
Solving Problems: Blind Search

Instructor: B. John Oommen

Chancellor’s Professor

Life Fellow: IEEE ; Fellow: IAPR

School of Computer Science, Carleton University, Canada

The primary source of these notes are the slides of Professor Hwee Tou Ng

from Singapore. I sincerely thank him for this.

Problem Solving Agents

Example: Travel in Romania

• On holiday in Romania; currently in Arad.

• Flight leaves tomorrow from Bucharest

• Formulate goal:

– Be in Bucharest

• Formulate problem:

– States: Various cities

– Actions: Drive between cities

• Find solution:

– Sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

Example: Travel in Romania

Problem Types

• Deterministic, fully observable Single-state problem
– Agent knows exactly which state it will be in: Solution is a sequence

• Non-observable Sensorless problem (Conformant problem)
– Agent may have no idea where it is: Solution is a sequence

• Nondeterministic and/or partially observable Contingency problem
– Percepts provide new information about current state

– Often interleave: Search, execution

• Unknown state space Exploration problem

Example: Vacuum World

• Single-state; Start in #5.
Solution?

Example: Vacuum World

• Single-state

Start in #5.

Solution? [Right, Suck]

• Sensorless

Start in {1,2,3,4,5,6,7,8}

Right goes to {2,4,6,8}

Solution?

• Now more information

Example: Vacuum World

• Sensorless

Start in {1,2,3,4,5,6,7,8}

Right goes to {2,4,6,8}

Solution?
[Right,Suck,Left,Suck]

• Contingency
– Nondeterministic:

Suck may dirty a clean carpet

– Partially observable

Location, dirt at current location.

– Percept: [L, Clean],

Start in #5 or #7

Solution?

[Right, if dirt then Suck]

Single-state Problem Formulation

A problem is defined by four items:

1. Initial state e.g., "at Arad"

2. Actions or successor function S(x) = set of action–state pairs
– e.g., S(Arad) = {<Arad Zerind, Zerind>, … }

3. Goal test. This can be
– Explicit, e.g., x = “at Bucharest”

– Implicit, e.g., Checkmate(x)

4. Path cost (additive)
– e.g., sum of distances, number of actions executed, etc.

– c(x,a,y) is the step cost, assumed to be ≥ 0

• Solution is a sequence of actions leading from the initial to a goal state

Selecting a State Space

• Real world is absurdly complex
– State space must be abstracted for problem solving

• (Abstract) state = Set of real states

• (Abstract) action = Complex combination of real actions
– e.g., “Arad Zerind”: Complex set of possible routes, detours, rest stops, etc.

• For guaranteed realizability, any real state "in Arad“ must get to
some real state “in Zerind”

• (Abstract) solution:
– Set of real paths that are solutions in the real world

• Each abstract action should be “easier” than the original problem

Vacuum World: State Space Graph

• States?

• Actions?

• Goal test?

• Path cost?

Vacuum World: State Space Graph

• States?

Integer dirt/robot locations

• Actions?

Left, Right, Suck

• Goal test?

No dirt at all locations

• Path cost?

1 per action

Example: The 8-puzzle

• States?
Locations of tiles

• Actions?
Move blank L/R/U/D

• Goal test?
Goal state (Given: InOrder)

• Path cost?
1 per move; Length of Path

• Complexity of the problem

8-puzzle

9! = 362,880 different states

15-puzzle:

16! =20,922,789,888,000

1013 different states

Example: Tic-Tac-Toe

• States?
Locations of tiles

• Actions?
Draw X in the blank state

• Goal test?
Have three X's in a row, column

and diagonal

• Path cost?
The path from the Start state to a

Goal state gives the series of

moves in a winning game

• Complexity of the problem
9! = 362,880 different states

• Peculiarity of the problem
Graph: Directed Acyclic Graph

Impossible to go back up the

structure once a state is reached.

Example: Travelling Salesman

• Problem

Salesperson has to visit 5 cities

Must return home afterwards

• States?

Possible paths???

• Actions?

Which city to travel next

• Goal test?

Find shortest path for travel

Minimize cost and/or time of travel

• Path cost?

Nodes represent cities and the

Weighted arcs represent travel cost

Simplification

Lives in city A and will return there.

• Complexity of the problem

(N - 1)! with N the number of cities

State Space

• Many possible ways of representing a problem

• State Space is a natural representation scheme

• A State Space consists of a set of “states”

• Can be thought of as a snapshot of a problem
– All relevant variables are represented in the state

– Each variable holds a legal value

• Examples from the Missionary and Cannibals problem
(What is missing?)

MMCC MC MMC MCC MMMCCC MMMCCC

Counter Example: Don’t Use State Space

• Solving Tic Tac Toe using a DB look up for best moves

• e.g. Computer is ‘O’

X X

O

X X

O

X X O

O

Each Transition Pair is recorded in DB

Input Best Move

• Simple but
• Unfortunately most problems have exponential No. of rules

Knowledge in Representation

• Representation of state-space can affect the amount of
search needed

• Problem with comparisons between search techniques
IF representation not the same

• When comparing search techniques:

Assume representation is the same

Representation Example

• Mutilated chess board

– Corners removed

– From top left and bottom right

• Can you tile this board?

– With dominoes that cover two squares?

Representation 1

Representation Example: Continued

Representation 2

Number of White Squares= 32

Number of Black Squares= 30

Representation 3

Production Systems

• A set of rules of the form pattern action
– The pattern matches a state

– The action changes the state to another state

• A task specific DB
– Of current knowledge about the system (current state)

• A control strategy that
– Specifies the order in which the rules will be compared to DB

– What to do for conflict resolution

State Space as a Graph

• Each node in the graph is a possible state

• Each edge is a legal transition

• Transforms the current state into the next state

• Problem solution: A search through the state space

S1

S2

S3

S4 S5

S1

S2

S3

S4 S5

Goal of Search

• Sometimes solution is some final state

• Other times the solution is a path to that end state

Solution as End State:
– Traveling Salesman Problem

– Chess

– Graph Colouring

– Tic-Tac-Toe

– N Queens

Solution as Path:
– Missionaries and Cannibals

– 8 puzzle

– Towers of Hanoi

Tree Search Algorithms

Basic Idea
– Offline, simulated exploration of state space

– Generate successors of already-explored states

– a.k.a. Expanding states

Example: Tree Search

Example: Tree Search

Example: Tree Search

Implementation: General Tree Search

Implementation: States vs. Nodes

• A state is a (representation of) a physical configuration

• A node is a data structure constituting part of a search tree

• Includes state, parent node, action, path cost g(x), depth

• Expand function creates new nodes, filling in the various fields

• SuccessorFn of the problem creates the corresponding states.

Search Strategies

• Search strategy: Defined by picking the order of node expansion

• Strategies are evaluated along the following dimensions:
– Completeness: Does it always find a solution if one exists?

– Time complexity: Number of nodes generated

– Space complexity: Maximum number of nodes in memory

– Optimality: Does it always find a least-cost solution?

• Time and space complexity are measured in terms of:
– b: maximum branching factor of the search tree

– d: depth of the least-cost solution

– m: maximum depth of the state space (may be ∞)

Uninformed Search Strategies

• Uninformed search strategies
– Use only information available in problem definition

• Breadth-first search

• Depth-first search

• Backtracking search

• Uniform-cost search

• Depth-limited search

• Iterative deepening search

Breadth-first Search

• Expand shallowest unexpanded node

• Implementation:
– fringe is a FIFO queue, i.e., new successors go at end

Breadth-first Search

• Expand shallowest unexpanded node

• Implementation:
– fringe is a FIFO queue, i.e., new successors go at end

Breadth-first Search

• Expand shallowest unexpanded node

• Implementation:
– fringe is a FIFO queue, i.e., new successors go at end

Breadth-first Search

• Expand shallowest unexpanded node

• Implementation:
– fringe is a FIFO queue, i.e., new successors go at end

Breadth-first Search

BFS (S):

1. Create a variable called NODE-LIST and set it to S

2. Until a Goal state is found or NODE-LIST is empty do:
– Remove the first element from NODE-LIST and call it E;

If NODE-LIST was empty: Quit

– For each way that each rule can match the state E do:

 Apply the rule to generate a new state

 If new state is a Goal state: Quit and return this state

 Else add the new state to the end of NODE-LIST

Properties of Breadth-first Search

• Complete?

– Yes (if b is finite)

• Time?

– 1+b+b2+b3+… +bd + b(bd-1) = O(bd+1)

• Space?

– O(bd+1) (keeps every node in memory)

• Optimal?

– Yes (if cost = 1 per step)

• Space is the bigger problem (more than time)

Depth-first Search

• Expand deepest unexpanded node

• Implementation:

– fringe = LIFO stack, i.e., put successors at front

Depth-first Search

• Expand deepest unexpanded node

• Implementation:

– fringe = LIFO stack, i.e., put successors at front

Depth-first Search

• Expand deepest unexpanded node

• Implementation:

– fringe = LIFO stack, i.e., put successors at front

Depth-first Search

• Expand deepest unexpanded node

• Implementation:

– fringe = LIFO stack, i.e., put successors at front

Depth-first Search

• Expand deepest unexpanded node

• Implementation:

– fringe = LIFO stack, i.e., put successors at front

Depth-first Search

• Expand deepest unexpanded node

• Implementation:

– fringe = LIFO stack, i.e., put successors at front

Depth-first Search

• Expand deepest unexpanded node

• Implementation:

– fringe = LIFO stack, i.e., put successors at front

Depth-first Search

• Expand deepest unexpanded node

• Implementation:

– fringe = LIFO stack, i.e., put successors at front

Depth-first Search

• Expand deepest unexpanded node

• Implementation:

– fringe = LIFO stack, i.e., put successors at front

Depth-first Search

• Expand deepest unexpanded node

• Implementation:

– fringe = LIFO stack, i.e., put successors at front

Depth-first Search

• Expand deepest unexpanded node

• Implementation:

– fringe = LIFO stack, i.e., put successors at front

Depth-first Search

• Expand deepest unexpanded node

• Implementation:

– fringe = LIFO stack, i.e., put successors at front

Depth-first Search

DFS (S):

1. If S is a Goal state: Quit and return success

2. Otherwise, do until success or failure is signaled:
– Generate state E, a successor of S. If no more successors signal failure

– Call DFS (E)

Depth-first Search

• Almost the same as a depth first tree traversal except

– All nodes generated on the fly by production system

– Algorithm halts when solution found

• DFS assumes tree structure of search space; may not be true

– If not, can get caught in cycles

– Thus in these cases, DFS must then be modified

e.g. Each state has a Flag that is raised when node is visited

Properties of Depth-first Search

• Complete?

– No. Fails in infinite-depth spaces, spaces with loops

– Modify to avoid repeated states along path

– Complete in finite spaces

• Time?

– O(bm): Terrible if m is much larger than d

– If solutions are dense, may be much faster than breadth-first

• Space?

– O(bm), i.e., linear space!

• Optimal?

– No

Differences: DFS and BFS

• DFS and BFS wrt ordering nodes in open list:
– DFS uses a stack: Nodes are added on the top of the list

– BFS uses a queue: Nodes are added at the end of the list

• DFS and BFS wrt examination process:
– DFS examines all the node's children and their descendent before

the node's siblings

– BFS examines all the node's siblings and their children

• DFS and BFS wrt completeness:
– DFS is not complete (it may be stuck in an infinite branch)

– BFS is complete (it always finds a solution if it exists)

Differences: DFS and BFS

• DFS and BFS wrt optimality:
– DFS is not optimal: (it will not find the shortest path)

– BFS is optimal: (it always finds shortest path)

• DFS and BFS wt memory:
– DFS requires less memory (only memory for states of one

path needed)

– BFS requires exponential space for states required

• DFS and BFS wrt efficiency:
– DFS is efficient if solution path is known to be long

– BFS is inefficient if branching factor B is very high

What to Choose: DFS and BFS

• The choice of the DFS or BFS
– Depends on the problem being solved

– Importance of finding the shortest path

– The branching factor of the space

– The available compute time and space resources

– The average length of paths to a goal node

– Whether we are looking for all solutions or the first one

BFS vs. DFS

• BFS expensive wrt space

– Linear in # of nodes

• DFS

– Only stores a max of log of the No. of nodes

• BFS constant memory needed
• DFS linear in # of nodes

• Time to find soln depends on where the soln is in the tree
• DFS may find a longer path than BFS when multiple solns exist
• BFS guaranteed minimum path solution

Changing a Cyclic Graph Into a Tree

• Most production systems include cycles

• Cycles must be broken to turn graph into a tree

• Then use the above tree searching techniques

• Can’t “mark” nodes - they are generated dynamically

• Therefore: Keep a list of all visited states (“Closed”)

• Check each state examined if it is in “Closed”

• If it is in “Closed”: Ignore it and examine the next…

Algorithm to Break Cycles

• When a node is examined
– ; Check node to see if it is in “Closed” list

– If node is in the “Closed” list

 Ignore it

– Else

 Add node to “Closed” list

 Process node

Graph Search

Example: DFS with Cycle Cutting

Initializations: S = first_state, CLOSED = Empty_List

DFS (S):
If S is in CLOSED

Return Failure

Else

Place S in CLOSED

If S is a Goal state, Return Success

Loop

• Generate state E, a successor of S.

– If no more successors return Failure

• Result = DFS (E)

• If Result = Success Return Success

Strategies for State Space Search

• Data-Directed vs. Goal-Directed search
– Data driven (forward chaining)

– Goal driven (backward chaining)

• Data-Directed (Forward Chaining)
– Start from available data

– Search for goal

• Goal-Directed (Backward Chaining)
– Start from goal, generate sub-goals

– Until arriving at initial state.

• Best strategy depends on problem

Strategies for State Space Search

• Data-Directed Search (Forward Chaining)
– Start from available data

– Search for goal

Strategies for State Space Search

• Goal-Directed (Backward Chaining)
– Start from goal, generate sub-goals

– Until you arrive at initial state.

Forward/Backward Chaining

• Verify: I am a descendant of Thomas Jefferson
– Start with yourself (goal) until Jefferson (data) is reache

– Start with Jefferson (data) until you reach yourself (goal).

• Assume the following:
– Jefferson was born 250 years ago.

– 25 years per generation: Length of path is 10.

• Goal-Directed search space
– Since each person has 2 parents

– The search space: Order of 210 ancestors.

• Data-Directed search space
– If average of 3 children per family

– The search space: Order of 310 descendents

• So Goal-Directed (backward chaining) is better.

• But both directions yield exponential complexity

Forward/Backward Chaining

• Use the Goal-Directed approach when:
– Goal or hypothesis is given in the problem statement

– Or these can easily be formulated

– There are a large number of rules that match the facts of the problem

– Thus produce an increasing number of conclusions or goals

– Problem data are not given but must be acquired by the solver

• Use the Data-Directed approach when:
– All or most of the data are given in the initial problem statement.

– There are a large number of potential goals

– But there are only a few ways to use the facts and given information of
a particular problem instance

– It is difficult to form a goal or hypothesis

Uniform-cost search

• Expand least-cost unexpanded node

• Implementation:
– fringe = queue ordered by path cost

• Equivalent to breadth-first if step costs all equal

• Complete?
– Yes, if step cost ≥ ε

• Time?
– No. of nodes with g ≤ cost of optimal solution

– O(bceiling(C*/ ε)) where C* is the cost of the optimal solution

• Space?
– No. of nodes with g ≤ cost of optimal solution, O(bceiling(C*/ ε))

• Optimal?
– Yes – nodes expanded in increasing order of g(n)

Backtracking Search

• A method to search the “tree”

• Systematically tries all paths through state space

• In addition: Does not get stuck in cycles

Backtracking Search: Idea

• Principle
– Keep track of visited nodes

– Apply recursion to get out of dead ends

• Termination
– If it finds a goal: Quit and return the solution path

– Also Quit if state space is exhausted

• Backtracking
– If it reaches a dead end, it backtracks

– It does this to the most recent node on the path having unexamined
siblings and continues down one of these branches

– It requires stack oriented recursive environment

Backtracking Search: Idea

• Details of Backtracking
– SL (State List):

 States in current path being tried

 If Goal is found, SL contains ordered list of states on solution path

– NSL (New State List)

Nodes awaiting evaluation.

Nodes: Descendants have not been generated and searched

– DE (Dead Ends)

 States whose descendants failed to contain a goal node.

 If encountered again: Recognized and eliminated from search

Backtracking Search: Idea

• Backtrack is a Data-Directed search
– Because it starts from the root

– Then evaluates its descendent children to search for the goal

• Backtrack can be viewed as a Goal-Directed
– Let the goal be a root of the graph

– Evaluate descendent back in attempting to find the start (i.e., “root”)

• Backtrack prevents looping by explicit check in NSL

The Backtrack Algorithms

Trace: Backtracking Algorithms

Depth-limited Search

This is the Depth-first search with depth limit L,

i.e., nodes at depth L have no successors

• Recursive implementation:

• Iterative deepening depth-first search (IDDFS)

• A depth-limited search is run repeatedly,

• Depth limit increased with each iteration until it
reaches d, the depth of the shallowest goal state.

• On each iteration, IDDFS:
– Visits the nodes in the search in the same order as the DFS.

– The cumulative order in which nodes are first visited, with no
pruning, is effectively BFS.

– SO: If there is an optimal solution at a lower depth, it finds it.

Iterative Deepening Search

Iterative Deepening Search

Iterative Deepening Search L =0

Iterative Deepening Search L = 1

Iterative Deepening Search L = 2

Iterative Deepening Search L = 3

Iterative Deepening Search
Properties

• Complete?
– Yes

• Time?
– Nodes on the bottom level are expanded once

– Those on the next to bottom level are expanded twice, etc.

– Up to the root of the search tree, which is expanded d + 1 times.

– (d+1)b0 + d b1 + (d-1)b2 + … + bd = O(bd)

• Space?
– O(bd)

• Optimal?
– Yes, if step cost = 1

Depth-limited vs.
Iterative Deepening Search

• Number of nodes generated in a Depth-limited Search to depth
d with branching factor b:

NDLS = b0 + b1 + b2 + … + bd-2 + bd-1 + bd

• Number of nodes generated in an Iterative Deepening Search to
depth d with branching factor b:

NIDS = (d+1)b0 + d b1 + (d-1)b2 + … + 3bd-2 +2bd-1 + 1bd

• For b = 10, d = 5
– NDLS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111

– NIDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

• Overhead = (123,456 - 111,111)/111,111 = 11%

Summary of Algorithms

