A Summary of Some Topics: Learning Automata

B. John Oommen Chancellor's Professor Carleton University, Canada Life Fellow : IEEE ; Fellow : IAPR

Learning Automata

• Learning Problem:

> Acquisition and utilization of relevant knowledge

> Improve the performance of a system.

 Learning Automaton: Model of computer learning used to solve the learning problem

□ Models - Biological learning systems

Goal - Determine the optimal action from a set

Optimal Action - Has Minimum Penalty Probability

Learns - Process responses from random Environment

- $\underline{\alpha} = \{\alpha_1, \alpha_2, ..., \alpha_r\}$ *r* actions
- {c₁, c₂,..., c_r} action penalty probabilities
- <u>β</u>={0,1} response from the *Environment*.

Reward and Penalty

Learning Automata - Learning Loop

LA chooses one from set of actions $\{\alpha_1,..,\alpha_r\}$ offered by *Environment* **RE**

RE's response is **Input** to **LA** Then chooses next action

Chosen action α(t) is Input to the RE

RE *rewards* or *penalizes* LA Based on penalty probabilities

Norms of Behavior

- **Expedient**: Automaton better than pure-chance machine: $\lim_{t\to\infty} E[M(t)] < M_0$
- Absolutely Expedient. $E[M(t+1)|\mathbf{P}(t)] < M(t)$
- **Optimal**: $\lim_{t\to\infty} p_b^{(t)} \to 1$ with probability 1. Note: There are no optimal learning automata.
- *ɛ*-**Optimal**: A LA is said to be *ɛ*-**optimal** if For any ɛ>0 and δ >0, there exists $t_0 > \infty$ and $\lambda_0 > 0$ such that $Pr[|p_b(t)-1| < \varepsilon] > 1-\delta$

Categories of Learning Automata

• **Deterministic** – Transition/Output Matrices deterministic

- Stochastic Transition or output matrices are stochastic
 - Fixed Structure Stochastic Automata (FSSA): Transition and output matrices are *time invariant*
 - Variable Structure Stochastic Automata (VSSA): Transition or output matrices *change with time*

Tsetlin Automaton

Krinsky Automaton

Are deterministic automata with 2N states and 2 actions.

Tsetlin Automaton

- ε -Optimal when min{ c_1, c_2 } ≤ 0.5
- Ergodic: (Type of Markov Chain; Don't worry about it)

Krinsky Automaton

Unfavorable Response β =1

- ε-Optimal in all stationary random environments
- Ergodic (Type of Markov Chain; Don't worry about it)

Krylov Automaton

- FSSA automaton with 2N states and 2 actions
- ε-Optimal in all stationary random environments

Variable Structure Stochastic Automata

- State transition probabilities or action selecting probabilities are updated with time
- Defined in terms of Action Probability Updating Schemes

Operates on the action probability vector

- Updates the action probability vector P(t+1) based on
 - P(t) Previous value of the action probability vector
 - $\beta(t)$ Response of the Environment

Categories of VSSA

Classification based on the learning paradigm

- Reward-Penalty schemes
- Reward-Inaction schemes
- Inaction-Penalty schemes

Classification based on the properties of probability space [0,1]

- Continuous schemes
- Discrete schemes

Categories of VSSA (II)

> Ergodic Schemes

- Learning Automaton does not lock in any action
- Limiting distribution: independent of initial distribution
- Used for Non-Stationary Random Environments
- Example: Linear Reward-Penalty (L_{RP}) scheme

> Absorbing Schemes

- Learning Automaton gets locked into its final action
- Limiting distribution: dependent of initial distribution
- Used for Stationary Random Environments
- Example: Linear Reward-Inaction (L_{RI}) scheme

Exp. of Continuous Scheme: L_{RI} (II)

Action Probability Updating Scheme:

 $p_1(t+1) = p_1(t) + \lambda(1-p_1(t))$ $p_1(t+1) = (1-\lambda)p_1(t)$ $p_2(t+1) = 1-p_1(t)$

- if α_1 is rewarded or α_2 is penalized

- if α_1 is penalized or α_2 is rewarded

Exp. of Continuous Scheme: L_{RI}

Thank You Very Much!!