaches try to relocate
them by shifting points along space-filling curves to unoccupied posi-
tions [20]. So called “generalized scatterplots” [19] use a non-linear
warping scheme to enable users to control overdraw.

Yet another approach is to convert the scatterplots into continu-
ous density fields [8, 36] and then show these fields by color-coded
density plots or by contour lines. Novotny and Helwig [29] use multi-
dimensional binning to compute local densities and use this for creating
the fields, while Bachthaler and Weiskopf [2] use specialized interpo-
lation methods. Feng et al. [16] use kernel density estimation [33] to
generate density plots. Mayorga and Gleicher [27] combine contour
drawings with outliers as discrete elements.

All these methods work with all the points of a scatterplot while
sampling methods try to find a subset of the points for representing
the original dataset [15]. This is a non-trivial process since outliers
and rare point classes have to be represented, while the density of the
other points has to be reduced massively while preserving their relative
densities. Random sampling [13, 14] is a simple solution for that, but
fails to treat different densities differently, which can be improved by
using non-uniform sampling [4]. Bertini and Santucci [5] present an
automatic method to preserve relative densities and to reduce visual
clutter, which had already been introduced by Tufte [35]. Chen et al. [9]
construct a density plot using kernel density estimation and then apply
multi-class blue noise sampling to show the points in a reduced form.

Our method is based on the Z-order curve method [42, 43] to find
a coreset for a given set of points. Here, a space filling curve is used
to define bins to which points are assigned. For sub-sampling, one
point from each bin is used to represent the entire plot. We extend this
method for multiple views and classes by formulating the problem as an
Exact Cover Problem (ECP) [18], which can be solved approximately
in an efficient way using a greedy strategy [37].

2.2 Overdraw alleviation for SPLOMs

Although there have been many previous works focusing on reducing
overdraw in a single scatterplot either with single-class or multi-class
data, very few works have been proposed to handle the overdraw prob-
lem for scatterplot matrices. Furthermore, it is unclear how to extend
methods that have been proposed for individual scatterplots to SPLOMs
with multi-view consistency. Bertini and Santucci [6] develop uniform
and non-uniform sampling strategies for single scatterplots, but their
framework for measuring the degradation cannot easily be adapted
to SPLOMs. While sampling methods such as Chen et al. [9] create
interesting results for multi-class scatterplots, it stays unclear how to
extend them to SPLOMs, since one could use a single point set for all
views or also optimize different point sets for the different views.

A recent work [10] explores the use of animation to address the prob-
lem of overdraw and identify regions of varying density and diversity
in multi-class SPLOMs. However, animation tends to be distracting in
certain cases and has only a limited scope.

3 DATA SAMPLING METHODS

In this section, we describe our scatterplot data sampling methods. We
first introduce our approach for simultaneously sampling data points
across multiple scatterplots. We then describe how to apply this method
to multi-class scatterplots and how to enable outlier inclusion as well
as use view selection for optimizing the sampling process.

3.1 Simultaneous sampling of points for SPLOMs

Given a scatterplot matrix (SPLOM), our goal is to select a set of sample
points that simultaneously reduce overdraw for all the views of the
SPLOM, improving the visualization of each individual plot. First, for
each view, we use the Z-order method to extract subsets of points that,
when covered by a sampling, provide a good approximation of the view
in terms of a kernel density estimate (KDE) of the points [42]. Next, we
obtain a sampling that simultaneously provides a good approximation
for all the views by solving an exact cover problem, that is, our goal is
to select a set of points that covers all the subsets. In the following, we
first describe the method for computing the Z-order of a point set, and



(a) Input (b) Z-order curve (c) Sampling result

Fig. 2. Sampling based on Z-order: (a) input set of points; (b) quadtree
subdivision and z-order curve of the point set, where points inside the
same subset are connected with solid lines (here each subset consists
of 3 points); (c) final sampling result, composed of only one point from
each subset.

then explain how we simultaneously optimize the sampling using such
Z-order sets for multiple views.

3.2 Z-order sampling of a point set

The Z-order method is based on the creation of a space filling curve
that defines a 1D order for a set of 2D points while at the same time
preserving the spatial locality of the points reasonably well [43]. Sup-
pose that we are given a point set P as input, with |P| = N, and our
goal is to obtain a subsampled set Q ⊂ P with |Q| = n. First, the 2D
space covered by P is subdivided into four subdomains according to a
quadtree structure. Next, a curve in the form of the letter “Z” orders the
domains of the quadtree in a linear order. The procedure is recursively
applied so that the quadtree adapts to the specific set of points and the
curve defines an order for all the points. Then, given the points in the
Z-order, we are able to sub-sample a set of points Q by selecting a
specified number of points from each level of the quadtree (see Figure 2
for an illustration).

More precisely, suppose w.l.o.g. that all the 2D points in the input
set P are normalized to the range [0,1]2. Then, a quadtree subdivides

this space into four subdomains or cells: c1 =
[
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. The Z-order
curve visits these cells in the order c1, c2, c3, and c4. When visiting
a cell, the procedure is recursively applied: the cell is divided into
four smaller cells which are also visited in Z-order. By performing the
recursion until a cell contains a single point, we can extract a linear
ordering for all the points in the input set P.

Moreover, to generate the sampling Q with n points, we randomly

select a point qi ∈ Q from the rank range
[

(i−1)
|P|
n , i

|P|
n

]

, as illustrated

in Figure 2(b)-(c). The sampling takes O(|P| log |P|) time. The motiva-
tion for using this specific sampling procedure is that it guarantees that
Q approximates well the properties of P. To describe the theoretical
guarantees of the sampling, we briefly discuss the use of KDEs for
approximating a continuous density as follows.

3.3 Kernel density estimation

A kernel density estimation (KDE) is a non-parametric statistical repre-
sentation of a continuous density, based only on a discrete sample of
points and a kernel function. Given a set of points P ⊂ R

2, the density
estimate at any query point x ∈ R

2 is given by:

KDEP(x) =
1

|P| ∑
p∈P

Kh(p,x), (1)

where Kh is a kernel function Kh : R2 ×R
2 → R with bandwidth h. In

our experiments, Kh is the Gaussian kernel with standard deviation σ :

Kh(p,x) =
1

σh
√

2π
exp

(−‖p− x‖2

2σ2h2

)

, (2)

where σ = 1 and h is determined by Silverman’s rule of thumb [33].
The KDE can be thought of as a smooth histogram which is centered

at each query point and does not depend on bin centers and sizes, thus
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Fig. 3. Reduction of simultaneous point sampling for multiple views into a
set cover problem. For each view in (a), the Z-order algorithm partitions
the input point set into n subsets, where n = 3 in this example. From
the partition, we can define a set cover matrix (b), where an entry (i, j)
is non-zero (not white) if subset i contains point j. Our goal then is to
select a set of points (columns) so that all the subsets (rows) are covered
without redundancy. Given that certain points cover the same subsets
(columns with the same color in (b)), we can merge similar points (c) and
simplify the set cover problem. In this example, we can find two different
covers indicated by the two different colors (blue and yellow).

making it a more robust tool for the analysis of a distribution. Previous
work has shown that we can approximate a KDEP by using a coreset Q,
which is a small but carefully selected sample of P that approximates
P’s properties as accurately as possible [42, 43]. Specifically, a coreset
is a subset Q ⊂ P, such that |Q| ≪ |P| and for some error threshold ε:

‖KDEP −KDEQ‖∞ = max
x∈R2

|KDEP(x)−KDEQ(x)| ≤ ε, (3)

implying that the maximum error of the approximation provided by
the coreset is always bound by ε for any point x. The Z-order is one
method to create such a coreset, and thus we use it in our work due to
these theoretical guarantees. Specifically, the Z-order sampling builds

a coreset of size n = O( 1
ε

log2.5 1
ε
) that creates an ε-approximation.

3.4 Sampling coresets for SPLOMs

The Z-order combined with random sampling provides an optimal
subset of points for drawing one view of a SPLOM. However, as the
distribution of points changes for different views, we need to repeat
this construction and store a different coreset for every scatterplot of a
SPLOM, which can be prohibitive for high-dimensional datasets and
cannot guarantee the consistency of point selection between different
views. Thus, our main contribution is to introduce a method for com-
puting a coreset that simultaneously serves all the views of a SPLOM.
Moreover, as we will discuss in Section 3.7, the coreset can also be
computed only for selected views of a SPLOM.

Specifically, our goal is to build a coreset Q (with |Q| = n) for a

high-dimensional input set of points P ∈ R
N×d and a SPLOM with

m views. Typically, for a complete SPLOM, m = d ×d, although we
only need to consider the m = d × (d −1)/2 views determined by the
unique combinations of different dimensions. Each view v projects
the set P onto 2D based on two selected dimensions of the points,
which we denote πv(P) = P′ ∈ R

N×2. Suppose that we computed a
coreset for a specific view P′, one of our key observations is that the
Z-order algorithm splits P′ into n disjoint subsets (the rank ranges

defined by
[

(i−1)
|P|
n , i

|P|
n

]

, where i ∈ {1, . . . ,n}). The algorithm then

randomly samples one point from each subset to provide a subsampling
with n points. Thus, any other point in a subset S would be a good
representative sample of S, as the main requirement for guaranteeing
the error bounds of the coreset is that the coreset should contain one
point from each subset. We use this flexibility in the selection of points
to turn the problem of selecting a coreset for all the views into an exact
cover problem.

For each view, the Z-order algorithm provides a partition of P into
n subsets. However, as illustrated in Figure 3(a), the partition can be
different for each view. In particular, by computing the Z-order for
the entire SPLOM, we obtain m×n subsets. Our goal is then to select



(a) Outlier detection (b) Dafault sampling (c) Sampling with outliers

Fig. 4. Sampling with outlier inclusion. Original scatterplot (a) with two classes (blue and red), where outliers are marked with green stars. The
samplings (b) and (c) both cover each subset of the individual views (per-class and global view), but (c) selects the outliers of the subsets.

a coreset Q which contains at least one point from each of the m×n
subsets. In this manner, we will cover all the subsets of all the partitions
and ensure that the error bound of Eq. (3) is met simultaneously for
all the views. Thus, we can turn the selection of the coreset Q into an
exact set cover problem: our goal is to select a set of points Q such that
each subset is covered by one point, as illustrated in Figure 3(b). When
representing the set cover problem as a matrix, our goal is to select a
subset of columns (points) which together have exactly one 1 in each
row (we cover each subset without redundancy).

Moreover, given that some points cover the same subsets, we can
simplify the set cover matrix by merging the coincident points, as
illustrated in Figure 3(b)-(c). If a merged set of points is selected for
the final cover, the set cover includes multiple solutions and gives us
some flexibility in selecting the final points that compose the coreset.

Given that the exact set cover problem is NP-hard, we compute the
solution with the greedy heuristic method of Chvatal [11], which has
the best approximation ratio known: the cost of the greedy solution is

at most H(L) times the cost of an optimal cover, where H(k) = ∑
k
j=1

1
j

and L is the size of the largest set in the problem. A trivial imple-
mentation of the heuristic has a worst-case O(mnN2) time complexity,
for N points and mn subsets, although it runs much faster in practice.
Moreover, we may not always be able to find an exact set cover. In
this case, the heuristic is also useful in providing an approximate set
cover, i.e., some subsets may be covered by more than one point. Thus,
a second goal of the heuristic is to minimize the redundancy in the
approximate cover.

Regarding the theoretical guarantees of the algorithm, by covering
each subset with exactly one point, the Z-order guarantees that the
KDE error (Eq. 3) for each view is bounded by ε . Since our heuristic
can select more than one point per subset, we cannot guarantee that
the bound is preserved anymore. However, as we show in Section 4,
in practice, small KDE errors are obtained with our method, since
the heuristic attempts to minimize the redundancy in the set cover.
Moreover, the number of points sampled by our method may be larger
than a specified n. However, by assigning a cost of 1 to each point to
be selected, with the analysis of the heuristic we see that the number of
points is at most H(L) times the number of points in an optimal cover.

Note that, recent theoretical work has described algorithms in high
dimensions for sampling near-optimal coresets of KDEs, which provide
guaranteed bounds and may provide better coreset sizes [30]. However,
these methods are unpractical for large datasets as they depend on an
analysis of a Gram matrix of the kernel applied to the entire point set,
which can require significant time and space resources, especially if
the matrix needs to be decomposed.

The idea of computing a set cover to integrate multiple samplings is
quite versatile, and thus we also use this method as a solution for other
SPLOM-related tasks, described as follows.

3.5 Sampling multi-class scatterplots

Another problem related to SPLOM visualization is to obtain a scat-
terplot for a multi-class point set, where each point is associated to a
class label l ∈ N , with N being the full set of labels. In this case, our
goal is to provide a sampling that is optimal for each label as well as

for the entire point set (the global view of the points). We thus obtain
the Z-order for the points of each label and also for the entire point
set, and then compute a set cover to extract a single sampling that best
approximates the properties of all classes and the global view. Note
that, since the classes are disjoint, the ordering of all the classes results
in a collection of subsets that provides “one view” of the data. Thus,
computing the sampling in the multi-class case is equivalent to applying
our method to two views (one for the collection of the class subsets and
another for the entire set).

3.6 Outlier inclusion

Although selecting a single point from each subset provides a sub-
sample with approximation guarantees, the user may also want to
explore outliers in the data. Thus, we use the flexibility provided by
the merged sets in the selection of the set cover that provides us with
the final point sample. First, we use a distance-based outlier detection
method to tag certain points as outliers [21]. More specifically, given
a search radius r and a threshold θ , with (0 < θ < 1), a point p is
considered to be an outlier if less than θ ×N points are found inside
a neighborhood with radius r centered at the point p. Next, points
tagged as outliers are given priority to be selected when a merged set is
included in the computed cover. A comparison of the default sampling
with a version that handles outliers is given in Figure 4.

3.7 View selection for sampling optimization

As discussed above, a complete SPLOM typically contains m = d ×
(d − 1)/2 different views that we are interested in. When d is large,
the resulting matrix can contain a large number of views, and thus
optimizing the sampling for all the views can be expensive. Thus,
we also propose an extension of our method to effectively select a
subsample of views to consider in the sampling. Computing the Z-
order for each view results in a different partition of the point set into
rank subsets, which we can interpret as different clusterings for the
point set. Thus, we use the adjusted Rand Index [31] to measure the
similarity between the clusterings of any two views. The rationale of
this approach is that two views with similar distributions lead to similar
Z-orders of the points, and thus only one plot is sufficient to reveal the
correlations in the data. To obtain the final sample of views, we select
the views with lowest pairwise similarities according to a farthest point
sampling strategy. Then, we perform the sampling based only on the
selected views, as illustrated in Figure 5.

4 RESULTS AND EVALUATIONS

In this section, we evaluate our method with quantitative and qualitative
analyses, and also a user study, on a variety of datasets.

4.1 Datasets

For evaluating single-class scatterplot matrices, we test our method
using the U.S. Air Pollution dataset1 with 20K four-dimensional points,
and one synthetic dataset with 5K three-dimensional points. For multi-
class scatterplots, we use 15 synthetic datasets (D1 −D15) and 5 real

1
https://www.kaggle.com/sogun3/uspollution



(a) Input with selected views (b) Sampling with all views (c) Sampling with selected views

KDE error = 1.109 KDE error = 1.152 

#points = 1292 #points = 1104

Fig. 5. Example of view selection for sampling optimization. After comparing the clusterings of each view provided by the Z-order method, the three
views marked with red squares in (a) are selected as representatives of the dataset. When sampling only with the selected views as in (c), the results
are similar to sampling with all the views as in (b), both visually and in terms of approximation error. However, the sampling (c) can be computed in
less time than (b) and requires less points.

datasets (D16 −D20) that we selected, where D16 was provided by
Zheng et al. [42], D17 is a Wine Quality dataset [12], and D18−D20 are
subsets of the UCI HAR dataset [1]. For evaluating multi-class scatter-
plot matrices, we use 10 synthetic datasets which allow us to sample a
large number of points. All the synthetic datasets were generated using
the scikit-learn library in Python that randomly samples from random
Gaussian distributions where we specify mainly the number of classes
and points. The number of points in the datasets vary between 5K and
20K and the values in each dimension vary between -10 and 10.

4.2 Performance of our sampling method

In this section, we evaluate the performance of our method in terms of
execution time and final sample size obtained.

Timing and size of output sample. Table 1 presents timing in-
formation for our method and statistics for a few selected datasets.
Specifically, the number of views m is directly derived from the dimen-
sionality d of the datasets according to m = d × (d −1)/2, while the
number of partitions depends on the number of views and classes. As
we see from the table, our method is quite efficient and is able to sample
1K from 20K points in under 6 seconds for the most complex dataset
with 6 classes. Although we set the target number of sample points to
1K, the final number of points can be more than the target, given that we
need to cover all the subsets for all the views. Nevertheless, as we see
from these examples, we require at most 1.5 times the target number
of samples to cover all the sets. Note that the number of partitions that
result from different Z-orders directly determines the complexity of
the set cover problem, increasing the running time and the number of
sampled points for a given dataset. These considerations demonstrate
the necessity of view selection for sampling optimization, which can
reduce the number of output points sampled.

Scalability with increasing views. To evaluate the scalability of
the method when increasing the number of views in the dataset, we
present an experiment where we sample 1K from 20K points while
increasing the dimensionality of the points from 3 to 10. The number
of views in then derived again by the relation m = d × (d −1)/2. We
show the results of this experiment in Figure 6, where we report the
final number of sample points obtained and the running time required
for sampling with increasing views. We observe that the number of
sampled points remains less than 2.5 times the requested number, while
the timing increases quadratically. However, despite the non-linear
time complexity, for over 40 views and 20K points, the sampling still
takes less than one minute.

Table 1. Time required for processing selected datasets and final number
of sampled points, along with other dataset statistics. All the datasets
consist of 20K points and our goal is to sample 1K points. Note that, for
datasets with a single class, #partitions = #views, while for datasets with
more than one class, #partitions = #views × 2.

Datasets Time (s) Result

#dim #views #classes #partitions Z-order Set cover #points

2 1 3 2 0.80 0.09 1083

2 1 6 2 0.79 0.10 1070

3 3 1 3 1.10 0.36 1103

3 3 3 6 1.25 1.04 1269

4 6 1 6 1.51 1.50 1291

4 6 6 12 1.99 3.67 1549
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Fig. 6. Scalability of our method: number of sample points obtained and
sampling time, while increasing the number of views in the dataset.

4.3 Evaluation of the quality of the sampling

To evaluate the overall quality of the samplings produced by our method,
we compute the L∞ KDE error defined in Eq. 3 to quantify the maxi-
mal differences between KDEs computed from the input point set and
sampled set. We compare the KDE error obtained by our method to
other methods. We perform quantitative evaluations mainly on single-
class scatterplot matrices and individual multi-class scatterplots to show
the direct effect of applying our method on these two types of visual-
izations. We show qualitative samples to illustrate these results. For
multi-class scatterplots, we perform the evaluation on a larger variety



Table 2. Evaluation of our sampling method applied to different views Vi

of the Air Pollution dataset, denoted S(Vi). The numbers report the L∞

KDE error of scatterplots in different views, denoted E(Vi), where lower
values are better.

Method E(V1) E(V2) E(V3) E(V4) E(V5) E(V6)

S(V1) 0.209 0.00206 0.0108 1.135 5.419 0.0547

S(V2) 0.219 0.00205 0.0108 1.247 5.654 0.0575

S(V3) 0.217 0.00206 0.0107 1.168 5.885 0.0542

S(V4) 0.212 0.00208 0.0110 1.125 5.417 0.0563

S(V5) 0.213 0.00208 0.0109 1.175 5.291 0.0564

S(V6) 0.215 0.00206 0.0107 1.187 5.499 0.0533

S(Vall) 0.204 0.00199 0.0105 1.134 5.224 0.0540

Table 3. Evaluation of our sampling method applied to different views of
the synthetic dataset. The metrics report the L∞ KDE error of scatterplots
in different views, where lower values are better.

Method E(V1) E(V2) E(V3)

S(V1) 0.255 0.080 0.229

S(V2) 0.264 0.079 0.250

S(V3) 0.273 0.093 0.206

S(Vall) 0.205 0.100 0.206

of datasets and conduct user studies to compare with the latest meth-
ods such as blue noise sampling [9] and animation-based scatterplot
visualization [10].

Evaluation on single-class scatterplot matrices. We compare
the KDE errors among the following sampling methods: 1) Coresets
computed for single views (different views lead to different coresets,
thus providing different samplings); and 2) Our coreset sampled by
considering all the views. For both methods, we sample both the 20K
point Air Pollution dataset and the synthetic 5K point dataset to obtain
1K points. Note that this four-dimensional real dataset results in six
different views and the three-dimensional synthetic dataset results in
three different views in the corresponding scatterplot matrix, since we
only consider all the variable combinations once.

Tables 2 and 3 show the KDE errors computed for each view when
applying sampling methods 1 and 2 to the two datasets. In the tables,
S(Vi) denotes that we performed the sampling according to view Vi,
while E(Vi) means that we evaluated the KDE error according to Vi.
S(Vall) denotes our method where we sample by considering all the
views. Note that, since the sampling has a random component, we
compute the sampling for each scatterplot 100 times and report the
average KDE errors in the table. The results indicate that using the
z-order method based on a specific view provides a low-error sampling
result for that view, but the sampling quality for other views cannot be
guaranteed. On the other hand, when using our method that considers
all the views, we consistently obtain low-error results for each view.
For some of the views of these two datasets, the error value when
considering all the views even happens to be smaller than the error when
applying the method to the specific view in question (e.g., compare rows
1 and 7 of column 1 in Table 2). This is likely due to the characteristics
of these specific datasets.

As a qualitative sample of these results, Figure 7 shows the sampling
results computed with the different methods and the corresponding
KDE errors for view 3 of the synthetic dataset. In the figure, we see that
the samplings obtained for view 3 or all the views provide a smaller
KDE error than the sampling for other views.

View selection We also evaluate the gains obtained by performing
view selection to discard uninformative views of the dataset. We sample
1K from 20K points in a dataset with feature dimension d = 8 and view
number m = 28. We present this experiment in Figure 8, which shows

Fig. 7. Comparison of sampling results on view 3 (V3) of the sythetic
dataset, where the sampling was computed for specific and all views.

Fig. 8. Effect of view selection: number of sample points, sampling time,
and KDE error, when increasing the number of discarded views.

the final number of sampled points, time required for sampling, and the
KDE error with increasing number of discarded views. We see that the
number of points and time clearly drop when the number of discarded
views increases. On the other hand, the view selection also leads to the
increase of the KDE error. Thus, the user needs to determine a trade-
off when deciding the number of views to discard. In this example,
discarding between 13 and 21 views provides a balanced trade-off
between timing, sample size, and error.

Evaluation on multi-class scatterplots. We compare the KDE
errors among the following sampling methods: 1) Random sampling
(RS): we randomly sample n points from the dataset; 2) Multi-class
blue noise sampling [9]; 3) Local view: we sample the coreset for each
class separately and then combine the sets together; 4) Global view: we
sample the coreset for the whole point set without considering the class
labels; and 5) Local+global view: our coreset obtained by considering
both per-class and global distributions. We use 15 synthetic datasets
and 5 real datasets for the evaluation on multi-class scatterplots.

Table 4 shows the overall KDE errors using different methods for
each dataset, where the overall KDE error is defined as the maximal
value among the per-class KDE errors and global KDE error. Analyzing
the table leads to the conclusion that our method that considers both the
individual classes and the global view provides the lowest KDE errors
in 19 of the 20 datasets, while the error is quite close to the top method
for dataset D8. Moreover, our method that considers only the local or
global views also provides lower errors than the blue noise sampling
for all the datasets, which is expected since the blue noise sampling
does not optimize specifically for the KDE error.

Figure 9 shows more detailed statistics on the differences between
the four methods for a few selected datasets. On the left of each
subfigure, we show the scatterplot obtained with the entire input point
set, where class colors were selected according to ColorBrewer [17].
On the right, we show the corresponding KDE errors for the global
point distribution (denoted “Vglobal”) as well as the maximal error for all
the individual classes (denoted “Vlocal”). We see that our Z-order-based
method always obtains lower KDE errors than blue noise sampling.
The local-view-based method can provide good per-class samplings,
but cannot guarantee a good global sampling. The global-view method
provides results with the opposite effect. Finally, when considering



Fig. 9. Comparison of different sampling methods for multi-class scatterplots on six selected datasets. For each dataset, we show on the left the
scatterplot drawn with the full point set as reference, while on the right the boxplots present the distribution of KDE errors, indicating the median,
minimum, maximum, first and third quartiles, and outliers. We show one boxplot for each of the four sampling methods, both when considering the
global distribution of points (“Vglobal ”’) and individual classes (“Vlocal ”’). Note that the lowest errors are consistently provided by our sampling method
that considers the local and global views (blue boxplots), while all the Z-order-based samplings provide better results than the blue noise method.

both the local and global views together, we obtain consistently low
errors for each class and for the global distribution.

4.4 User studies for task-based evaluation

In this section, we describe two user studies where we compared our
method to existing methods for plotting multi-class scatterplots [9] and
multi-class scatterplot matrices [10]. Note that there are no alternative
methods specifically for plotting single-class scatterplot matrices, and
thus we do not perform a comparative study for this case.

User study on multi-class scatterplots. We conduct a user study
composed of four tasks. Since the state-of-the-art method for sampling
multi-class scatterplots is the blue noise sampling of Chen et al. [9], we
use the two tasks from Chen et al.’s user study to evaluate our method.
We complement these tasks with two new tasks where we evaluate
the global density of points and the global perceptual similarity to the
original point distribution, to show that our method also improves the
scatterplots in these two aspects. The tasks involve analyzing the results
of our sampling and the results of the blue noise sampling method, and
a few of the tasks also involve comparing the results to a conventional
scatterplot drawn without any optimization. As follows, we briefly
describe the four tasks and then present our results:

• Task 1 (T1): Data class identification. Participants had to identify
the number of classes in a marked area, where the ground-truth

can be extracted from the point set. We gave a score of 1 for
correct answers and 0 to incorrect answers.

• Task 2 (T2): Relative per-class density recognition. Participants
had to choose the answer that best describes the relative density
order of different classes in a marked region. The ground-truth for
the density of each class can also be extracted from the point set,
and we gave a score of 1 if the user selected the correct density
order from a list, or 0 otherwise.

• Task 3 (T3): Relative global density recognition. Participants
had to compare the densities of two marked regions and select
the region with higher density. We asked the users to do the
comparison without considering the different labels, i.e., compare
the global density. The ground-truth density can also be extracted
from the point set, and we gave a score of 1 for correct answers
and 0 to incorrect answers.

• Task 4 (T4): Perceptual similarity. Participants had to choose
which sampling result is perceptually more similar to the original
point distribution. Users had to choose a single scatterplot out of
a set of two plots, which included the blue noise sampling result
and our sampling result. The answers provide the preference of
the user when comparing a scatterplot to the original plot.



Table 4. Comparison of our sampling method against other sampling
methods on multi-class scatterplots. The numbers report the overall KDE
error for the different methods (columns), where lower values are better.
Please refer to the text for an explanation of each method.

ID #classes RS blue noise local global local + global

D1 3 0.0146 0.0125 0.0121 0.0120 0.0117

D2 3 0.0188 0.0189 0.0184 0.0187 0.0171

D3 3 0.0242 0.0265 0.0234 0.0236 0.0218

D4 3 0.0328 0.0436 0.0336 0.0316 0.0308

D5 3 0.00997 0.0133 0.00989 0.0102 0.00964

D6 3 0.0108 0.0135 0.0105 0.0106 0.0103

D7 3 0.00851 0.0100 0.00850 0.00869 0.00837

D8 3 0.0136 0.0136 0.0131 0.0135 0.0133

D9 3 0.00992 0.0101 0.00940 0.00966 0.00934

D10 3 0.00986 0.00998 0.00977 0.00986 0.00913

D11 4 0.00904 0.0124 0.00897 0.00904 0.00871

D12 4 0.0145 0.0151 0.0143 0.0142 0.0134

D13 5 0.0201 0.0211 0.0199 0.0201 0.0189

D14 5 0.0270 0.0271 0.0253 0.0269 0.0243

D15 6 0.0230 0.0218 0.0213 0.0212 0.0207

D16 2 0.0 0.0 0.0 0.0 0.0

D17 2 2.757 2.875 2.752 2.776 2.415

D18 3 1.356 2.699 1.325 1.337 1.252

D19 4 1.201 2.236 1.158 1.230 1.133

D20 5 1.414 2.821 1.341 1.395 1.338

We recruited 40 participants for this study, where 32 were male and
8 were female, 30 were graduate students and 10 were undergraduate
students. Their ages ranged from 18 to 27 years old. All the participants
reported that they did not have any known form of color blindness. For
T1, T2 and T3, each participant had to answer 15 questions, including
5 questions for each type of point distribution, i.e., the original distribu-
tion, the blue noise sampling, and our sampling. The marked regions
shown for each participant were obtained from different datasets to
avoid interference. For T4, each participant had to answer 8 questions.
The scatterplots were randomly permuted before being presented to
the user, to avoid any kind of bias in the selection. Our sampling was
performed without outlier inclusion.

Figure 10 shows the overall user performances on T1, T2 and T3.
We can see that with the sampling provided by our method, the users
obtained better scores for T1 and T3, and scores comparable to blue
noise sampling for T2. Especially for T3, we see that users had an
increase of 33.3% in the performance when using our sampling. For T4,
the users chose our sampling as being perceptually more similar to the
original point distribution in 60.3% of the answers. The main reason
given by the participants for this preference is that our method better
preserves the original data distribution while the blue noise method
tends to sample evenly-distributed point sets, which look artificial
according to the users. Figure 11 shows three example questions for T4
where users selected our sampling as better representing the original
point distribution.

User study on multi-class scatterplot matrices. We performed
a user study to compare the animation-based method of Chen et al. [10]
with our methods for sampling scatterplots and views of scatterplot
matrices. We used the same two tasks introduced by Chen et al., which
we name T5 and T6 in our paper. Compared to the previous study
where participants had to answer questions related to marked regions,
in the following tasks, the users had to select the regions that satisfy the
given requirements by dragging a fixed-size rectangle on the screen.

• Task 5 (T5): Targeted density identification. Participants had
to identify the region in a specific cell/view with the most cir-
cles/points.

• Task 6 (T6): Diverse density identification. Participants had to
identify the region in any cell/view with the most circles/points
and at least four different classes.

(a) T1 (b) T2 (c) T3

Fig. 10. Results of the user study on multi-class scatterplots. The
boxplots show the average (higher is better) and standard deviation of
the scores obtained by users for each sampling method on tasks T1,
T2 and T3, where C, B, and O represent conventional scatterplot, blue
noise sampling, and our sampling, respectively. Note the higher scores
obtained with our sampling on T1 and T3, and comparative result on T2.

(a) Input (c) Blue noise sampling(b) Our sampling

Fig. 11. Three example questions of T4 in the user study on multi-
class scatterplots, where the users selected our sampling as being more
perceptually similar to the original point distribution. Note how the results
of blue noise sampling tend to be too uniformly distributed.

Note that one specific view is given in T5, while the entire scatterplot
matrix is given in T6. We recruited 30 participants for this study. Of
these participants, 24 were male and 6 were female, 21 were graduate
students and 9 were undergraduates. Their ages ranged from 18 to
27 years old. All the participants reported that they did not have any
known form of color blindness. For both T5 and T6, each participant
had to answer 15 questions including 5 questions for each type of point
distribution, i.e., original static distribution, the one with animation,
and our static sampling result. The scatterplots or scatterplot matrices
were randomly permuted before being presented to the user, to avoid
any kind of bias in the selection. To evaluate a user’s performance,
we computed the number of points in the selected regions and kept
track of the time taken to complete the tasks. Similarly to Chen et al.’s
study [10], after completing both tasks, participants were asked whether
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Fig. 12. Results for the user study on multi-class scatterplot matrices.
We use the same visualization as Chen et al. [10], where the violin plots
show the density of ratings, the boxplots show the first and third quartiles,
the whiskers show 1.5 times the inter-quartile range, and the white circle
shows the median.

they found each technique easy to interpret, and which technique they
preferred and why.

Figure 12 shows the overall performances on tasks T5 and T6. From
analyzing the results, we see that with our sampling results, the per-
formance of the users is comparable to the animation-based method,
although requiring significantly less data. We also see that our sampling
results provide better performance than the original full point set. For
the question about preference, 60% of users chose our method, 23.3%
chose the animation-based method, 10% indicated that the methods
are equivalent, and 6.7% chose the option “hard to determine”. The
main reasons that the participants gave for preferring our method over
others were: 1) Using a sampling better represents the data distribution,
allowing the users to quickly identify the data density. On the other
hand, although the animation-based method uses flickering to indicate
the density, the data itself is still quite dense and it is difficult to see its
details; 2) For regions in the scatterplot that do not have overdrawing
of points from different classes, the animation-based method that keeps
drawing points with the same color can make it hard to understand the
data distribution, while our static sampling can show the data more
clearly; and 3) The animated plots are sometimes too distracting, which
may cause the users to ignore important information.

5 CONCLUSION

We introduced a method for simultaneously optimizing the sampling of
a point set for a collection of views or classes. Our method is based on
the idea of partitioning the input set into subsets of points, according
to Z-order curves computed for the multiple views or classes, and then
obtaining a point sampling that covers all the subsets via set cover
optimization. We showed experimentally that, in this manner, the sam-
pling has lower KDE approximation errors for all the views or classes
considered when comparing to other methods. We confirmed with a
quantitative evaluation that our method provides accurate approxima-
tions of a variety of datasets. Moreover, we demonstrated with two
studies that the performance of users in a variety of scatterplot analysis
tasks is either comparable or superior to their performance with existing
methods such as blue noise sampling and animation-based multi-class
SPLOM visualization, especially enabling users to better distinguish
the density of different regions of the plots or overlap of classes.

Limitations and future work. In practice, our method cannot
guarantee that the final plots do not suffer from overdraw. The sampling
of coresets does not directly optimize for reducing this effect, which
is directly considered by the blue-noise sampling method. Moreover,
our method does not generate sets with the exact number of samples

n required by the users, due to the approximation method we used,
although this is also a limitation for alternatives such as the blue-noise
sampling method. In addition, we limited our evaluation to experiments
mainly with datasets generated from Gaussian distributions, due to the
simplicity of synthesizing them. However, our method can be applied
to other types of distributions, as shown in the results for real datasets.

Our method is orthogonal to many classic methods that seek to re-
duce overdraw problems in scatterplots, such as the use of translucent
markers or color blending, combined with a selection of adequate color
palettes for drawing multiple classes. Thus, it can be readily combined
with these techniques to provide a more complete solution to mitigate
overdraw problems. Although we limited our experiments to comparing
our method to alternative sampling methods and an animation-based
drawing method, future work could also evaluate the coupling of our
sampling method with classic overdraw-reduction techniques to re-
veal the most effective combination for scatterplot visualization. In
addition, although we showed that users preferred our static sampling
over animated plots, the two methods can also be combined when suit-
able, which could lead to better visualizations for certain types of data.
Specifically, the use of our sampling can overcome problems such as
continuous drawing of points of the same class in the animation, which
some users found confusing.

In relation to the parameters of our method, currently the subsample
size n has to be manually specified by the users. However, we foresee
that it should be possible to develop an algorithm that automatically
determines n based on the resolution of the display/image where the
scatterplot is being drawn. This can be framed as the design of a
method that explicitly reduces the overdraw for each pixel of the output.
Moreover, future user studies could also evaluate the impact that the
selection of n has on the interpretation of the plots.

Finally, we believe that our sampling method could also be used with
other techniques for visualizing massive datasets with single/multiple
classes. Thus, another direction for future work is to investigate con-
texts where the sampling can be applied. A more immediate direction
for future work is to investigate the use of our sampling method with
more complex data types such as structured or graph-based data, which
can be addressed with the use of special types of KDE kernels.
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