Solving Problems: Blind Search

Instructor: B. John Oommen

Chancellor’s Professor
Life Fellow: IEEE : Fellow: IAPR
School of Computer Science, Carleton University, Canada

The primary source of these notes are the slides of Professor Hwee Tou Ng
from Singapore. | sincerely thank him for this.

Problem Solving Agents

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action
static: seg, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state +— UPDATE-STATE(state, percept)

if seq is empty then do
goal < FORMULATE-GOAL(state)
problem < FORMULATE-PROBLEM(state, goal)
seq < SEARCH(problem)

action <+ FIRST(seq)

seq < REST(seq)

return action

Example: Travel in Romania

On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest
Formulate goal:

— Be in Bucharest

Formulate problem:
— States: Various cities
— Actions: Drive between cities
Find solution:
— Sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

Example: Travel in Romania

= Oradea

Pitasti

70
Hirsova

M Mehadia
25

Dobreta

Eforie

Problem Types

Deterministic, fully observable = Single-state problem
— Agent knows exactly which state it will be in: Solution is a sequence

Non-observable - Sensorless problem (Conformant problem)
— Agent may have no idea where it is: Solution is a sequence

Nondeterministic and/or partially observable = Contingency problem
— Percepts provide new information about current state
— Often interleave: Search, execution

Unknown state space > Exploration problem

Example: Vacuum World

« Single-state; Start in #5.

Solution? 1 | =) 2 =)
BR | B8 FE | B
3 | =) 4 =)
oI oFR
5 | =) 6 =)
o3 o3
7 | =) 8 =)

Example: Vacuum World

Single-state 1 | =) 2
Start in #5. L eh
Solution? [Right, Suck]

3 |.=A) 4
Sensorless L
Startin {1,2,3,4,5,6,7,8}
Right goes to {2,4,6,8} 5 =] - 6
Solution?
Now more information 7 ﬂ 8

A (2] [&) [#4

Example: Vacuum World

Sensorless
Start in {1,2,3,4,5,6,7,8}
Right goes to {2,4,6,8}

Solution?
[Right,Suck,Left,Suck]

Contingency
— Nondeterministic:
Suck may dirty a clean carpet
— Partially observable
Location, dirt at current location.
— Percept: [L, Clean],
Start in #5 or #7
Solution?

[Right, if dirt then Suck]

=)
7R
=
R
=
=)

2

A (2] [&) [#4

Single-state Problem Formulation

A problem is defined by four items:

1. Initial state e.g., "at Arad"
2. Actions or successor function S(x) = set of action—state pairs
— e.g., S(Arad) = {<Arad 2 Zerind, Zerind>, ...}

3. Goal test. This can be
— Explicit, e.g., x = “at Bucharest”
— Implicit, e.g., Checkmate(x)

4. Path cost (additive)

— e.g., sum of distances, number of actions executed, etc.
— c(x,a,y) is the step cost, assumed to be =0

« Solution is a sequence of actions leading from the initial to a goal state

Selecting a State Space

Real world is absurdly complex
— State space must be abstracted for problem solving

(Abstract) state = Set of real states

(Abstract) action = Complex combination of real actions
— e.g., “Arad = Zerind”: Complex set of possible routes, detours, rest stops, etc.

For guaranteed realizability, any real state "in Arad” must get to
some real state “in Zerind”

(Abstract) solution:
— Set of real paths that are solutions in the real world

Each abstract action should be “easier”’ than the original problem

Vacuum World: State Space Graph

(Fa | T« [
ELLTED G 1L
e States? LC‘#Q R, E‘QDH
e Actions? -
« Goal test? Q sz

 Path cost?

Vacuum World: State Space Graph

States? "

Integer dirt/robot locations Cﬁﬂ T ;@3
Actions? ; 3 3
Left, Right, Suck LC“Q - | - Q" LCﬁQ :
Goal test? - s °

No dirt at all locations LCE‘Q o - :) .
Path cost? SR G,

1 per action ; ®

Example: The 8-puzzle

States?

Locations of tiles

Actions? 7 2 4
Move blank L/R/U/D

Goal test? 5 6
Goal state (Given: InOrder)

4

Path cost?

1 per move; Length of Path 8 3 1

7

Complexity of the problem
8-puzzle
9! = 362,880 different states
15-puzzle:
16! =20,922,789,888,000
1013 different states

Start State

Goal State

Example: Tic-Tac-Toe

States?

Locations of tiles

Actions?

Draw X in the blank state

Goal test?

Have three X's in a row, column
and diagonal

Path cost?

The path from the Start state to a
Goal state gives the series of
moves in a winning game
Complexity of the problem
9! = 362,880 different states
Peculiarity of the problem
Graph: Directed Acyclic Graph
Impossible to go back up the
structure once a state is reached.

% §
%N

- OIXIX OIX— o/X| \)(o' X 0 YoWo ofi

= I\

Example: Travelling Salesman

100

Problem
Salesperson has to visit 5 cities
Must return home afterwards

States?

Possible paths???

Actions?

Which city to travel next A

Goal test? \\\75

Find shortest path for travel 125c mo\ \
Minimize cost and/or time of travel % %\
Path cost? N

Nodes represent cities and the D%/Zf, ol 22\ A
Weighted arcs represent travel cost 20| as| 400| 400

Simplification ER TN Ee o8

Lives in city A and will return there. N R A

Complexity of the problem A

(N - 1)' with N the number of cities /C\BCDEA zBCEDA zBDCEA
ost: ost: ost:
375 425 475

State Space

Many possible ways of representing a problem

State Space is a natural representation scheme

A State Space consists of a set of “states”

Can be thought of as a snapshot of a problem
— All relevant variables are represented in the state

— Each variable holds a legal value

Examples from the Missionary and Cannibals problem
(What is missing?)

MMCC

MC

MMC

MCC MMMCCC

MMMCCC

Counter Example: Don’'t Use State Space

Solving Tic Tac Toe using a DB look up for best moves
e.g. Computer is ‘O’

X X
> O
Each Transition Pair is recorded in DB
X | X X|X|O
@) — @)
Input Best Move
Simple but

Unfortunately most problems have exponential No. of rules

Knowledge in Representation

* Representation of state-space can affect the amount of
search needed

* Problem with comparisons between search technigues
IF representation not the same

 When comparing search technigues:
Assume representation is the same

Representation Example

e Mutilated chess board

— Corners removed

— From top left and bottom right

« Can you tile this board?

— With dominoes that cover two squares?

Representation 1

Representation Example: Continued

Number of White Squares= 32

Number of Black Squares= 30

Representation 2

Representation 3

Production Systems

« A set of rules of the form pattern — action

— The pattern matches a state
— The action changes the state to another state

« A task specific DB

— Of current knowledge about the system (current state)

A control strategy that
— Specifies the order in which the rules will be compared to DB
— What to do for conflict resolution

State Space as a Graph

 Each node in the graph is a possible state
« Each edge is a legal transition
« Transforms the current state into the next state

§ e @ &

* Problem solution: A search through the state space

Goal of Search

« Sometimes solution is some final state
« Other times the solution is a path to that end state

Solution as End State:
— Traveling Salesman Problem
— Chess
— Graph Colouring
— Tic-Tac-Toe
— N Queens

Solution as Path:
— Missionaries and Cannibals
— 8 puzzle
— Towers of Hanoi

Tree Search Algorithms

Basic Idea
— Offline, simulated exploration of state space
— Generate successors of already-explored states
— a.k.a. Expanding states

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

Example: Tree Search

-

. Sbiu) ~Timisoara
- o
A .

& ", - § 4 k

_ N s p

Fagamas » 7 _Oradea » ¢Rimnio Vicza Aiad 3y 7 Lugoj

> — e

 Zarind

—_ —_—

" Amad 3y ¢ Oradea

= s

o

Example: Tree Search

< Amd

Example: Tree Search

Implementation: General Tree Search

function TREE-SEARCH(problem, fringe) returns a solution, or failure
fringe < INSERT(MAKE-NODE(INITIAL-STATE([problem]), fringe)
loop do
if fringe is empty then return failure
node < REMOVE-FRONT(fringe)
if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node)
fringe < INSERT ALL(EXPAND(node, problem), fringe)

function EXPAND(node, problem) returns a set of nodes

successors <— the empty set

for each action, result in SUCCESSOR-F'N[problem|(STATE[node]) do
$<—a new NODE
PARENT-NODE[s] - node; ACTION[s] «— action; STATE[s| < result
PATH-COST[$] «— PATH-COST[node] + STEP-COST(node, action, s)
DEPTH[s] «+— DEPTH[node] + 1
add s to successors

return successors

Implementation: States vs. Nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree
Includes state, parent node, action, path cost g(x), depth

parent, action

State || 5 ||| 4 Node depth =6
g=6
6 (|| 11| 8
ale
71l 3|l 2 st

Expand function creates new nodes, filling in the various fields
SuccessorFn of the problem creates the corresponding states.

Search Strategies

« Search strategy: Defined by picking the order of node expansion

« Strategies are evaluated along the following dimensions:
— Completeness: Does it always find a solution if one exists?
— Time complexity: Number of nodes generated
— Space complexity: Maximum number of nodes in memory
— Optimality: Does it always find a least-cost solution?

« Time and space complexity are measured in terms of:
— b: maximum branching factor of the search tree
— d: depth of the least-cost solution
— m: maximum depth of the state space (may be «)

Uninformed Search Strategies

Uninformed search strategies
— Use only information available in problem definition

Breadth-first search
Depth-first search
Backtracking search
Uniform-cost search
Depth-limited search
Iterative deepening search

Breadth-first Search

« Expand shallowest unexpanded node

* Implementation:
— fringe is a FIFO queue, i.e., new successors go at end

>@

Breadth-first Search

« Expand shallowest unexpanded node

* Implementation:
— fringe is a FIFO queue, i.e., new successors go at end

(4,
>(E ©

Breadth-first Search

« Expand shallowest unexpanded node

* Implementation:
— fringe is a FIFO queue, i.e., new successors go at end

A,
(B > (<

Breadth-first Search

« Expand shallowest unexpanded node

* Implementation:
— fringe is a FIFO queue, i.e., new successors go at end

(4,
(B, (S
PO © © @

Breadth-first Search

BFS (S):
1. Create a variable called NODE-LIST and setitto S

2. Until a Goal state is found or NODE-LIST is empty do:
— Remove the first element from NODE-LIST and call it E;
If NODE-LIST was empty: Quit
— For each way that each rule can match the state E do:
» Apply the rule to generate a new state
» If new state is a Goal state: Quit and return this state
» Else add the new state to the end of NODE-LIST

Properties of Breadth-first Search

Complete?
— Yes (if b is finite)

Time?
— 1+b+b?+b3+... +bd + b(bd-1) = O(b*?)

Space?
— O(bd*1) (keeps every node in memory)

Optimal?
— Yes (if cost = 1 per step)

Space is the bigger problem (more than time)

Depth-first Search

« Expand deepest unexpanded node

* Implementation:
— fringe = LIFO stack, i.e., put successors at front

2©.

Depth-first Search

« Expand deepest unexpanded node

* Implementation:
— fringe = LIFO stack, i.e., put successors at front

Depth-first Search

« Expand deepest unexpanded node
* Implementation:

— fringe = LIFO stack, i.e., put successors at front

Depth-first Search

» Expand deepest unexpanded node
* Implementation:

— fringe = LIFO stack, i.e., put successors at front

Depth-first Search

« Expand deepest unexpanded node
* Implementation:

— fringe = LIFO stack, i.e., put successors at front

Depth-first Search

« Expand deepest unexpanded node

* Implementation:
— fringe = LIFO stack, i.e., put successors at front

Depth-first Search

« Expand deepest unexpanded node
* Implementation:

— fringe = LIFO stack, i.e., put successors at front

Depth-first Search

« Expand deepest unexpanded node
* Implementation:

— fringe = LIFO stack, i.e., put successors at front

Depth-first Search

« Expand deepest unexpanded node

* Implementation:
— fringe = LIFO stack, i.e., put successors at front

Depth-first Search

« Expand deepest unexpanded node

* Implementation:
— fringe = LIFO stack, i.e., put successors at front

G
p(F)

G

Depth-first Search

« Expand deepest unexpanded node
* Implementation:

— fringe = LIFO stack, i.e., put successors at front

Depth-first Search

« Expand deepest unexpanded node
* Implementation:

— fringe = LIFO stack, i.e., put successors at front

Depth-first Search

DFS (S):
1. If Sis a Goal state: Quit and return success

2. Otherwise, do until success or failure is signaled:

— Generate state E, a successor of S. If no more successors signal failure
— Call DFS (E)

Depth-first Search

« Almost the same as a depth first tree traversal except
— All nodes generated on the fly by production system
— Algorithm halts when solution found

 DFS assumes tree structure of search space; may not be true
— If not, can get caught in cycles
— Thus in these cases, DFS must then be modified
e.g. Each state has a Flag that is raised when node is visited

Properties of Depth-first Search

Complete?
— No. Fails in infinite-depth spaces, spaces with loops
— Modify to avoid repeated states along path
— Complete in finite spaces

Time?
— O(b™): Terrible if m is much larger than d
— If solutions are dense, may be much faster than breadth-first

Space?
— O(bm), i.e., linear space!

Optimal?
— No

Differences: DFS and BFS

 DFS and BFS wrt ordering nodes in open list:

— DFS uses a stack: Nodes are added on the top of the list
— BFS uses a queue: Nodes are added at the end of the list

 DFS and BFS wrt examination process:

— DFS examines all the node's children and their descendent before
the node's siblings

— BFS examines all the node's siblings and their children

 DFS and BFS wrt completeness:
— DFS is not complete (it may be stuck in an infinite branch)
— BFS is complete (it always finds a solution if it exists)

Differences: DFS and BFS

 DFS and BFS wrt optimality:

— DFS is not optimal: (it will not find the shortest path)
— BFS is optimal: (it always finds shortest path)

« DFS and BFS wt memory:

— DFS requires less memory (only memory for states of one
path needed)

— BFS requires exponential space for states required

 DFS and BFS wirt efficiency:

— DFS is efficient if solution path is known to be long
— BFS is Inefficient if branching factor B is very high

What to Choose: DFS and BFS

 The choice of the DFS or BFS

— Depends on the problem being solved

— Importance of finding the shortest path

— The branching factor of the space

— The available compute time and space resources

— The average length of paths to a goal node

— Whether we are looking for all solutions or the first one

BFS vs. DFS

‘

* BFS expensive wrt space « BFS constant memory needed
_ Linear in # of nodes DFS linear in # of nodes
« DFS

— Only stores a max of log of the No. of nodes

« Time to find sol" depends on where the sol" is in the tree
 DFS may find a longer path than BFS when multiple sol"s exist
* BFS guaranteed minimum path solution

Changing a Cyclic Graph Into a Tree

« Most production systems include cycles

« Cycles must be broken to turn graph into a tree

* Then use the above tree searching techniques

« Can’t “mark” nodes - they are generated dynamically
* Therefore: Keep a list of all visited states (“Closed”)
« Check each state examined if it is in “Closed”
 Ifitis in “Closed” Ignore it and examine the next...

Algorithm to Break Cycles

 When a node Is examined
— ; Check node to see if it is in “Closed” list
— If node is in the “Closed” list
> Ignore it
— Else
» Add node to “Closed” list
» Process node

Graph Search

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

closed < an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node « REMOVE- FRONT(fringe)
if GOAL-TEST[problem|(STATE[node]) then return SOLUTION(node)
if STATE[node| is not in closed then
add STATE[node| to closed
fringe < INSERTALL(EXPAND(node, problem), fringe)

Example: DFS with Cycle Cutting

Initializations: S = first_state, CLOSED = Empty List

DFS (S):
If Sisin CLOSED
Return Failure
Else
Place S in CLOSED
If S is a Goal state, Return Success
Loop
» Generate state E, a successor of S.
—If no more successors return Failure
* Result = DFS (E)
* If Result = Success Return Success

Strategies for State Space Search

Data-Directed vs. Goal-Directed search
— Data driven (forward chaining)
— Goal driven (backward chaining)

Data-Directed (Forward Chaining)
— Start from available data
— Search for goal

Goal-Directed (Backward Chaining)
— Start from goal, generate sub-goals
— Until arriving at initial state.

Best strategy depends on problem

Strategies for State Space Search

« Data-Directed Search (Forward Chaining)

— Start from available data
— Search for goal

Data
Data Directed

Goal Directed

Goals

Strategies for State Space Search

» Goal-Directed (Backward Chaining)
— Start from goal, generate sub-goals
— Until you arrive at initial state.

Data
Data Directed

Goal Directed

Goals

Forward/Backward Chaining

Verify: | am a descendant of Thomas Jefferson
— Start with yourself (goal) until Jefferson (data) is reache
— Start with Jefferson (data) until you reach yourself (goal).

Assume the following:

— Jefferson was born 250 years ago.
— 25 years per generation: Length of path is 10.

Goal-Directed search space
— Since each person has 2 parents
— The search space: Order of 219 ancestors.

Data-Directed search space
— If average of 3 children per family
— The search space: Order of 31° descendents

So Goal-Directed (backward chaining) is better.
But both directions yield exponential complexity

Forward/Backward Chaining

« Use the Goal-Directed approach when:
— Goal or hypothesis is given in the problem statement
— Or these can easily be formulated
— There are a large number of rules that match the facts of the problem
— Thus produce an increasing number of conclusions or goals
— Problem data are not given but must be acquired by the solver

« Use the Data-Directed approach when:
— All or most of the data are given in the initial problem statement.
— There are a large number of potential goals

— But there are only a few ways to use the facts and given information of
a particular problem instance

— It is difficult to form a goal or hypothesis

Uniform-cost search

Expand least-cost unexpanded node

Implementation:
— fringe = queue ordered by path cost

Equivalent to breadth-first if step costs all equal
Complete?

— Yes, if stepcost=¢
Time?

— No. of nodes with g < cost of optimal solution

— O(beeling(C7€) where C” is the cost of the optimal solution
Space?

— No. of nodes with g < cost of optimal solution, O(bceiling(C* &)
Optimal?

— Yes — nodes expanded in increasing order of g(n)

Backtracking Search

A method to search the “tree”

- Systematically tries all paths through state space

 In addition: Does not get stuck in cycles

Backtracking Search: Idea

* Principle
— Keep track of visited nodes
— Apply recursion to get out of dead ends

* Termination
— If it finds a goal: Quit and return the solution path
— Also Quit if state space is exhausted

« Backtracking
— If it reaches a dead end, it backtracks

— It does this to the most recent node on the path having unexamined
siblings and continues down one of these branches

— It requires stack oriented recursive environment

Backtracking Search: Idea

 Detalls of Backtracking
— SL (State List):
» States in current path being tried
» If Goal is found, SL contains ordered list of states on solution path
— NSL (New State List)
» Nodes awaiting evaluation.
» Nodes: Descendants have not been generated and searched
— DE (Dead Ends)
» States whose descendants failed to contain a goal node.
» If encountered again: Recognized and eliminated from search

Backtracking Search: Idea

o Backtrack is a Data-Directed search

— Because it starts from the root
— Then evaluates its descendent children to search for the goal

 Backtrack can be viewed as a Goal-Directed

— Let the goal be a root of the graph
— Evaluate descendent back in attempting to find the start (i.e., “root”)

« Backtrack prevents looping by explicit check in NSL

The Backtrack Algorithms

function backtrack;

begin
SL :=[Start]; NSL := [Start]; DE :=[]; CS := Start; % initialize:
while NSL # [] do % while there are states to be tried
begin
if CS = goal (or meets goal description)
then return SL; % on success, return list of states in path.
if CS has no children (excluding nodes already on DE, SL, and NSL)
then begin
while SL is not empty and CS = the first element of SL do
begin
add CS to DE; % record state as dead end
remove first element from SL; %backtrack
remove first element from NSL;
CS :=first element of NSL;
end
add CS to SL;
end
else begin
place children of CS (except nodes already on DE, SL, or NSL) on NSL;
CS := first element of NSL;
add CS to SL
end
end;
return FAIL;
end.

Trace: Backtracking Algorithms

Initialize: SL =[A]; NSL=[A; DE=[];CS =A;

AFTER ITERATION

0

I m @ >

SL

[A]

(B A]
[EBA]
[HEBA]
IEBA]
[FBA]
JFBA]
[CA]
[GCA]

NSL

[A]

[BCDA]
[EFBCDA]
[HIEFBCDA]
IEFBCDA]
[FBCDA]
[WFBCDA]
[CDA]
[GCDA]

DE

[]

(]

[]

[]

(H]

[E 1 H]

[E 1 H]
[BFJEIH]
[BF JEIH]

Depth-limited Search

This is the Depth-first search with depth limit L,
l.e., nodes at depth L have no successors

« Recursive implementation:

function DEPTH-LIMITED-SEARCH(problem, limit) returns soln/fail /cutoff
RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]), problem, limit)

function RECURSIVE- DLS(node, problem, limit) returns soln/fail / cutoff
cutoff-occurred? « false
if GOAL-TEST[problem](STATE[node]) then return SoLUTION(node)
else if DEPTH[node| = limit then return cutoff
else for each successor in EXPAND(node, problem) do
result + RECURSIVE- DLS(successor, problem, limit)
if result = cutoff then cutoff-occurred? + true
else if result + faidure then return result
if cutoff-occurred? then return cutoff else return failure

lterative Deepening Search

Iterative deepening depth-first search (IDDFS)
A depth-limited search iIs run repeatedly,

Depth limit increased with each iteration until it
reaches d, the depth of the shallowest goal state.

On each iteration, IDDFS:

— Visits the nodes in the search in the same order as the DFS.

— The cumulative order in which nodes are first visited, with no
pruning, is effectively BFS.

— SO: If there is an optimal solution at a lower depth, it finds it.

lterative Deepening Search

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or fail-
ure
inputs: problem, a problem

for depth< 0 to oo do
result +— DEPTH-LIMITED-SEARCH(problem, depth)
if result # cutoff then return result

lterative Deepening Search L =0

*@ ®

lterative Deepening Search L =1

© e N e

lterative Deepening Search L =2

(5]

KD SN

L

lterative Deepening Search L =3

Iterative Deepening Search
Properties

Complete?
— Yes

Time?
— Nodes on the bottom level are expanded once
— Those on the next to bottom level are expanded twice, etc.
— Up to the root of the search tree, which is expanded d + 1 times.
— (d+1)b% + d bl + (d-1)b?% + ... + b9 = O(bY)
Space?
— O(bd)
Optimal?

— Yes, if stepcost=1

Depth-limited vs.
lterative Deepening Search

Number of nodes generated in a Depth-limited Search to depth
d with branching factor b:

Npig = b0+ bl +b? + ... + bd2 + pd-1 + pd

Number of nodes generated in an Iterative Deepening Search to
depth d with branching factor b:

Nips = (0+1)00 + d bl + (d-1)b2 + ... + 3bd2 +2pdL + 1

Forb=10,d=5
— Np.s=1+ 10+ 100 + 1,000 + 10,000 + 100,000 = 111,111
— Npps = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

Overhead = (123,456 - 111,111)/111,111 = 11%

Summary of Algorithms

Criterion Breadth- Uniform- Depth- Depth- lterative
First Cost First Limited Deepening
Complete? Yes Yes No No Yes
Time oY) o€y owm) O(b) O(b?)
Space OB+t oI /)y O(bm) O(bl) O(bd)
Optimal? Yes Yes No No Yes

