Consider the following 2-action automaton:
The automaton has three states \(\{ \phi_i \mid i=0,1,2 \} \).
The automaton has two actions \(\{ \alpha_i \mid i=1,2 \} \).
The F function is defined as follows:
(i) If the automaton is in \(\phi_i \) (i=1,2), on being rewarded it stays in \(\phi_i \) with probability 'b'. It goes to \(\phi_j \) (j \(\neq \) i) with a probability 'a', and goes to \(\phi_0 \) otherwise.
(ii) If the automaton is in \(\phi_0 \), on being rewarded it stays in \(\phi_0 \) with probability 'a' and goes to \(\phi_i \) (i=1,2) with equal probability, otherwise.
(iii) If the automaton is in \(\phi_i \) (i=1,2), on being penalized it goes to \(\phi_j \) (j \(\neq \) i) with probability 'b', stays in \(\phi_i \) with a probability 'a', and goes to \(\phi_0 \) otherwise.
(iv) If the automaton is in \(\phi_0 \), on being penalized it stays in \(\phi_0 \) with probability 'b' and goes to \(\phi_i \) (i=1,2) with equal probability otherwise.

The G function is defined as follows:
If the automaton is in state \(\phi_i \) (i=1,2) it chooses action \(\alpha_i \) with probability 1. If it is in \(\phi_0 \) it chooses both the actions with probability 0.5.

(a) Describe the automaton pictorially and using the \(F^0 \), \(F^1 \) and G matrices.

(b) Describe an equivalent automaton for which the output matrix is deterministic. (Does this machine have to have 6 states??) Note that you must define the new machine, by specifying its states, and its F and G functions. Do this by describing the automaton pictorially and using matrices.

(c) Write down the \(F^- \) matrix of the old automaton with 'a'=0.2 and 'b'=0.7, when it interacts with an environment (0.4, 0.6). If \(\Pi(0) = [0.2, 0.4, 0.4] \), what are \(P(0) \), \(\Pi(1) \) and \(P(1) \) ?

(d) Write down the \(F^- \) matrix of the new automaton under the identical conditions of (c) above. For this machine show that \(P(0) \) and \(P(1) \) are exactly as in the above case.