CARLETON UNIVERSITY

School of Computer Science
Winter 2019
COMP 5005
Assignment III
Due Feb. 14, 2019
Consider the following 2-action automaton:
The automaton has three states $\left\{\phi_{\mathrm{i}} \mid \mathrm{i}=0,1,2\right\}$.
The automaton has two actions $\left\{\alpha_{i} \mid \mathrm{i}=1,2\right\}$.
The F function is defined as follows:
(i) If the automaton is in $\phi_{\mathrm{i}}(\mathrm{i}=1,2)$, on being rewarded it stays in ϕ_{i} with probability 'a'. It goes to $\phi_{\mathrm{j}}(\mathrm{j} \neq \mathrm{i})$ with a probability ' b ', and goes to ϕ_{0} otherwise.
(ii) If the automaton is in ϕ_{0}, on being rewarded it stays in ϕ_{0} with probability 'a' and goes to $\phi_{\mathrm{i}}(\mathrm{i}=1,2)$ with equal probability, otherwise.
(iii) If the automaton is in $\phi_{i}(i=1,2)$, on being penalized it goes to $\phi_{j}(j \neq i)$ with probability 'a', stays in ϕ_{i} with a probability 'b', and goes to ϕ_{0} otherwise.
(iv) If the automaton is in ϕ_{0}, on being penalized it stays in ϕ_{0} with probability 'a' and goes to $\phi_{\mathrm{i}}(\mathrm{i}=1,2)$ with equal probability otherwise.

The G function is defined as follows:
If the automaton is in state $\phi_{\mathrm{i}}(\mathrm{i}=1,2)$ it chooses action α_{i} with probability 1 . If it is in ϕ_{0} it chooses both the actions with probability 0.5 .
(a) Describe the automaton pictorially and using the $\mathrm{F}^{0}, \mathrm{~F}^{1}$ and G matrices.
(b) Describe an equivalent automaton for which the output matrix is deterministic. (Does this machine have to have 6 states???) Note that you must define the new machine, by specifying its states, and its F and G functions. Do this by describing the automaton pictorially and using matrices.
(c) Write down the F^{\sim} matrix of the old automaton with 'a' $=0.3$ and ' b ' $=0.6$, when it interacts with an environment $(0.3,0.7)$. If $\Pi(0)=[0.3,0.35,0.35]$, what are $P(0), \Pi(1)$ and $P(1)$?
(d) Write down the F^{\sim} matrix of the new automaton under the identical conditions of (c) above. For this machine show that $\mathrm{P}(0)$ and $\mathrm{P}(1)$ are exactly as in the above case.

