CARLETON UNIVERSITY School of Computer Science Winter 2021

COMP 5005

Assignment III

Due Feb. 22, 2021

Consider the following 2-action automaton:

The automaton has three states $\{\phi_i \mid i=0,1,2\}$.

The automaton has two actions $\{\alpha_i \mid i=1,2\}$.

The F function is defined as follows:

- (i) If the automaton is in ϕ_i (i=1,2), on being rewarded it stays in ϕ_i with probability 'b'. It goes to ϕ_i (j \neq i) with a probability 'a', and goes to ϕ_0 otherwise.
- (ii) If the automaton is in ϕ_0 , on being rewarded it stays in ϕ_0 with probability 'a' and goes to ϕ_i (i=1,2) with equal probability, otherwise.
- (iii) If the automaton is in ϕ_i (i=1,2), on being penalized it goes to ϕ_j (j \neq i) with probability 'b', stays in ϕ_i with a probability 'a', and goes to ϕ_0 otherwise.
- (iv) If the automaton is in ϕ_0 , on being penalized it stays in ϕ_0 with probability 'b' and goes to ϕ_i (i=1,2) with equal probability otherwise.

The G function is defined as follows:

If the automaton is in state ϕ_i (i=1,2) it chooses action α_i with probability 1. If it is in ϕ_0 it chooses both the actions with probability 0.5.

- (a) Describe the automaton pictorially and using the F^0 , F^1 and G matrices.
- (b) Describe an equivalent automaton for which the output matrix is deterministic. (Does this machine have to have 6 states???) Note that you must define the new machine, by specifying its states, and its F and G functions. Do this by describing the automaton pictorially and using matrices.
- (c) Write down the F[~] matrix of the old automaton with 'a'=0.2 and 'b'=0.7, when it interacts with an environment (0.4, 0.6). If $\Pi(0) = [0.2, 0.4, 0.4]$, what are P(0), $\Pi(1)$ and P(1)?
- (d) Write down the F^{\sim} matrix of the new automaton under the identical conditions of (c) above. For this machine show that P(0) and P(1) are exactly as in the above case.