Intelligent Game Playing

Instructor: B. John Oommen
Chancellor’s Professor
Life Fellow: IEEE; Fellow: IAPR
School of Computer Science, Carleton University, Canada

The primary source of these notes are the slides of Professor Hwee Tou Ng
from Singapore. The Multi-Player Game section was due to Mr. Spencer Polk.
| sincerely thank them for this.

Games - Introduction

* Question: Can machines outplay humans?

« Captured imaginations for centuries

— Appearance in myth and legend
— Popular topic in fiction

* Thanks to Al and search techniques, the dream
has come true!

History

The Turk (1770)

“The Turk™ In 1770
A chess playing machine

Toured Europe

Facing well-known
opponents

— e.g. Napoleon, Ben Franklin

Of course: Revealed - fraud

History

“The Turk” shows how fascinating this idea is

1914: King vs Rook strategies by automaton

True Al game playing — Claude Shannon: 1950

— Based on earlier work by Nash and Neumann

Shannon's algorithm still used
« Mini-Max Search (we will return to it shortly)

History

Shannon's 1950 paper focused on Chess
— Chess remains very important to game playing research

At the time, seen as purely theoretical exercise
1970s: First commercial Chess programs

1980s: Chess programs playing at Expert level

— Still some time until Grandmaster level...

History

Kasparov vs Deep Blue

1

- F

- F

997: IBM's Deep Blue
« Defeats Garry Kasparov

Irst defeat of Grandmaster

leld: Branched out since
» Poker, Go: Now important games
« |IBM Watson on Jeopardy

Games vs. Search Problems

« “Unpredictable” opponent
— Specifying a move for every possible opponent reply

e Time limits
— Unlikely to find goal, must approximate

Mini-Max Search

Search to find the correct move in a two player game

The optimal solution:
— Exponential algorithm
— Generate all possible paths
— Only play those that lead to a winning final position

Realistic alternative to the Optimal

Use finite depth look-ahead with a heuristic function
Evaluate how good a given game state Is

Mini-Max

« Extend Tree down to a given search depth

« Top of tree is the Computer’'s move
— Wants move to ultimately be one step closer to a winning position
— Wants move that maximizes own chance of winning

* Next move is Opponent’s

— Opponent assumed to perform a move that his best
— Wants move that minimizes Computer’s chance of winning

Game tree
2-player, Deterministic, Turns

MAX (X)
X X X
MIN (O) X X X
X X X
x[o x| (o] [x]
MAX (X) (o]
x[olx| [x[o X0
MIN (O) X X
x[olx| [x[o[x] [X[o[x e
TERMINAL | [0 X| (00X X
o X[xjo| [xolo
Utility 1 0 +1

Mini-Max

« Perfect play for deterministic games

« |dea: Choose move to position with highest Mini-Max value
= Best achievable payoff against best play

« Example: 2-ply game:

Tl A

MM

Mini-Max for Nim

 Nim Game
— Two players start with a pile of tokens

— Legal move: Split (any) existing pile into two non-empty
differently sized piles

— Game ends when no pile can be unevenly split
— Player who cannot make his move loses the game

e Search strategy
— Existing heuristic search methods do not work

Mini-Max for Nim

Label nodes as MIN or MAX, alternating for each level
Define utility function (payoff function).

Do full search on tree
— Expand all nodes until game is over for each branch

Label leaves according to outcome

Propagate result up the tree with:
— M(n) = max(child nodes) for a MAX node
— m(n) = min(child nodes) for a MIN node

Best next move for MAX is the one leading to the child
with the highest value (and vice versa for MIN)

Im

-Max for N

N

M

~

MIN

MAX

3-3-1

4-2-1

MIN

MAX

X
\2-2-1-1 1

A
3-1-1-1-1

~
J

| 2-1-1-1-1-1 |

[
"

MIN

2-2-1-1-1

-1-1-1-1

MAX

2-1-1-1-1-1

Mini-Max Algorithm

function MINIMAX-DECISION(game) returns an operator
for each op in OPERATORS[game] do

VALUEJop] := MIN-VALUE(APPLY (op, game), game)
end

return the op with the highest VALUE[op]

function MAX-VALUE(state, game) returns a utility value
if CUTOFF-TEST (state,) then return EVAL (state)

value ;= - o

for each s in SUCCESSORS(state) do

value ;= MAX(value, MIN-VALUE(s, game))
end

return value

function MIN-VALUE(state, game) returns a utility value
if CUTOFF-TEST (state,) then return EVAL (state)
value := o

for each s in SUCCESSORS(state) do

value := MIN(value, MAX-VALUE(s, game))
end

return value

Problems with Mini-Max

« Horizon effect: Can’t see beyond depth
— Due to exponential increase in tree size, only very limited
depth feasible

— Solution: Quiescence search. Start at the leaf nodes of the
main search, and try to solve this problem.

— In Chess, quiescence searches usually include all capture
moves, so that tactical exchanges don't mess up the
evaluation. In principle, quiescence searches should include
any move which may destabilize the evaluation function--if
there is such a move, the position is not quiescent.

« May want to use look up tables

— For end games
— Opening moves (called Book Moves)

Properties of Mini-Max

Complete?
— Yes (if tree is finite)
Optimal?
— Yes (against an optimal opponent)
Time complexity?
— O(bm)
Space complexity?
— O(bm) (depth-first exploration)
Chess: b = 35, m =100 for “reasonable” games
— Exact solution completely infeasible

Branch and Bound: The a-f3 Algorithm

« Branch and Bound: If current path (branch) is
already worse then some other known path:

— Stop expanding it (bound).

« Alpha-Beta is a branch and bound technique for
Mini-Max search

* |f you know that the level above won’t choose
your branch because you have already found a
value along one of your sub-branches that is too
good, stop looking at other sub-branches that
haven’t been looked at yet

The a- Algorithm

Instead of maintaining a single mini-max value ,
the a-3 pruning algorithm, maintains two: a, 3

Together provide a bound on the possible values
of the mini-max tree at any given point.

At any given point, a: minimum the player can
expect to receive

At any given point, 3: maximum value the player
can expect

The a- Algorithm

If it Is ever the case that this bound is reversed or
has range of O (B <= a), then better options exist
for the player at other pre-explored nodes

As a is the minimum value we know we can get

Thus this node cannot be the mini-max value of
the tree.

There is no point in exploring any more of this
node's children

Potentially saving considerable computation time
In @ game with a large branching factor/depth

Properties of a-[3

Pruning does not affect final result
Good move ordering improves pruning effectiveness

With “perfect ordering” time complexity = O(b™?)
— Doubles depth of search

a-p is a simple example of the value of reasoning
about which computations are really relevant

Why it is called a-f3

» a: Value of the best choice
found so far at any choice MAX
point along the path for max
« Ifvis worse than a
— max will avoid it MIN
— prune that branch

* Define 3 similarly for min

"
wt®

MAX

MIN v

Effects of a-f3

MAX

MIN

A has B = 3 (A will be no larger than 3)
Bis P pruned, since5>3

C has o = 3 (C will be no smaller than 3)
Dis o pruned, since 0 <3

Eis o pruned, since2 <3

Cis3

Example: a-3 Pruning

MAX

MM

23

Example: a-3 Pruning

I AK

MMM

Example: a-3 Pruning

hAX

iy

Example: a-3 Pruning

AKX

MM

Example: a-3 Pruning

hAX

MM

The a- Algorithm

: o = best score for MAX so far game = game description
* From Russell and Norvig g = best score for MIN so far state = current state in game

function MAX-VALUE((state, game, «, f) returns a utility value

If CUTOFF-TEST (state,) then return EVAL (state)
for each s in SUCCESSORS(state) do
o .= MAX(a, MIN-VALUE(s, game, o, 0))
if o> 3 then return a
end
return o

function MIN-VALUE(state, game, «, f) returns a utility value

If CUTOFF-TEST (state,) then return EVAL (state)
for each s in SUCCESSORS(state) do
B := MIN(S, MAX-VALUE(s, game, o, 0))
if B <o then return 3
end
return 3

The a- Algorithm

function ALPHA-BETA-SEARCH(state) returns an action
inputs: state, current state in game

v4— MaX-VALUE(state, —oc, +00)
return the action in SUCCESSORS(state) with value v

function MAX-VALUE(state, o, B) returns a utility value
inputs: state, current state in game
«, the value of the best alternative for MAX along the path to state
3, the value of the best alternative for MIN along the path to state

if TERMINAL-TEST(state) then return UTILITY(Sstate)
U4 —00
for a,sin SUCCESSORS(state) do
v Max(v, MIN-VALUE(S, o, 3))
if v > 3 then return v
a — MAX(a, v)
return v

The a- Algorithm

function MIN-VALUE(state, o, §) returns a utility value
inputs: state, current state in game
«x, the value of the best alternative for MAX along the path to state
{3, the value of the best alternative for MIN along the path to state

if TERMINAL-TEST(state) then return UTILITY(state)
U4—+0C
for a,s in SUCCESSORS(state) do
v+ MiIN(v, MAX-VALUE(s, a, 3))
if v € a then return v
8« MIN(5, v)
return v

Improving Game Playing

* Increase Depth of Search
« Have better heuristic for game state evaluation

Changing Levels of Difficulty

 Increase Depth of Search

Resource Limits

« Suppose we have 100 secs, explore 104 nodes/sec
— 10° nodes per move

« Standard approach:
— Cutoff test: Depth limit (perhaps add quiescence search)

« Evaluation function:
— Estimated desirability of position

Evaluation Functions

Chess, typically linear weighted sum of features
Eval(s) = w; f;(s) + w, fy(s) + ... + w, f (S)

Example: w; =9 with
f,(s) = (number of white queens) — (number of black queens)
etc.

Cutting-Off Search

MinimaxCutoff is identical to MinimaxValue except
1. Terminal? is replaced by Cutoff?
2. Utility is replaced by Eval

Does it work in practice?
b™ =106, b=35 > m=4

4-ply lookahead is a hopeless chess player!
— 4-ply = human novice
— 8-ply = typical PC, human master
— 12-ply = Deep Blue, Kasparov

Quiescence search

Quiescence search: Study moves that are noisy
They appear good, but moves around them - bad
Investigate them with a localized leaf search

Attempt to identify delaying tactics and change
the seemingly-good value of the node

A very natural extension of mini-max

Simply run search again at a leaf node until that
leaf node becomes quiet

As with iterative deepening, running time of the
algorithm won't increase by more than a constant

Real Deterministic Games

* Checkers: Chinook ended 40-year-reign of
human world champion Marion Tinsley in 1994.
— Used a precomputed endgame database

— Defining perfect play for all positions involving 8 or fewer
pieces on the board - a total of 444 billion positions.

* Chess: Deep Blue defeated human world
champion Kasparov in a six-game match in 1997.
— Deep Blue searches 200 million positions per second

— Uses very sophisticated evaluation

— Undisclosed methods for extending some lines of search up
to 40 ply.

Move Ordering

Best possible pruning is achieved if the best
move IS searched first at each level of the tree

Problem: If we knew the best move, we would not
need to search!

Thus, we employ move ordering heuristics, which
search the best move first

Example: In Chess, search capturing moves
before non-capturing moves

What we want: domain independent technigues

Example: Poor Move Ordering

Example: Good Move Ordering

Principal Variation Move

As It Is a search algorithm, can apply lterative
Deepening to Mini-Max

At each level, we thus find a move path we
expect us and the opponent to take

At the next stage, search it first!
— Called Principal Variation move

Even though lterative Deepening takes some
time, PV-move can greatly improve overall
performance!

Other Heuristics

« Killer Moves: Remember move that produced a
cut on this level of the tree

— If we encounter it again, search it first!
— Normally remember two moves per level

« History Heuristic: Same as Killer Moves, want
to remember moves that produce cuts

— Want to use info on all levels of tree

— Hold array of counters, increment based on
level cut occurred at

— Detalls outside scope of this talk

Real Deterministic Games

« Othello: Human champions refuse to compete
against computers, who are too good.

Things to Remember: Games

Games are fun to work on!

They illustrate several important points about AT
Perfection is unattainable

Must approximate paths and solutions

Good idea to think about what to think about

Two Player to Multi-Player Games

« Mini-Max: Originally envisioned for Chess
— Two player, deterministic, perfect information game

« What if we want to play a multi-player game?
— Instead of two players, we have N players, where N > 2
— Examples: Chinese Checkers, Poker

* New challenges, requiring new techniques!

Qualities of Multi-Player Games

 In two player zero sum games, your gain is
reflected in equal loss for opponent

— No longer true for multi-player game
— Loss spread between multiple opponents

« Coalitions may arise during play

« More opponent turns occur between perspectives

Extending Mini-Max to Multi-
Player Games

Problem: Mini-Max operates using a single value
— Worked for two player games, as opponent's gain is our loss

Single score very valuable — Allows pruning
— Would like to keep pruning to speed up the search

Simple solution: All opponents minimize our score
— S0, MAX-MIN-MIN, MAX-MIN-MIN-MIN, etc

Called the Paranoid Algorithm

Paranoid Algorithm

© 0
\
& o
© ® ® ® ®

Sample Paranoid Tree (Red MAX, Blue MIN)

/\

-l

Paranoid Algorithm

function integer paranoid(node, depth):

if node is termin

al or depth <=0 then

return heuristic value of node

else
if nod

e is max then
val = —oo
for all child of node do
val = max(val, paranoid(child, depth — 1)

end for
else
val = oo
for all child of node do
val = min(val, paranoid(child, depth — 1)
end for
end if
return val

end if

Paranoid Algorithm

 Algorithm exact same as Mini-Max in many
Implementations

* Pros

— Easy to implement and understand

— Subject to a-B pruning on MAX/MIN borders
— Not for phases between MIN nodes

e Cons

— Views all opponents as a coalition — leads to bad play
— Limited look-ahead for perspective player

— Need to have multiple MIN phases in a row

Max-N Algorithm

1986: Luckhardt and Irani
Addresses coalition problem of Paranoid
Keeps tuple of scores, not one value

Assumption: Players maximize their own score
— No consideration for other players

Heuristic returns value for each player
— l.e. [6, 3, 8] for three-player game

Nth player maximizes Nth value

Max-N Algorithm

(9, 4, 8)

(9, 4, 8)

9, 4, 8) /

(9,7, 3)

\5‘1|Q} (5.1 8) /

(12, 3, 6) (9,4, 8) (4,1,9) (3,1, 8) (2,4,5) (9,6, 2) (9, 7,3)

Sample Max-N Tree

Max-N Algorithm

function integer[] max-n(node, depth):
if node is terminal or depth <=0 then
return heuristic value of node
else
val = —oo
tuple =[]
for all child of node do
val = max(val, max-n(child; depth — 1)[node.player])
if val changed
tuple = max-n(child; depth-1)
end if
end for
return tuple
end if

Max-N Algorithm

 In terms of raw Mini-Max, very simple extension

* Pros
— Players “look out for number one”
— More realistic play
— Perspective player can see more opportunities
— Reason: Possibilities are not excluded as readily

« Cons
— Pruning is very complicated, and not as good
— Can be worse than Paranoid due to decreased search depth

Best-Reply Search

Relatively new: 2011 (Schadd and Winands)

All opponents considered to be one player
— They only get ONE turn between them

Only opponent with best move is thought to act
Return to MAX-MIN-MAX-MIN...
Essentially a return to Mini-Max algorithm

« With a very powerful opponent!!

Best-Reply Search

PrehY

P4: 4 P2:5 P4: 3 P3:9

Sample BRS Tree.
The children of the other minimizing nodes are omitted.

Best-Reply Search

function integer best-reply(node, depth):
if node is terminal or depth <=0 then
return heuristic value of node
else
if node is max then
val = —oo
for all child of node do
val = max(val, best-reply(child; depth — 1)
end for
else
val = oo
for all opponents do
for all opponent’s child at node do

val = min(val; best-reply(child;
depth - 1)

end for
end for
end if
end if

Best-Reply Search

« Attempt to get “best of both worlds”

* Pros
— Balance between coalition and free-for-all
— Allows a-f3 pruning
— Significant lookahead for perspective player

 Cons
— lllegal game states analyzed
— Not applicable to some games
— This is the domain of some current research (2015)

Adaptive Data Structures

Other, completely unrelated field
Concerned with record access frequency

Problem:
* Elements in data structure accessed with different frequency

Solution:

* Change the structure of the data structure as elements queried

Can use list, tree or others

ADS — Move to Front Rule

f 4 __* 1 _) 2) 3
)‘» 3 __* 4 __) 1 _) 2
3 4 2
_s7L — —
1 3 2
f 4 _9 _) ﬁ

Order of access: 3,1, 1, 4, ...

ADS — Transposition Rule

>

—

R1 _+

1A
i

—>

—>» R
—»
—» 5
—>» R

Order of access: R3, R1, R], ...

The Threat-ADS Heuristic

Our contribution, usable with the BRS
ADS operations are constant, and small
We use an ADS that contains opponents

When an opponent is found to have the most
minimizing move, we query the ADS

ADS moves over time to relative opponent threats
When grouping moves, do it in the order of the ADS
Improves move ordering, leading to better pruning!

The Threat-ADS Heuristic

P2 P4 P3

ADS: P2 P4 \ P3

BRS with Threat-ADS (one level)

BRS with Threat-ADS

function integer brs_threat_ads(node, depth):
if node is terminal or depth <=0 then
return heuristic value of node
else
if node is max then
val = —eo
for all child of node do
val = max(val, best-reply(child; depth — 1)
end for
else
val = oo
for all opponents in ADS do
for all opponent’s child at node do
val = min(val; best-reply(child; depth - 1)
end for
end for
ADS.update(val.opponent)
end if
end if

Experimental Framework

Game needed to test Threat-ADS heuristic

Needs:

— BRS must be applicable

— Game should be simple to implement

Use established games Focus and Chinese Checkers
Also develop the Virus Game

Virus Game

Turn based game with N players

Played on 2D board

Goal is to eliminate all other players

Turn: Player “infects” a square they are adjacent to

All nearby squares, according to a configured
pattern, are given to that player

Virus Game

Experimental Configuration

One player: BRS with Threat-ADS
Others: Random (Interested in tree pruning)
Take Node Count over first few turns of the game
— Count each node expanded, but not those pruned
Average over 50 games
Run for each of three games mentioned
Run over a variety of configurations
* Varying number of players
* Varying starting state

Results (Initial Board State)

Game
Virus Game
Virus Game

Focus

Focus

Chinese Checkers
Chinese Checkers

Threat-ADS?
No
Yes
No
Yes
No
Yes

Avg. Node Count
264,000
237,000

6,859,000
6,443,000
3,485,000
3,070,000

Results (Midgame Board State)

Game Threat-ADS? Avg. Node Count
Virus Game No 307,000
Virus Game Yes 275,000
Focus No 14,460,000
Focus Yes 13,050,000
Chinese Checkers No 8,170,000

Chinese Checkers Yes 7,680,000

Monte-Carlo Methods

Entirely different way of looking at game playing
— Applicable to two player and multi-player games

No game heuristics required!

Driven by random game playing
— Strong when no good heuristic is available
— Big example in research is Go

Very simple example:

— Play 50 random games for each move
— Pick one with highest winrate

Monte-Carlo Tree Search

Simple example above
« Works for easy games
* Look-ahead is useful

Apply random game playing to game tree search

Navigate:
« From root to unvisited node
« Then play random game(s)

Path guided by exploration/exploitation balance
At end of time, pick most promising move
Very powerful: Relatively new compared to Mini-Max

UCT Algorithm

Dominant Monte-Carlo Tree Search technigue (2015)

Starting from root:
— If there is an unvisited child, pick it
— Otherwise, pick child that maximizes UCTValue
UCTVal = winrate + sqrt(In(parent.visits)/visits)
— Repeat until an unvisited child is found

Propagate winrate back up to root
Repeat until time is up
Pick move that has highest winrate

UCT Algorithm

function integer uct(node, depth):
for time-steps do
position = root
while position is explored
val = —oo
for child of position
I— Unexplored node check here--!
val = max(val, UCTValue(child))
position = val.node
end for
end while

Play random game(s) at child

while position is not root
update win-rate for player at node
position = position.parent

end while

end for

Multi-Player UCT Algorithm

* Very easy to extend
— We do not have to maintain heuristic values
— UCT handles N-player games in its base form

* For the player making the move
— Simply record winrate at each node
— Assume player will pick move most likely to lead to win

* No change from previous algorithm

More on UCT Value

UCTValue has two parts

Winrate is self-explanatory
« Value between 0.0 and 1.0 indicating proportion of wins

Second part: sqgrt(In(parent.visits)/visits)
Specifics not important, but also between 0.0 and 1.0

Goes up the less this child has been explored in
relation to its parent

Achieves exploration/exploitation balance!
Sometimes constants usually added to tweak this

Applications of UCT

» Best performance available for Go
— Top player is currently Zen
— Defeated 9-dan player with three stone handicap

« Applied to wide range of games
— Poker
— Settlers of Catan
— Magic: The Gathering

