Solving Problems: Blind Search

Instructor: B. John Oommen

Chancellor’s Professor
Life Fellow: IEEE ; Fellow: IAPR
School of Computer Science, Carleton University, Canada

The primary source of these notes are the slides of Professor Hwee Tou Ng from Singapore. I sincerely thank him for this.
Problem Solving Agents

function SIMPLE-PROBLEM-SOLVING-AGENT (percept) returns an action

static: seq, an action sequence, initially empty
 state, some description of the current world state
 goal, a goal, initially null
 problem, a problem formulation

state ← UPDATE-STATE (state, percept)
if seq is empty then do
 goal ← FORMULATE-GOAL (state)
 problem ← FORMULATE-PROBLEM (state, goal)
 seq ← SEARCH (problem)
 action ← FIRST (seq)
 seq ← REST (seq)
return action
Example: Travel in Romania

• On holiday in Romania; currently in Arad.
• Flight leaves tomorrow from Bucharest
• Formulate goal:
 – Be in Bucharest
• Formulate problem:
 – States: Various cities
 – Actions: Drive between cities
• Find solution:
 – Sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest
Problem Types

- **Deterministic, fully observable** → Single-state problem
 - Agent knows exactly which state it will be in: Solution is a sequence

- **Non-observable** → Sensorless problem (Conformant problem)
 - Agent may have no idea where it is: Solution is a sequence

- **Nondeterministic and/or partially observable** → Contingency problem
 - Percepts provide new information about current state
 - Often *interleave*: Search, execution

- **Unknown state space** → Exploration problem
Example: Vacuum World

- Single-state; Start in #5.

Solution?
Example: Vacuum World

- Single-state
 Start in #5.
 Solution? [Right, Suck]

- Sensorless
 Start in \{1,2,3,4,5,6,7,8\}
 Right goes to \{2,4,6,8\}
 Solution?

- Now more information
Example: Vacuum World

- Sensorless
 Start in \{1,2,3,4,5,6,7,8\}
 \textit{Right} goes to \{2,4,6,8\}
 \textbf{Solution?}
 \[\text{[Right, Suck, Left, Suck]} \]

- Contingency
 - Nondeterministic:
 \textit{Suck} may dirty a clean carpet
 - Partially observable
 Location, dirt at current location.
 - Percept: \[L, \text{Clean} \],
 Start in #5 or #7
 \textbf{Solution?}
 \[\text{[Right, if dirt then Suck]} \]
A problem is defined by four items:

1. **Initial state** e.g., "at Arad"
2. **Actions or successor function** \(S(x) = \text{set of action–state pairs} \)
 - e.g., \(S(\text{Arad}) = \{ \text{Arad} \rightarrow \text{Zerind}, \text{Zerind} \}, \ldots \} \)
3. **Goal test.** This can be
 - Explicit, e.g., \(x = \text{"at Bucharest"} \)
 - Implicit, e.g., \(\text{Checkmate}(x) \)
4. **Path cost** (additive)
 - e.g., sum of distances, number of actions executed, etc.
 - \(c(x,a,y) \text{ is the \textit{step cost}} \), assumed to be \(\geq 0 \)

- **Solution** is a sequence of actions leading from the \textit{initial} to a \textit{goal} state
Selecting a State Space

- Real world is absurdly complex
 - State space must be abstracted for problem solving
- (Abstract) state = Set of real states
- (Abstract) action = Complex combination of real actions
 - e.g., “Arad → Zerind”: Complex set of possible routes, detours, rest stops, etc.
- For guaranteed realizability, any real state "in Arad" must get to some real state “in Zerind”
- (Abstract) solution:
 - Set of real paths that are solutions in the real world
- Each abstract action should be “easier” than the original problem
Vacuum World: State Space Graph

- States?
- Actions?
- Goal test?
- Path cost?
Vacuum World: State Space Graph

- **States?**
 Integer dirt/robot locations
- **Actions?**
 Left, Right, Suck
- **Goal test?**
 No dirt at all locations
- **Path cost?**
 1 per action
Example: The 8-puzzle

- **States?**
 Locations of tiles

- **Actions?**
 Move blank L/R/U/D

- **Goal test?**
 Goal state (Given: InOrder)

- **Path cost?**
 1 per move; Length of Path

- **Complexity of the problem**
 8-puzzle
 - $9! = 362,880$ different states
 15-puzzle:
 - $16! = 20,922,789,888,000$
 - 10^{13} different states
Example: Tic-Tac-Toe

- **States?**
 Locations of tiles
- **Actions?**
 Draw X in the blank state
- **Goal test?**
 Have three X's in a row, column and diagonal
- **Path cost?**
 The path from the Start state to a Goal state gives the series of moves in a winning game
- **Complexity of the problem**
 $9! = 362,880$ different states
- **Peculiarity of the problem**
 Graph: Directed Acyclic Graph
 Impossible to go back up the structure once a state is reached.
Example: Travelling Salesman

- **Problem**
 Salesperson has to visit 5 cities
 Must return home afterwards
- **States?**
 Possible paths???
- **Actions?**
 Which city to travel next
- **Goal test?**
 Find shortest path for travel
 Minimize cost and/or time of travel
- **Path cost?**
 Nodes represent cities and the
 Weighted arcs represent travel cost

Simplification
Lives in city A and will return there.

- **Complexity of the problem**
 \((N - 1)!\) with \(N\) the number of cities
State Space

- Many possible ways of representing a problem
- State Space is a natural representation scheme
- A State Space consists of a set of “states”
- Can be thought of as a **snapshot** of a problem
 - All relevant variables are represented in the state
 - Each variable holds a legal value
- Examples from the Missionary and Cannibals problem
 (What is missing?)

<table>
<thead>
<tr>
<th>MMCC</th>
<th>MC</th>
<th>MMC</th>
<th>MCC</th>
<th>MMMCCC</th>
<th>MMMCCC</th>
</tr>
</thead>
</table>

Counter Example: Don’t Use State Space

- Solving Tic Tac Toe using a DB look up for best moves
- e.g. Computer is ‘O’

\[
\begin{array}{c}
\text{X} \\
\hline
\text{ } \\
\hline
\text{X} \\
\end{array}
\quad \rightarrow
\quad \begin{array}{c}
\text{X} \\
\hline
\text{O} \\
\end{array}
\quad \text{Each Transition Pair is recorded in DB}
\]

\[
\begin{array}{c}
\text{X} \quad \text{X} \\
\hline
\text{O} \\
\end{array}
\quad \rightarrow
\quad \begin{array}{c}
\text{X} \quad \text{X} \quad \text{O} \\
\hline
\text{O} \\
\end{array}
\]

Input Best Move

- Simple but
- Unfortunately most problems have exponential No. of rules
Knowledge in Representation

- Representation of state-space can affect the amount of search needed
- Problem with *comparisons* between search techniques
 IF representation not the same
- When comparing search techniques:
 Assume representation is the same
Mutilated chess board
 – Corners removed
 – From top left and bottom right

Can you tile this board?
 – With dominoes that cover two squares?
Number of White Squares = 32
Number of Black Squares = 30

Representation Example: Continued

Representation 2

Representation 3
Production Systems

• A set of rules of the form \(\text{pattern} \rightarrow \text{action} \)
 – The pattern matches a state
 – The action changes the state to another state

• A task specific DB
 – Of current knowledge about the system (current state)

• A control strategy that
 – Specifies the order in which the rules will be compared to DB
 – What to do for conflict resolution
State Space as a Graph

- Each node in the graph is a possible state
- Each edge is a legal transition
- Transforms the current state into the next state

Problem solution: A search through the state space
Goal of Search

- Sometimes solution is some final state
- Other times the solution is a path to that end state

Solution as **End State:**
- Traveling Salesman Problem
- Chess
- Graph Colouring
- Tic-Tac-Toe
- N Queens

Solution as **Path:**
- Missionaries and Cannibals
- 8 puzzle
- Towers of Hanoi
Tree Search Algorithms

Basic Idea
– Offline, simulated exploration of state space
– Generate successors of already-explored states
– a.k.a. Expanding states

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
 if there are no candidates for expansion then return failure
 choose a leaf node for expansion according to strategy
 if the node contains a goal state then return the corresponding solution
 else expand the node and add the resulting nodes to the search tree
Example: Tree Search
Example: Tree Search
Example: Tree Search
Implementation: General Tree Search

function TREE-SEARCH(problem, fringe) returns a solution, or failure
 fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
 loop do
 if fringe is empty then return failure
 node ← REMOVE-FRONT(fringe)
 if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node)
 fringe ← INSERT-ALL(EXPAND(node, problem), fringe)

function EXPAND(node, problem) returns a set of nodes
 successors ← the empty set
 for each action, result in SUCCESSOR-FN[problem](STATE[node]) do
 s ← a new NODE
 PARENT-NODE[s] ← node, ACTION[s] ← action, STATE[s] ← result
 PATH-COST[s] ← PATH-COST[node] + STEP-COST(node, action, s)
 DEPTH[s] ← DEPTH[node] + 1
 add s to successors
 return successors
Implementation: States vs. Nodes

- A state is a (representation of) a physical configuration
- A node is a data structure constituting part of a search tree
- Includes state, parent node, action, path cost $g(x)$, depth

- **Expand** function creates new nodes, filling in the various fields
- **SuccessorFn** of the problem creates the corresponding states
Search Strategies

• Search strategy: Defined by picking the order of node expansion

• Strategies are evaluated along the following dimensions:
 – Completeness: Does it always find a solution if one exists?
 – Time complexity: Number of nodes generated
 – Space complexity: Maximum number of nodes in memory
 – Optimality: Does it always find a least-cost solution?

• Time and space complexity are measured in terms of:
 – b: maximum branching factor of the search tree
 – d: depth of the least-cost solution
 – m: maximum depth of the state space (may be ∞)
Uninformed Search Strategies

- **Uninformed search strategies**
 - Use only information available in problem definition
- Breadth-first search
- Depth-first search
- Backtracking search
- Uniform-cost search
- Depth-limited search
- Iterative deepening search
Breadth-first Search

• Expand shallowest unexpanded node
• Implementation:
 – *fringe* is a FIFO queue, i.e., new successors go at end
Breadth-first Search

• Expand shallowest unexpanded node

• Implementation:
 – fringe is a FIFO queue, i.e., new successors go at end
Breadth-first Search

• Expand shallowest unexpanded node
• Implementation:
 – *fringe* is a FIFO queue, i.e., new successors go at end
Breadth-first Search

• Expand shallowest unexpanded node
• Implementation:
 – *fringe* is a FIFO queue, i.e., new successors go at end
Breadth-first Search

BFS (S):

1. Create a variable called NODE-LIST and set it to S
2. Until a Goal state is found or NODE-LIST is empty do:
 - Remove the first element from NODE-LIST and call it E;
 If NODE-LIST was empty: Quit
 - For each way that each rule can match the state E do:
 - Apply the rule to generate a new state
 - If new state is a Goal state: Quit and return this state
 - Else add the new state to the end of NODE-LIST
Properties of Breadth-first Search

• **Complete?**
 – Yes (if \(b \) is finite)

• **Time?**
 – \(1+b+b^2+b^3+\ldots+b^d+b(b^d-1) = O(b^{d+1}) \)

• **Space?**
 – \(O(b^{d+1}) \) (keeps every node in memory)

• **Optimal?**
 – Yes (if cost = 1 per step)

• **Space** is the bigger problem (more than time)
Depth-first Search

- Expand deepest unexpanded node
- **Implementation:**
 - \textit{fringe} = LIFO stack, i.e., put successors at front
Depth-first Search

• Expand deepest unexpanded node
• Implementation:
 – fringe = LIFO stack, i.e., put successors at front
Depth-first Search

- Expand deepest unexpanded node
- **Implementation:**
 - *fringe* = LIFO stack, i.e., put successors at front
Depth-first Search

- Expand deepest unexpanded node
- Implementation:
 - \textit{fringe} = LIFO stack, i.e., put successors at front
Depth-first Search

- Expand deepest unexpanded node
- Implementation:
 - fringe = LIFO stack, i.e., put successors at front
Depth-first Search

- Expand deepest unexpanded node
- Implementation:
 - fringe = LIFO stack, i.e., put successors at front
Depth-first Search

- Expand deepest unexpanded node
- Implementation:
 - fringe = LIFO stack, i.e., put successors at front
Depth-first Search

• Expand deepest unexpanded node
• Implementation:
 – fringe = LIFO stack, i.e., put successors at front
Depth-first Search

• Expand deepest unexpanded node
• Implementation:
 – *fringe* = LIFO stack, i.e., put successors at front
Depth-first Search

- Expand deepest unexpanded node
- Implementation:
 - _fringe_ = LIFO stack, i.e., put successors at front
Depth-first Search

- Expand deepest unexpanded node
- **Implementation:**
 - *fringe* = LIFO stack, i.e., put successors at front
Depth-first Search

- Expand deepest unexpanded node
- Implementation:
 - *fringe* = LIFO stack, i.e., put successors at front
Depth-first Search

DFS (S):

1. If S is a Goal state: *Quit* and return *success*
2. Otherwise, do until *success* or *failure* is signaled:
 - Generate state E, a successor of S. If no more successors signal *failure*
 - Call DFS (E)
Depth-first Search

- Almost the same as a depth first tree traversal except
 - All nodes generated on the fly by production system
 - Algorithm halts when solution found

- DFS assumes tree structure of search space; may not be true
 - If not, can get caught in cycles
 - Thus in these cases, DFS must then be modified
 - e.g. Each state has a Flag that is raised when node is visited
Properties of Depth-first Search

• **Complete?**
 – No. Fails in infinite-depth spaces, spaces with loops
 – Modify to avoid repeated states along path
 – Complete in finite spaces

• **Time?**
 – $O(b^m)$: Terrible if m is much larger than d
 – If solutions are dense, may be much faster than breadth-first

• **Space?**
 – $O(bm)$, i.e., linear space!

• **Optimal?**
 – No
Differences: DFS and BFS

• DFS and BFS wrt ordering nodes in open list:
 – DFS uses a stack: Nodes are added on the top of the list
 – BFS uses a queue: Nodes are added at the end of the list

• DFS and BFS wrt examination process:
 – DFS examines all the node's children and their descendent before the node's siblings
 – BFS examines all the node's siblings and their children

• DFS and BFS wrt completeness:
 – DFS is not complete (it may be stuck in an infinite branch)
 – BFS is complete (it always finds a solution if it exists)
Differences: DFS and BFS

• DFS and BFS wrt optimality:
 – DFS is not optimal: (it will not find the shortest path)
 – BFS is optimal: (it always finds shortest path)

• DFS and BFS wrt memory:
 – DFS requires less memory (only memory for states of one path needed)
 – BFS requires exponential space for states required

• DFS and BFS wrt efficiency:
 – DFS is efficient if solution path is known to be long
 – BFS is inefficient if branching factor B is very high
What to Choose: DFS and BFS

• The choice of the DFS or BFS
 – Depends on the problem being solved
 – Importance of finding the shortest path
 – The branching factor of the space
 – The available compute time and space resources
 – The average length of paths to a goal node
 – Whether we are looking for all solutions or the first one
BFS vs. DFS

- BFS expensive wrt space
 - Linear in # of nodes

- DFS
 - Only stores a max of log of the No. of nodes
 - BFS constant memory needed
 - DFS linear in # of nodes

- Time to find soln depends on where the soln is in the tree
- DFS may find a longer path than BFS when multiple solns exist
- BFS guaranteed minimum path solution
Changing a Cyclic Graph Into a Tree

- Most production systems include cycles
- Cycles must be broken to turn graph into a tree
- Then use the above tree searching techniques
- Can’t “mark” nodes - they are generated dynamically
- Therefore: Keep a list of all visited states (“Closed”)
- Check each state examined if it is in “Closed”
- If it is in “Closed”: Ignore it and examine the next…
Algorithm to Break Cycles

• When a node is examined
 – ; Check node to see if it is in “Closed” list
 – If node is in the “Closed” list
 ➢ Ignore it
 – Else
 ➢ Add node to “Closed” list
 ➢ Process node
Graph Search

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure
 closed ← an empty set
 fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
 loop do
 if fringe is empty then return failure
 node ← REMOVE-FRONT(fringe)
 if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node)
 if STATE[node] is not in closed then
 add STATE[node] to closed
 fringe ← INSERTALL(EXPAND(node, problem), fringe)
Example: DFS with Cycle Cutting

Initializations: $S = \text{first_state}$, $\text{CLOSED} = \text{Empty_List}$

DFS (S):
- If S is in CLOSED
 - Return Failure
- Else
 - Place S in CLOSED
 - If S is a Goal state, Return Success
- Loop
 - Generate state E, a successor of S.
 - If no more successors return Failure
 - Result = DFS (E)
 - If Result = Success Return Success
Strategies for State Space Search

• **Data-Directed** vs. **Goal-Directed** search
 – Data driven (forward chaining)
 – Goal driven (backward chaining)

• **Data-Directed** (Forward Chaining)
 – Start from available data
 – Search for goal

• **Goal-Directed** (Backward Chaining)
 – Start from goal, generate sub-goals
 – Until arriving at initial state.

• Best strategy depends on problem
Strategies for State Space Search

- **Data-Directed Search** (Forward Chaining)
 - Start from available data
 - Search for goal
Strategies for State Space Search

- **Goal-Directed** (Backward Chaining)
 - Start from goal, generate sub-goals
 - Until you arrive at initial state.
Forward/Backward Chaining

• Verify: I am a descendant of Thomas Jefferson
 – Start with yourself (goal) until Jefferson (data) is reached
 – Start with Jefferson (data) until you reach yourself (goal).

• Assume the following:
 – Jefferson was born 250 years ago.
 – 25 years per generation: Length of path is 10.

• Goal-Directed search space
 – Since each person has 2 parents
 – The search space: Order of 2^{10} ancestors.

• Data-Directed search space
 – If average of 3 children per family
 – The search space: Order of 3^{10} descendents

• So Goal-Directed (backward chaining) is better.
• But both directions yield exponential complexity
Forward/Backward Chaining

- **Use the *Goal-Directed* approach when:**
 - Goal or hypothesis is given in the problem statement
 - Or these can easily be formulated
 - There are a large number of rules that match the facts of the problem
 - Thus produce an increasing number of conclusions or goals
 - Problem data are not given but must be acquired by the solver

- **Use the *Data-Directed* approach when:**
 - All or most of the data are given in the initial problem statement.
 - There are a large number of potential goals
 - But there are only a few ways to use the facts and given information of a particular problem instance
 - It is difficult to form a goal or hypothesis
Uniform-cost search

- Expand least-cost unexpanded node
- **Implementation:**
 - fringe = queue ordered by path cost
- Equivalent to breadth-first if step costs all equal
- **Complete?**
 - Yes, if step cost $\geq \epsilon$
- **Time?**
 - No. of nodes with $g \leq$ cost of optimal solution
 - $O(b^{\text{ceiling}(C^*/\epsilon)})$ where C^* is the cost of the optimal solution
- **Space?**
 - No. of nodes with $g \leq$ cost of optimal solution, $O(b^{\text{ceiling}(C^*/\epsilon)})$
- **Optimal?**
 - Yes – nodes expanded in increasing order of $g(n)$
Backtracking Search

- A method to search the “tree”
- Systematically tries \textit{all} paths through state space
- In addition: \textit{Does not get stuck in cycles}
Backtracking Search: Idea

- **Principle**
 - Keep track of visited nodes
 - Apply recursion to get out of dead ends

- **Termination**
 - If it finds a goal: *Quit* and return the solution path
 - Also *Quit* if state space is exhausted

- **Backtracking**
 - If it reaches a dead end, it backtracks
 - It does this to the most recent node on the path having unexamined siblings and continues down one of these branches
 - It requires stack oriented recursive environment
Backtracking Search: Idea

• Details of Backtracking
 – SL (State List):
 ➢ States in current path being tried
 ➢ If Goal is found, SL contains ordered list of states on solution path
 – NSL (New State List)
 ➢ Nodes awaiting evaluation.
 ➢ Nodes: Descendants have not been generated and searched
 – DE (Dead Ends)
 ➢ States whose descendants failed to contain a goal node.
 ➢ If encountered again: Recognized and eliminated from search
Backtracking Search: Idea

- Backtrack is a **Data-Directed search**
 - Because it starts from the root
 - Then evaluates its descendent children to search for the goal

- Backtrack can be viewed as a **Goal-Directed**
 - Let the goal be a root of the graph
 - Evaluate descendent back in attempting to find the start (i.e., “root”)

- Backtrack prevents looping by explicit check in NSL
The Backtrack Algorithms

function backtrack;
begin
SL := [Start]; NSL := [Start]; DE := []; CS := Start; % initialize:
while NSL ≠ [] do % while there are states to be tried
begin
if CS = goal (or meets goal description)
then return SL; % on success, return list of states in path.
if CS has no children (excluding nodes already on DE, SL, and NSL)
then begin
while SL is not empty and CS = the first element of SL do
begin
add CS to DE; % record state as dead end
remove first element from SL; %backtrack
remove first element from NSL;
CS := first element of NSL;
end
add CS to SL;
end
else begin
place children of CS (except nodes already on DE, SL, or NSL) on NSL;
CS := first element of NSL;
add CS to SL;
end
end;
return FAIL;
end.
Trace: Backtracking Algorithms

Table:

<table>
<thead>
<tr>
<th>AFTER ITERATION</th>
<th>CS</th>
<th>SL</th>
<th>NSL</th>
<th>DE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>[A]</td>
<td>[A]</td>
<td>[]</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>[B A]</td>
<td>[B C D A]</td>
<td>[]</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>[E B A]</td>
<td>[E F B C D A]</td>
<td>[]</td>
</tr>
<tr>
<td>3</td>
<td>H</td>
<td>[H E B A]</td>
<td>[H I E F B C D A]</td>
<td>[]</td>
</tr>
<tr>
<td>4</td>
<td>I</td>
<td>[I E B A]</td>
<td>[I E F B C D A]</td>
<td>[H]</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>[F B A]</td>
<td>[F B C D A]</td>
<td>[E I H]</td>
</tr>
<tr>
<td>6</td>
<td>J</td>
<td>[J F B A]</td>
<td>[J F B C D A]</td>
<td>[E I H]</td>
</tr>
<tr>
<td>7</td>
<td>C</td>
<td>[C A]</td>
<td>[C D A]</td>
<td>[B F J E I H]</td>
</tr>
<tr>
<td>8</td>
<td>G</td>
<td>[G C A]</td>
<td>[G C D A]</td>
<td>[B F J E I H]</td>
</tr>
</tbody>
</table>

Diagram:

The diagram illustrates a backtracking algorithm, with nodes A, B, C, D, E, F, G, H, I, and J connected by arrows indicating the order of iteration and backtracking.
Depth-limited Search

This is the **Depth-first search** with depth limit L, i.e., nodes at depth L have no successors.

- Recursive implementation:

```plaintext
function DEPTH-LIMITED-SEARCH(problem, limit) returns soln/fail/cutoff
    Recursive-DLS(Make-Node(Initial-State[problem]), problem, limit)

function Recursive-DLS(node, problem, limit) returns soln/fail/cutoff
    cutoff-occurred? ← false
    if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node)
    else if DEPTH[node] = limit then return cutoff
    else for each successor in EXPAND(node, problem) do
        result ← Recursive-DLS(successor, problem, limit)
        if result = cutoff then cutoff-occurred? ← true
        else if result ≠ failure then return result
    if cutoff-occurred? then return cutoff else return failure
```
Iterative Deepening Search

- **Iterative deepening depth-first search** (IDDFS)
- A depth-limited search is run repeatedly,
- Depth limit increased with each iteration until it reaches d, the depth of the shallowest goal state.
- On each iteration, IDDFS:
 - Visits the nodes in the search in the same order as the DFS.
 - The cumulative order in which nodes are first visited, with no pruning, is effectively BFS.
 - SO: If there is an optimal solution at a lower depth, it finds it.
Iterative Deepening Search

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or failure

inputs: problem, a problem

for depth ← 0 to ∞ do
 result ← DEPTH-LIMITED-SEARCH(problem, depth)
 if result ≠ cutoff then return result
Iterative Deepening Search $L=0$
Iterative Deepening Search \(L = 1 \)
Iterative Deepening Search $L = 2$
Iterative Deepening Search $L = 3$
Iterative Deepening Search

Properties

• **Complete?**
 – Yes

• **Time?**
 – Nodes on the bottom level are expanded once
 – Those on the next to bottom level are expanded twice, etc.
 – Up to the root of the search tree, which is expanded $d + 1$ times.
 – $(d+1)b^0 + d b^1 + (d-1)b^2 + \ldots + b^d = O(b^d)$

• **Space?**
 – $O(bd)$

• **Optimal?**
 – Yes, if step cost = 1
Depth-limited vs. Iterative Deepening Search

- Number of nodes generated in a Depth-limited Search to depth \(d \) with branching factor \(b \):
 \[
 N_{DLS} = b^0 + b^1 + b^2 + \ldots + b^{d-2} + b^{d-1} + b^d
 \]

- Number of nodes generated in an Iterative Deepening Search to depth \(d \) with branching factor \(b \):
 \[
 N_{IDS} = (d+1)b^0 + d b^1 + (d-1)b^2 + \ldots + 3b^{d-2} + 2b^{d-1} + 1b^d
 \]

- For \(b = 10 \), \(d = 5 \)
 - \(N_{DLS} = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111 \)
 - \(N_{IDS} = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456 \)

- Overhead = \((123,456 - 111,111)/111,111 = 11\% \)
Summary of Algorithms

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Breadth-First</th>
<th>Uniform-Cost</th>
<th>Depth-First</th>
<th>Depth-Limited</th>
<th>Iterative Deepening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Time</td>
<td>$O(b^{d+1})$</td>
<td>$O(b^{</td>
<td>C^*/\epsilon</td>
<td>})$</td>
<td>$O(b^m)$</td>
</tr>
<tr>
<td>Space</td>
<td>$O(b^{d+1})$</td>
<td>$O(b^{</td>
<td>C^*/\epsilon</td>
<td>})$</td>
<td>$O(bm)$</td>
</tr>
<tr>
<td>Optimal?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>