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We present a shape segmentation method for complete and incomplete

shapes. The key idea is to directly optimize the decomposition based on a

characterization of the expected geometry of a part in a shape. Rather than

setting the number of parts in advance, we search for the smallest number

of parts that admit the geometric characterization of the parts. The segmen-

tation is based on an intermediate-level analysis, where first the shape is

decomposed into approximate convex components, which are then merged

into consistent parts based on a non-local geometric signature. Our method

is designed to handle incomplete shapes, represented by point clouds. We

show segmentation results on shapes acquired by a range scanner, and an

analysis of the robustness of our method to missing regions. Moreover,

our method yields results that are comparable to state-of-the-art techniques

evaluated on complete shapes.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Com-

putational Geometry and Object Modeling—Geometric algorithms, lan-

guages, and systems.

General Terms: shape segmentation, incomplete shapes, point clouds,

weakly-convex decomposition.

Additional Key Words and Phrases: missing data, part characterization.

1. INTRODUCTION

Segmentation of shapes into semantic parts is a well researched yet
still challenging problem. With the recent technological advances
and reduction in the cost of scanning technologies, scanning has
become a prominent source for 3D shape acquisition. However, di-
rect segmentation of point clouds has not received much attention
by the research community. Instead, a common approach is the re-
construction of a mesh from a scanned point cloud [Schnabel et al.
2009; Li et al. 2011], followed by a state-of-the-art mesh segmen-
tation technique. Segmenting a point cloud at an early stage of the
analysis pipeline can greatly simplify the subsequent steps of anal-
ysis and reconstruction, as it provides cues on the semantic parts
that form the shape (Figure 1).

Common mesh segmentation techniques usually avoid direct
definitions of the geometry of a part, focusing instead on identi-
fying the boundaries between parts. Prominent examples of state-
of-the-art methods are segmentation by randomized cuts [Golovin-
skiy and Funkhouser 2008] and concavity-aware segmentation [Au
et al. 2012]. Since these techniques and others [Shamir 2008] do
not define an objective function for the parts, they typically search
for concavities on the surfaces of triangle meshes. In this paper, we
present an algorithm for the segmentation of point clouds and in-
complete shapes, based on a definition of the geometry of a part.
The algorithm is non-parametric; as in statistical non-parametric
methods, the user is not required to provide in advance the number
of segments into which the shape should be partitioned, although
the part definition depends on a set of parameters.

Characterizing the expected geometry of a part is extremely am-
bitious since semantic parts may have complex geometry and vary-
ing features, and in general the meaning of a semantic part is ill-
posed. Nevertheless, some intuition for discovering the shape of a

(1 view) (2 views) (3 views) (5 views)

Fig. 1: Results of our segmentation algorithm applied to a progression of

incomplete point clouds with an increasing number of scanned views. With

only two views, the parts are already meaningful, despite the significant

amount of missing data.

semantic part is given by the minima rule, which states that humans
typically perceive a complex shape as a composition of approx-
imately convex parts, since the part boundaries tend to lie along
the concavities of the shape [Hoffman and Richards 1984]. We fol-
low the minima rule by relying on weakly convex parts [Asafi et al.
2013], which are approximately convex but not necessarily strictly
convex (Figure 2). Many shapes consist of semantic parts which
are not necessarily convex, for example the handles of a vase or a
curved stand of a lamp, as in Figure 3. However, in many of these
cases, a semantic part may be composed of several weakly convex
sub-parts which have similar properties. The premise is that iden-
tifying similarities between parts is much simpler when the parts
are weakly convex, as some meaningful high level properties are
revealed. See Figure 3 for an example that illustrates this intuition.

Our method therefore consists of two main steps (illustrated in
Figure 2). First, we decompose the point cloud into weakly con-
vex parts with a new method based on the definitions introduced
in [Asafi et al. 2013]. This decomposition is robust even when
handling point clouds of incomplete shapes. In the second step, we
merge neighboring weakly convex parts with similar properties to
produce the final segmentation of the shape. This step is likely to
create segments that are closer to the semantic parts of the shapes.
The main property that we consider when combining the compo-
nents is the volumetric profile of the parts, which goes beyond local
signatures by considering the volume of the shape parts.

These two steps result in an intermediate-level analysis of the
shape, implying that we do not only consider low-level properties
(such as boundaries) in the segmentation, but take into account
an explicit characterization of the shape parts. We show that our
method is robust when segmenting incomplete shapes, bypassing
the need for non-trivial reconstruction to a complete shape, and
yet, it yields results that are comparable to those of state-of-the-art
parametric and non-parametric mesh segmentation techniques.
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Fig. 2: Part characterization: (a) A point cloud with missing parts is given. (b) We compute the visibility between points in the shape. (c)
The visibility information is used to decompose the shape into weakly-convex parts. Here, lines-of-sight within components are colored
according to their component colors, while lines-of-sight between different components are grey. (d) The weakly-convex parts are analyzed
to find adjacent parts with similar geometric properties. (e) Adjacent similar parts are merged to produce the final segmentation of the shape.

2. RELATED WORKS

Mesh segmentation. Much work has been done on mesh seg-
mentation [Attene et al. 2006] which is surveyed in detail by
Shamir [2008]; a set of representative algorithms is also compared
in the benchmark of Chen et al. [2009]. Many of the proposed al-
gorithms incorporate some form of the minima rule to segment the
surface of models, such as the approaches based on randomized
cuts [Golovinskiy and Funkhouser 2008], variational decomposi-
tion [Zhang et al. 2012] or concavity-aware fields [Au et al. 2012].
The randomized cuts algorithm was also applied to point clouds,
but in the context of separating foreground from background, rather
than segmenting an object into semantic components [Golovinskiy
and Funkhouser 2009].

A few works also make direct use of volumetric information for
segmentation, such as the shape diameter function [Shapira et al.
2008] or the part-aware metric [Liu et al. 2009]. In these works, the
visibility between points or distance between points inside of the
volume implies the separation between parts. In our work, the visi-
bility between points also plays an important role, and we use it in
a way that allows us to segment incomplete shapes. Lu et al. [2007]
also present a method using volumetric information to compute a
bounding volume of a shape. Their variational method resembles
our convex decomposition step, however, unlike our method, they
do not proceed beyond the decomposition towards a more semantic
segmentation of the shapes.

The maturity of research on segmentation has culminated in
the development of a benchmark which enabled the compari-
son of different segmentation algorithms [Chen et al. 2009]. The
study concluded that the randomized cuts method [Golovinskiy
and Funkhouser 2008] could be considered the state-of-the-art in
parametric segmentation. More recently, Au et al. [2012] presented
a non-parametric method based on concavity-aware fields, which
outperformed the randomized cuts algorithm and is currently the
state-of-the-art. We show comparable results to these methods.

Lastly, there has also been research on co-segmentation [Sidi
et al. 2011; Hu et al. 2012; Meng et al. 2013] and joint segmenta-
tion [Huang et al. 2011] of sets of shapes, as well as on supervised
segmentation [Simari et al. 2009; Kalogerakis et al. 2010]. These
methods either require a training set of labeled shapes, user input,

or a set of shapes from the same category. Differently, we aim at
an automatic segmentation of individual shapes, which is of im-
portance when the category of the shapes is unknown in advance,
cannot be clearly categorized or no training set is available.

Convex decomposition. An exact decomposition of a shape
into convex components is costly and too strict for segmenta-
tion, since it can generate a large number of small parts. Thus,
researchers have focused on obtaining approximately convex de-
compositions. Lien and Amato [2007] propose a greedy approach
where concave portions of shape parts are identified and used to
recursively split the parts into more convex components. Ren et
al. [2011] optimize the criterion of Lien and Amato [2007] in order
to minimize the number of parts generated. Kraevoy et al. [2007]
propose a greedy region growing approach to obtain weakly convex
components.

Moreover, Attene et al. [2008] represent a shape as a tetrahe-
dral mesh and then combine the tetrahedra in a bottom-up manner
to form the weakly convex parts. Differently from the other ap-
proaches, they explicitly consider the volume of the shape in the
decomposition. Asafi et al. [2013] also consider the volume, but
without the need of obtaining a tetrahedralization of the shape. In
their work, weakly convex components are derived from analyzing
the pairs of points in the shape that are visible to each other. We
follow this general idea for the first step of our method, although
we obtain the decomposition of the shapes with a new algorithm
based on the analysis of patches. By using only visibility informa-
tion, our method is able to handle incomplete models. Recently,
Thiery et al. [2013] propose to approximate a mesh by a set of con-
nected spheres that are linearly interpolated. Note that, although
this method creates a good approximation of a mesh, it does not
represent a decomposition of the original shape.

Point set analysis. 3D scans of real objects provide the quick-
est way to create large 3D repositories. Since scanning devices
yield noisy and incomplete scans, a lot of attention has been di-
rected at post-scan processing of the resulting 3D point set, namely,
surface reconstruction. Different reconstruction methods take var-
ious approaches; we focus more on geometric primitive fitting as
it is more closely related to our method. Gal et al. [2007] use
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(a) Initial patches (b) Weakly-convex components (c) Merged segments

Fig. 3: Overview of our non-parametric segmentation: (a) We obtain a set of small, nearly-convex patches to better estimate the visibility
among portions of the shape. (b) The patches are fused into larger weakly-convex components according to their visibility (e.g., the body).
(c) Weakly-convex components with similar volumetric profiles are merged together (e.g., the handles) to yield the final segmentation.

a database of local shape priors from specifically-chosen context
models and fit them to an incomplete input point set. Schnabel et
al. [2009] detect a set of primitive shapes on the input point set itself
and use that to seal off holes by continuing surrounding structures
as well as create new edges as learned from the detected primi-
tives’ intersections. Attene and Patanè [2010] create a hierarchical
organization of detected primitives to obtain a multi-resolution rep-
resentation of a point set. Li et al. [2011] operate simultaneously
on both the local and global aspects by fitting primitives locally
according to observed data, while optimizing global relations itera-
tively. Recently, Lafarge et al. [2013] utilize planar primitive detec-
tion for point set structuring, where the primitives form the basis
for a 3D Delaunay triangulation used to obtain the final surface.
Instead of fitting priors or primitives to the point clouds, we de-
compose a shape into a set of weakly convex components, which
form the starting point to build the segmentation of the shape.

Scene segmentation. Aside from reconstruction of single ob-
jects from multiple scans, another problem that has attracted atten-
tion recently is the acquisition of entire indoor scenes, motivated
by the availability of inexpensive depth cameras such as Kinect.
The main problem of interest in this domain has been segmenta-
tion of indoor scans, which consists of separating multiple objects
that are part of the same point cloud. A popular approach to ad-
dress this problem has been to learn how to discriminate objects
based on training data, and then assign labels from a pre-defined
set to the points of the scan. This has been accomplished by using
graphical models [Anguelov et al. 2005; Koppula et al. 2011; Shao
et al. 2012], a multi-stage labeling procedure [Xiong et al. 2011] or
single per-pixel classifiers [Shotton et al. 2011]. Other approaches
include interleaving the segmentation and classification [Nan et al.
2012], or performing the learning from a set of initial scans [Kim
et al. 2012]. Some of the recent approaches also fit a set of tem-
plates to the segmented scans to yield high-quality models of the
scenes [Shao et al. 2012; Nan et al. 2012]. In contrast to these
works, the focus of our method is segmentation of single shapes,
although in Section 6 we show the potential of applying the method
on scans of entire scenes. Moreover, we do not make use of training
data, but rely on a characterization of the part geometry.

3. PART CHARACTERIZATION

In this section, we discuss our criterion for characterizing a shape
part, which guides our segmentation algorithm. Given that our seg-

mentation method is designed to handle incomplete shapes, the
input to our method is simply an oriented point cloud. Triangle
meshes can also be handled as augmented point clouds. An illus-
tration of our criterion is shown in Figure 2.

Shape part. We loosely define a part in the segmentation of a
shape as a collection of weakly-convex components that have simi-
lar geometric properties.

First, according to the minima rule [Hoffman and Richards
1984], humans tend to perceive part boundaries at the concavities
of shapes. Thus, by decomposing a shape into weakly-convex com-
ponents, we obtain an initial decomposition of the shape where the
component boundaries follow the minima rule closely. Note that we
do not enforce a strict convexity of the parts, since this can gener-
ate many small and redundant components. Secondly, if many such
weakly-convex components share similar geometric properties, the
components are typically perceived as a single rather than separate
entity, as shown in Figure 3(b) to (c). Identifying parts with simi-
lar properties is a relatively simpler task when all parts are weakly
convex. Finally, starting from a set of weakly-convex components
allows us to implicitly complete missing portions of the data by us-
ing the components as natural priors. That is a key aspect of the
method for the successful segmentation of incomplete shapes.

Note that methods that explicitly search for segment boundaries,
such as the randomized cuts [Golovinskiy and Funkhouser 2008]
or concavity-aware field [Au et al. 2012] methods, cannot be triv-
ially extended to handle shapes as the one shown in Figure 2. This
shape is composed of two disconnected portions (left and right) that
would have to be processed separately by such methods.

Next, we elaborate more on the notions of weak convexity and
the geometric property that we consider when defining a part,
namely, the volumetric profile of the part.

Weakly-convex parts. We follow the definition of weak con-
vexity proposed in [Asafi et al. 2013], which is directly derived
from the definition of strict convexity. Two points on a shape are
said to be mutually visible or in a line-of-sight (LoS), if the straight
line segment between the two points does not leave the volume
of the shape. In a strict convex decomposition, all the points in a
convex component are mutually visible. The definition is relaxed
in [Asafi et al. 2013] so that in a weakly-convex component only a
certain percentage of the points need to be mutually visible.

More specifically, let S be a set of sample points and LoS(S)
the set of all pairs of points in S that are in a line-of-sight. That

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



4 • van Kaick et al.

is, (i, j) ∈ LoS(S) if and only if the points i ∈ S and j ∈ S are
mutually visible. We then define the convexity rank of a set S as:

CR(S) = |LoS(S)| / |S|2. (1)

In a weakly-convex decomposition, we seek to minimize the num-
ber of components while maximizing the convexity rank for each
component.

Note that this definition does not make any assumptions about
the set S: the points are not necessarily taken from a watertight,
complete, or connected surface. Additionally, there is no need to
compute a convex hull or other geometric structures to estimate
the convexity of the set, as opposed to alternative measures such
as [Attene et al. 2008] or [Ren et al. 2011]. Thus, the convexity rank
is directly applicable to the context of point clouds. To determine
whether the line segment between two points does not leave the
volume, we can in practice represent every point as a local disk,
where the radius of the disk is estimated from the point’s nearest
neighbors and the orientation is given by its normal.

Volumetric profile. Generally, as exemplified in Figure 3(c),
semantic shape parts maintain a consistent volumetric profile, even
when they are not convex. That is, a part is unlikely to exhibit ma-
jor changes in its overall silhouette across its volume. Following
this observation, we characterize the volume of a weakly-convex
component by a volumetric signature, and join two components if
their signatures are similar. More specifically, given two weakly
convex components Ci and Cj , with histograms of the shape di-
ameter function [Shapira et al. 2008] hi and hj , respectively, we
measure the volumetric dissimilarity between the parts using the
Earth Mover’s Distance (EMD):

dist(Ci, Cj) = EMD(hi, hj). (2)

Two adjacent parts with high volumetric similarity are likely to be-
long to the same semantic shape part and can therefore be joined.

4. EXTRACTION OF WEAKLY-CONVEX

COMPONENTS

Since decomposing a shape into convex components is an NP-hard
problem, we follow a heuristic algorithm for the component ex-
traction. Differently from the clustering method presented in [Asafi
et al. 2013], we obtain the components with a two-step procedure,
allowing us to better estimate the mutual visibility of points. We es-
timate the visibility between points more robustly by computing the
visibility between a set of small, nearly-convex patches. Next, we
use the patch visibility to derive larger weakly convex components.
The key property of these components is that the patches that form
the components should be mutually visible. An overview of the full
algorithm is shown in Figure 3.

Initial patches. We begin by over-segmenting the input shape
into a set of nearly-convex patches. The patches allow for a more
robust visibility estimation as the visibility between all pairs of
patches can be explicitly tested. The patches are extracted by con-
structing a point-convexity graph of the points in the shape, where
point i and point j are connected if they are k-nearest neighbors in
Euclidean space and the angle between their normals does not form
a concavity. We use k = 10 in our implementation. We then per-
form a spectral clustering on this point-convexity graph to obtain
the initial set of patches.

Next, we estimate the visibility between each pair of patches. A
constant number svis of points (svis = 10 in our implementation)
is uniformly subsampled from each patch. These points serve as

(a) (b)

Fig. 4: Illustration of our mutual visibility criterion: given two components

(in orange and blue), we merge them together in (a) since all the patches

(separated by the little black bars) are visible to each other. In (b), the com-

ponents are not merged as two patches (shown by the red line) are not mu-

tually visible. Note that the actual criterion that we use is a relaxed version

of this idea, as explained in Section 4.

source and target points for inter-patch ray casting, where a source
and a target are visible to each other if the ray cast between them
is not occluded by any other point in the shape. Using the sum of
binary visibility for each of the s2vis rays, we are able to estimate the
ratio of visibility between a pair of patches with more confidence.

Component fusion. We fuse patches into larger weakly-
convex components according to their mutual visibility (Figure 4).
Our objective is to minimize the number of resulting components
while keeping the intra-component mutual visibility above a
threshold θ. This threshold quantifies the extent to which a fused
component is allowed to deviate from perfect convexity. To this
end, we employ an iterative fusion method, where the first iteration
enforces strict mutual visibility between patches and the following
iterations gradually relax this constraint. Each iteration fuses
multiple pairs of adjacent patches in a greedy manner according to
their mutual visibility.

Given a set of initial patches P = {P1, . . . , Pn}, we fuse them
to obtain a set of weakly-convex components C = {C1, . . . , Cm}.
Initially, each component Ci corresponds to patch Pi. To perform
one fusion iteration, first we sort all pairs of adjacent components
according to their visibility ratios in descending order. Next, fol-
lowing this ordering, we fuse all pairs of components Ci and Cj

where θ is satisfied for all pairs of patches contained in Ci and Cj .
This iterative approach is advantageous in that it encourages the
creation of highly self-visible components in the earlier iterations,
which are then further extended and fused with other components
if their updated mutual visibility allows it. In our experiments, we
employed 3 iterations with θ1 = 0.9, θ2 = 0.8, and θ3 = 0.7.

5. MERGING OF COMPONENTS

The previous step segments the input shape into a set of weakly-
convex components. In some cases, when a shape is comprised only
of weakly-convex semantic parts, this already provides a mean-
ingful segmentation of the shape. However, most shapes possess a
more complex structure and require further component merging to
reach a close-to-semantic segmentation. As defined in Section 3,
we rely on the volumetric consistency within semantic parts to
guide the merging. The consistency is determined by a component
signature based on the shape diameter function.

Merging by volumetric signature. Given a set of weakly-
convex components C = {C1, . . . , Cm}, for each component Ci,
we assign a volumetric signature which is a histogram of SDF val-
ues hi. To compute this signature, we begin by uniformly sampling
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sivol points on the surface of each Ci. Each sample point pu ∈ Ci

forms the tip of a cone with angle α, and in the direction −nu,
where nu is the normal of pu. We then consider all rays between
pu and all pv ∈ Ci that fall within this cone. The lengths of these
rays are weighted by the cosine of the angle between pu’s normal
and the rays, to penalize rays that deviate too much from the nor-
mal. The median length is taken as the SDF value for that point.
When no such rays fall within a point’s cone, the point is marked
and not taken into account in the signature computation. We use
parameters sivol = max(100, 0.1 · |Ci|) and α = 2π/18 in all of
our experiments.

Using the SDF values for all pu ∈ Ci, we create a histogram
hi to capture the volumetric profile of Ci. Note that in cases where
Ci is planar or nearly so, the vast majority of points in Ci will be
marked as having no SDF value and the resulting hi will be falsely
empty. To remedy this, we mark any component with an empty
histogram as flat. Flat components are then excluded from the next
merge step and are dealt with later on.

Using the volumetric signatures, we calculate the dissimilarity
between all pairs of components according to (2), resulting in a
component distance matrix D. We also take into account the de-
gree of convexity of the seam between a pair of components. To
formulate this we introduce the seam sets of a component. These
sets characterize the boundaries to other components and are used
to select which neighboring component is the best choice for merg-
ing. The seam sets are defined using the k-nearest neighbors graph
GK as follows:

CVXSeami,j = {(pu,pv) : pu ∈ Ci,pv ∈ Cj , (pu,pv) ∈ GK ,

angle(nu,nv) ≤ π},

CNCSeami,j = {(pu,pv) : pu ∈ Ci,pv ∈ Cj , (pu,pv) ∈ GK ,

angle(nu,nv) > π + ǫ},

Seami,j = {(pu,pv) : pu ∈ Ci,pv ∈ Cj , (pu,pv) ∈ GK},

where CVXSeami,j and CNCSeami,j are the convex and concave
seams between Ci and Cj , respectively, and Seami,j is the entire
seam between them. We use ǫ = 0.05 · π in our implementa-
tion, in order to prevent very subtle concavities from influencing
the results. For the same reason, CVXSeam purposefully only in-
cludes angles ≤ π. By using the seam sets, we disregard any ad-

jacency where
|CNCSeami,j |

|CVXSeami,j |
≥ 0.85. Finally, we merge any two ad-

jacent components i and j such that Di,j/max(D) ≤ σ. We use
σ = 0.12 in our implementation.

Next, in case flat components have been detected during the SDF
histogram creation, we merge them with adequate adjacent compo-
nents. To avoid violating component convexity, the search is guided
by the seam sets in the following manner. Given a flat component
Ci, we sort its neighbors Cj by descending order of |Seami,j |, al-
lowing us to consider first neighboring components with which Ci

shares the longest borders. Going over the sorted neighbors, we
select the first one that shares a strictly convex seam with Ci. If
such a neighbor does not exist, we sort the neighbors by descend-

ing order of
|CVXSeami,j |

|CNCSeami,j |
and select the first neighbor for which

|CVXSeami,j |

|CNCSeami,j |
≥ 1 and θi,j ≥ 0.4, where θi,j is the mutual visibility

between Ci and its neighbor Cj . This step favors merging Ci with
a neighbor according to the extent of convexity of the shared seam,
as well as mutual visibility. If no adequate neighbor is found, Ci is
left unmerged. Finally, to account for the newly-merged flat com-
ponents, the histograms of the changed components are updated
and one more merge iteration is performed as described above.

Note that, if we simply estimate the SDF for each point in an in-
complete shape, and then cluster the points according to their SDF,
the results will not be satisfactory, as the discontinuities in the vol-
ume of the data will create discontinuities between the parts. On the
other hand, estimating the volumetric profile of a weakly-convex
component is more robust in this regard, as we obtain a volumetric
signature for it.

Border refinement. As the final step, we employ a point-level
graph cut optimization on the merged components to refine the
boundaries between the segments. The k-nearest neighbors graph
GK is used to imply the connectivity between points, and we create
a label for each segment. We set the data term to strictly preserve
each segment, but allow the borders to move along a narrow band
between segments to better align the borders with the concavities
of the shape. We define the data term formally as:

Du(fu) = costl(u)/max
v

costl(v),when fu = l, (3)

where costl(u) =

{

0, if su = l,
distBl

(u)1.5, otherwise.
(4)

Here, su is the label of point u in the original segmentation, fu is
the label assigned by the graph cut, and distBl

(u) is the distance of
the point to the boundary Bl of the segment with label l. The power
1.5 increases the cost faster for points away from the boundary, but
in a more gentle manner than when using a quadratic power.

The smoothness term follows the Potts model weighted by the
angle between two points, to assign a smaller cost to cuts at concave
regions. We define the smoothness cost as:

Su,v(fu, fv) =

{

βu,v/π, if fu 6= fv,
0, if fu = fv.

(5)

where βu,v is the angle between the normals of points u and v. The
data cost is weighted by 0.1 when adding up the data and smooth-
ness costs. In summary, in the formulation above, the additional
cost of moving the boundary away from the original segment is
balanced with the cost of the segment cut.

6. RESULTS

In this section, we evaluate our segmentation algorithm on a col-
lection of incomplete shapes, and also present a quantitative com-
parison to state-of-the-art unsupervised mesh segmentation algo-
rithms. Note that our source code, datasets, and results are available
at http://www.cs.tau.ac.il/~noafish/wcseg/.

Segmentation results. Figure 5 presents visual examples of
segmentation results that we obtain on diverse point clouds ac-
quired with a range scanner, where many of the shapes are incom-
plete and have missing portions. We notice that the method is ro-
bust when applied to these shapes and is able to implicitly complete
some of the missing portions with the weakly-convex decomposi-
tion. For example, the ‘yoga poses’ shapes possess several missing
portions in the head, body and limbs, while the airplane is made
of a single scan from the top of the model. Note also that it would
not be possible to segment some of these models relying only on
shape concavities. In general, several of the semantic components
are correctly segmented. However, since the point clouds are very
sparse in certain regions, we also see that some parts were mis-
takenly merged with their neighboring parts, due to the absence of
significant volumetric information or concavities in the shape.

Figure 6 presents additional results obtained on triangle meshes,
where we first transform the meshes into point clouds, and then
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Fig. 5: Segmentations obtained with our non-parametric algorithm on a collection of point clouds acquired with a range scanner.

map the segmentation results back to the meshes. We create a point
corresponding to the center of each triangle, which then gives a nat-
ural mapping to transfer the segmentation of the point cloud back
to the triangle mesh. In this way, we do not introduce resampling
artifacts. We can see that the method also performs satisfactorily on
these complete shapes, obtaining meaningful segmentations similar
to those of state-of-the-art methods applied directly on the meshes.

Analysis of convergence. Figures 1 and 7 present an analy-
sis of the convergence of the algorithm when applied to incom-
plete shapes, such as partially-scanned shapes. We start with the
segmentation obtained by scanning an input shape from a single
viewpoint, and then show the progress of the algorithm as more
views are added to the scan. For these experiments, we use a virtual
scanner to acquire samples from a watertight mesh from different
viewpoints. Thus, the results obtained on the point cloud formed of
several views approach those obtained on the original mesh. From
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Fig. 6: Segmentations obtained with our non-parametric algorithm on a collection of triangle meshes. A quantitative evaluation on the full
segmentation benchmark with 380 meshes is reported in Figure 8.

this analysis we see that, as more scans are added and the volume of
the shape is better represented, our method approaches the quality
of results obtained on the mesh. Even after adding only a few scans,
results similar to the original mesh are obtained, due to the robust-
ness of the algorithm to holes in the shapes. Moreover, Figures 1
and 7 also serve as an analysis of the performance of the algorithm
at various levels of incompleteness of the shapes.

Quantitative evaluation. To provide a comparison to state-of-
the-art segmentation algorithms, we evaluate our method with the
benchmark and protocol of Chen et al. [2009]. We also compare
to the concavity-aware segmentation method of Au et al. [2012],
since it has been shown to outperform the other methods in the
benchmark. Although the benchmark is composed of a collection
of 380 watertight triangle meshes (not point clouds), we use it to
evaluate our algorithm since this type of shapes has been the fo-
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(2 views) (4 views) (5 views)

(1 view) (2 views) (3 views) (4 views)

(1 view) (3 views) (5 views)

Fig. 7: Convergence of the segmentation results as the point clouds are complemented with an increasing number of scanned views. Notice
how with a small number of views, the results are already of similar quality to the results with several views (in the last column).

cus of previous work on shape segmentation. To run our algorithm,
we first transform the meshes into point clouds, and then map the
segmentation results back to the meshes, as described before. Fig-
ure 8 shows a comparison of the algorithms according to the various
measures of the benchmark. Table I presents a ranking of the algo-
rithms based on the Rand Index. In short, the Rand Index measures
the likelihood that a pair of faces are either in the same segment in
two segmentations, or in different segments in both segmentations.
Please refer to Chen et al. [2009] for an explanation of the other
metrics and more details about the evaluation protocol.

From the results in Figure 8, we can see that our algorithm
is comparable to the state-of-the-art, achieving results similar to
concavity-aware segmentation, shape diameter function and ran-
domized cuts, while also having the advantage of being applicable
to incomplete shapes. According to the ranking of Table I, our al-
gorithm performs the best for more classes of shapes than any other
algorithm and is the most consistent among different classes as ev-
ident by the low rank achieved on all classes.

Comparison to decomposition by clustering. In Figure 9,
we show a comparison of our method to the weakly-convex de-

composition of Asafi et al. [2013], which clusters points into com-
ponents according to their mutual visibility. It can be observed that
by first creating a set of initial patches, we are able to obtain an
accurate estimate of the visibility between these patches and bet-
ter control the approximate convexity of each part. The resulting
segments have a higher convexity rank than those obtained with
the method of Asafi et al. [2013]. Moreover, their method tends to
create less desirable boundaries between the parts, e.g., the blue
segment spans from the left elbow of the ballerina across her head
to her right arm, due to the partial visibility between these points.

Scenes with multiple objects. Although the focus of our
method is the segmentation of single objects into meaningful parts,
as given by our part characterization, we also show in Figure 10
an example of applying our method to the segmentation of point
clouds corresponding to scenes with multiple objects. In this ex-
ample, we segment a virtual scan of an indoor office scene. The
point cloud was created by registering scans from three different
views, where we separated the foreground objects from the back-
ground (floor and walls) before the segmentation. We see that the
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(a) Rand Index (b) Hamming Distance

(c) Global and Local Consistency Error (d) Cut Discrepancy

Fig. 8: Quantitative evaluation of our segmentation algorithm on the benchmark of Chen et al. [2009]. Our algorithm is named WCSeg.
Notice that our algorithm is comparable to the other top-ranking algorithm (concavity-aware field segmentation).

combination of visibility and volumetric information also has the
potential of addressing this multi-object segmentation problem.

Parameter sensitivity. Our method is non-parametric in that
we do not need to specify the number of expected segments. How-
ever, our method uses a number of parameters that have to be prop-
erly set. We have tested a reasonable range for these parameters
and obtained similar results to the ones shown here. More specif-
ically, we varied each of the parameters θ1, θ2, θ3, and σ around
the selected values, since these are the parameters that most impact
the created segments. We verified that in a range within 6% of the
value of each parameter (±3% added to each value), the quality of
the results is similar. Other parameters such as svis and sivol impact
less on the segmentation and are kept fixed, as their main function
is to increase the accuracy of the visibility and volume estimates.
While certain classes of shapes may benefit from adjusting some of
the parameters, the selected parameters are not class-specific; we
obtained all of our results with a single set of parameters.

Timing and complexity. Our current unoptimized implemen-
tation takes on average 3 minutes to process 10K points, where the
most expensive operation is the creation of initial patches. Note that
we keep constant the number of initial patches and number of rays
used to compute the visibility between patches. Thus, the complex-
ity grows linearly with the number of points, since the main opera-
tion is searching for the points that are hit first by the rays cast. This

step can be improved with the use of appropriate data structures for
faster intersection computations.

7. CONCLUSION AND FUTURE WORK

We have presented a non-parametric segmentation algorithm that
uses a characterization of the expected geometry of a part to de-
compose the shape. The main idea is to characterize a part as a col-
lection of weakly-convex components that possess a similar vol-
umetric profile. Thus, we directly search for the parts that fit this
characterization, rather than follow a Markovian approach based
on the search of a graph cut that agrees well with the shape concav-
ities. Note that, although we also use a graph cut optimization to re-
fine the segmentation borders, this is mainly a post-processing step,
as the decomposition is guided primarily by our part characteriza-
tion. Moreover, we demonstrated that by means of a weakly-convex
decomposition, the method is robust to missing data. We are able
to implicitly complete missing portions of the shapes by using the
weakly-convex components as natural priors. This is a key aspect
for the successful segmentation of incomplete shapes.

Limitations. One limitation of our approach is that not all se-
mantic parts adhere to our part characterization. As shown in the
example in Figure 11, there exist semantic parts that are composed
of two or more weakly-convex components with different geomet-
ric properties. In general, semantic parts that possess concavities,
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Object WC Conc Rand Shape Norm Core Rand

Categories Seg Awa Cuts Diam Cuts Extra Walks

Human 2 1 3 4 7 5 9

Cup 1 2 3 4 7 8 5

Glasses 4 1 2 3 6 7 8

Airplane 1 4 3 6 2 5 9

Ant 1 4 3 5 2 8 6

Chair 2 4 6 1 3 8 7

Octopus 1 2 6 5 3 9 4

Table 2 1 9 3 6 5 7

Teddy 3 2 1 6 4 8 5

Hand 3 2 1 5 9 8 6

Plier 2 1 4 6 9 5 3

Fish 1 2 5 7 3 9 4

Bird 2 1 3 6 4 8 5

Armadillo 1 5 4 7 2 3 9

Bust 3 2 1 8 5 6 7

Mech 3 2 6 1 5 7 8

Bearing 2 6 3 4 1 5 9

Vase 2 3 1 5 6 8 4

FourLeg 1 4 3 8 2 5 6

Overall 1 2 3 4 5 6 7

Table I. : Comparison of segmentation algorithms for each object category.

Entries represent the rank of the algorithm (1 is the best) according to the

Rand Index. We display only the top seven algorithms in the table.

(a) Asafi et al. (b) Our method

Fig. 9: Comparison of our method to Asafi et al. [2013]. Note how the seg-

ments obtained with our method have a higher convexity rank.

such as cups and open liquid containers, will be separated into mul-
tiple components. Similarly, there may be nearby semantic parts
that do possess similar properties, but should remain separated,
such as chairs made of a combination of parts with the same diam-
eter, or humans where the arm and forearm have a similar radius.
Another limitation is that when the data is sparse (e.g., a scan from
a single viewpoint), there may not be much volumetric information
available in the point cloud. Then, the computation of the volumet-
ric profile will not be accurate enough to guide the part merging.

The presence of concavities affecting the segmentation is
closely-related to the fact that, although our method is non-
parametric (where the user does not have to specify the number
of segments), the user still needs to specify the degree of weak
convexity of the parts (θ threshold). In addition to θ, there are other
parameters in the algorithm that need to be selected adequately.

Fig. 10: A point cloud corresponding to an indoor scene with multiple ob-

jects, segmented with our method.

Fig. 11: Limitations of our approach: (1) Thin structures (such as the chair

legs) have low internal visibility, thus they may not be joined during the

component fusion step; (2) When the surface has variance in its width (as

in the top part of the back of the chair or the corners of the seat), the com-

ponents may not be joined in the merging step since the bins of their volu-

metric histograms are spread across a short range of values.

Nevertheless, as discussed in Section 5, we have demonstrated that
meaningful results on a large benchmark of shapes from different
categories can be obtained with a fixed set of parameters.

Future work. Although our segmentation is guided by a part
characterization, the search is still based on heuristics. Thus, a log-
ical step for improving the quality of the results is to search for the
optimal parts with more advanced optimization techniques, such as
linear programming. Moreover, we can look at additional geomet-
ric properties when merging the weakly-convex components into
larger segments. For example, it is possible to fit specific primitives
to the components and estimate a richer set of geometric properties.
Finally, we also see potential in the application of the decomposi-
tion for other shape analysis tasks, such as shape completion or
data-driven shape analysis, where the weakly-convex components
can serve as primitives for the computation of descriptors and sta-
tistical learning of shape properties.
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