CARLETON UNIVERSITY School of Computer Science Winter 2019

<u>COMP 5005</u>	Assignment IV	Due Mar. 19, 2019

- 1. For an arbitrary depth of memory per action, $N \ge 3$, write a program to simulate a Tsetlin automaton which is to interact with an environment with penalty probabilities (c_1, c_2) .
 - (a) Test your program for $c_2=0.7$ and c_1 taking values increasing from 0.05 to 0.65 in steps of 0.1.
 - (b) In each case, use the exact expression for the limiting value of p₁(∞) (derived in class) and a binary search technique to determine the minimum number of states necessary to obtain 95% accuracy.
 - (c) Submit, along with your program, the exact value of p₁(∞) and the simulated estimated value of p₁(∞).
- 2. For **any one environment**, compare the simulation of the Tsetlin automaton interacting with an environment with penalty probabilities $(\frac{c_1}{2}, \frac{c_2}{2})$ with the simulation of the Krylov automaton interacting with an environment with penalty probabilities (c_1, c_2) .
- 3. For any arbitrary parameter, λ_R ($0 < \lambda_R < 1$), write a program to simulate the L_{RI} automaton which is to interact with an environment with penalty probabilities (c_1 , c_2).
 - (a) Again, test your program for $c_2=0.7$ and c_1 taking values increasing from 0.05 to 0.65 in steps of 0.1.
 - (b) In each case, use the simulated expression for two initial values of λ_R and a binary search technique to determine the best value of λ_R (i.e., which leads to fastest convergence) necessary to obtain 95% accuracy. Submit, along with your program, **this value** and the mean time for convergence for the environment.

Your assignment should be submitted as a short formal report, with at most a couple of pages for each question. You must also submit a pointer to where we can access your code.