Likelihood	Model parameters	Conjugate prior distribution	Prior hyperparameters	Posterior hyperparameters[note 1]	Interpretation of hyperparameters	Posterior predictive[note 2]
Bernoulli	ρ (probability)	Beta	α , β	$\alpha + \sum_{i=1}^n x_i, \beta + n - \sum_{i=1}^n x_i$	$lpha-1$ successes, $eta-1$ fallures $^{[note \ 3]}$	$p(\tilde{x}=1)=\frac{\alpha'}{\alpha'+\beta'}$
Binomial	ρ (probability)	Beta	α, β	$\alpha + \sum_{i=1}^n x_i, \beta + \sum_{i=1}^n N_i - \sum_{i=1}^n x_i$	$lpha-1$ successes, $eta-1$ failures $^{ m Incte}$ $^{ m 3}$	$\operatorname{BetaBin}(\tilde{x} \alpha',\beta')$ (beta-binomial)
Negative binomial with known failure number, r	p (probability)	Beta	α , β	$\alpha + \sum_{i=1}^n x_i, \beta + rn$	$\alpha-1$ total successes, $\beta-1$ failures ^(note 3) (i.e., $\frac{\beta-1}{r}$ experiments, assuming r stays fixed)	$\begin{aligned} \operatorname{BetaNegBin}(\widehat{x} \alpha',\beta') \\ \text{(beta-negative binomial)} \end{aligned}$
Poisson	Λ (rate)	Gamma	k, θ	$k + \sum_{i=1}^{n} x_i, \frac{\theta}{n\theta + 1}$	k total occurrences in $\frac{1}{ heta}$ intervals	$\mathrm{NB}(\tilde{x}\mid k', \theta')$ (negative binomial)
			α , β [note 4]	$\alpha + \sum_{i=1}^n x_i, \ \beta + n$	lpha total occurrences in eta intervals	$\operatorname{NB}\!\left(ilde{x} \mid lpha', rac{1}{1+eta^r} ight)$ (negative binomial)
Categorical	ρ (probability vector), k (number of categories; i.e., size of ρ)	Dirichlet	α	$oldsymbol{lpha} + (c_1, \dots, c_k),$ where c_i is the number of observations in category i	$lpha_i - 1$ occurrences of category $i^{ ext{(note 3)}}$	$p(\tilde{x} = i) = \frac{\alpha_i'}{\sum_i \alpha_i'}$ $= \frac{\alpha_i + c_i}{\sum_i \alpha_i + n}$
Multinomial	p (probability vector), k (number of categories; i.e., size of p)	Dirichlet	α	$\alpha + \sum_{i=1}^{n} \mathbf{x}_{i}$	$lpha_i - 1$ occurrences of category $i^{ ext{(note }3)}$	$\operatorname{DirMult}(\bar{\mathbf{x}} \mid \boldsymbol{\alpha}')$ (Dirichlet-multinomial)
Hypergeometric with known total population size, N	M (number of target members)	Beta-binomial ^[4]	n=N, lpha, eta	$\alpha + \sum_{i=1}^n x_i, \beta + \sum_{i=1}^n N_i - \sum_{i=1}^n x_i$	$lpha-1$ successes, $eta-1$ failures $^{ ext{Inche 3}}$	
Geometric	p ₀ (probability)	Beta	α , β	$\alpha + n, \beta + \sum_{i=1}^{n} x_i$	$lpha-1$ experiments, $eta-1$ total failures $^{ ext{[note 3]}}$	

Likelihood	Model parameters	Conjugate prior distribution	Prior hyperparameters	Posterior hyperparameters ^[note 1]	Interpretation of hyperparameters	Posterior predictive[note 5]
Normal with known variance g ²	μ (mean)	Normal	μ_0,σ_0^2	$\frac{1}{\frac{1}{\sigma_0^2}+\frac{n}{\sigma^2}}\left(\frac{\mu_0}{\sigma_0^2}+\frac{\sum_{i=1}^n x_i}{\sigma^2}\right),\left(\frac{1}{\sigma_0^2}+\frac{n}{\sigma^2}\right)^{-1}$	mean was estimated from observations with total precision (sum of all individual precisions) $1/\sigma_0^2$ and with sample mean μ_0	$\mathcal{N}(ilde{x} \mu_0',{\sigma_0^2}'+\sigma^2)^{ ilde{ ilde{ ilde{S}}}}$
lormal vith known precision 7	μ (mean)	Normal	μ_0, au_0	$\frac{\tau_0\mu_0+\tau\sum_{i=1}^nx_i}{\tau_0+n\tau},\tau_0+n\tau$	mean was estimated from observations with total precision (sum of all individual precisions) τ_0 and with sample mean μ_0	$\mathcal{N}\left(ilde{x}\mid \mu_0', rac{1}{ au_0'} + rac{1}{ au} ight)$ [5]
ormal ith known mean μ	σ^2 (variance)	Inverse gamma	α, β [note 6]	$lpha+rac{n}{2},eta+rac{\sum_{i=1}^n{(x_i-\mu)^2}}{2}$	variance was estimated from 2α observations with sample variance β/α (i.e. with sum of squared deviations 2β , where deviations are from known mean μ)	$t_{2lpha'}(ilde{x} \mu,\sigma^2=eta'/lpha')$ [S]
lormal vith known mean μ	σ ² (variance)	Scaled inverse chi-squared	$ u$, σ_0^2	$ u+n, \ rac{ u\sigma_0^2 + \sum_{i=1}^n (x_i - \mu)^2}{ u+n}$	variance was estimated from $ u$ observations with sample variance σ_0^2	$t_{ u'}(\tilde{x} \mu, {\sigma_0^2}')^{[5]}$
Normal with known mean μ	r (precision)	Gamma	α, β ^{note 4}]	$lpha+rac{n}{2},eta+rac{\sum_{i=1}^n(x_i-\mu)^2}{2}$	precision was estimated from 2α observations with sample variance β/α (i.e. with sum of squared deviations 2β , where deviations are from known mean μ)	$t_{2lpha'}(ilde{x}\mid \mu,\sigma^2=eta'/lpha')^{ ilde{ ilde{b}}}$
Normal[note 7]	μ and σ² Assuming exchangeability	Normal-inverse gamma	$\mu_0, \nu, \alpha, \beta$	$\begin{split} &\frac{\nu\mu_0+n\bar{x}}{\nu+n},\nu+n,\alpha+\frac{n}{2},\\ &\beta+\frac{1}{2}\sum_{i=1}^n(x_i-\bar{x})^2+\frac{n\nu}{\nu+n}\frac{(\bar{x}-\mu_0)^2}{2}\\ &\bullet \bar{x} \text{ is the sample mean} \end{split}$	mean was estimated from ν observations with sample mean μ_0 ; variance was estimated from 2α observations with sample mean μ_0 and sum of squared deviations 2β	$t_{2lpha'}\left(ilde{x}\mid \mu', rac{eta'(u'+1)}{ u'lpha'} ight)$ [5]
Normal	μ and τ Assuming exchangeability	Normal-gamma	$\mu_0, \nu, \alpha, \beta$	$\begin{split} &\frac{\nu\mu_0+n\bar{x}}{\nu+n},\nu+n,\alpha+\frac{n}{2},\\ &\beta+\frac{1}{2}\sum_{i=1}^n(x_i-\bar{x})^2+\frac{n\nu}{\nu+n}\frac{(\bar{x}-\mu_0)^2}{2}\\ &\bullet\bar{x} \text{ is the sample mean} \end{split}$	mean was estimated from ν observations with sample mean μ_0 , and precision was estimated from 2α observations with sample mean μ_0 and sum of squared deviations 2β	$t_{2lpha'}\left(ar{x}\mid \mu', rac{eta'(u'+1)}{lpha' u'} ight)$ [5]
Multivariate normal with known covariance matrix Σ	μ (mean vector)	Multivariate normal	μ_0, Σ_0	$\begin{split} & \left(\boldsymbol{\Sigma}_0^{-1} + n\boldsymbol{\Sigma}^{-1}\right)^{-1} \left(\boldsymbol{\Sigma}_0^{-1}\boldsymbol{\mu}_0 + n\boldsymbol{\Sigma}^{-1}\bar{\mathbf{x}}\right), \\ & \left(\boldsymbol{\Sigma}_0^{-1} + n\boldsymbol{\Sigma}^{-1}\right)^{-1} \\ & \bullet \; \bar{\mathbf{x}} \; \text{is the sample mean} \end{split}$	mean was estimated from observations with total precision (sum of all individual precisions) $\mathbf{\Sigma}_0^{-1}$ and with sample mean $\pmb{\mu}_0$	$\mathcal{N}(ilde{\mathbf{x}} \mid {oldsymbol{\mu}_0}', {oldsymbol{\Sigma}_0}' + {oldsymbol{\Sigma}})^{[5]}$
Multivariate normal with known precision matrix A	μ (mean vector)	Multivariate normal	μ_0, Λ_0	$(\mathbf{\Lambda}_0+n\mathbf{\Lambda})^{-1}\left(\mathbf{\Lambda}_0\boldsymbol{\mu}_0+n\mathbf{\Lambda}\widetilde{\mathbf{x}}\right),\left(\mathbf{\Lambda}_0+n\mathbf{\Lambda}\right)$ • $\widetilde{\mathbf{x}}$ is the sample mean	mean was estimated from observations with total precision (sum of all individual precisions) ${\bf \Lambda}_0$ and with sample mean ${m \mu}_0$	$\mathcal{N}\left(\tilde{\mathbf{x}}\mid {oldsymbol{\mu}_0}', ({oldsymbol{\Lambda}_0}'^{-1} + {oldsymbol{\Lambda}^{-1}})^{-1} ight)$ [5]
Multivariate normal with known mean μ	Σ (covariance matrix)	Inverse-Wishart	ν , Ψ	$n + \nu$, $\Psi + \sum_{i=1}^{n} (\mathbf{x_i} - \boldsymbol{\mu})(\mathbf{x_i} - \boldsymbol{\mu})^T$	covariance matrix was estimated from ν observations with sum of pairwise deviation products Ψ	$t_{ u'-p+1}\left(ilde{\mathbf{x}} oldsymbol{\mu},rac{1}{ u'-p+1}oldsymbol{\Psi}' ight)$ [5]
Multivariate normal with known mean μ	∧ (precision matrix)	Wishart	ν, V	$n + \nu$, $\left(\mathbf{V}^{-1} + \sum_{i=1}^{n} (\mathbf{x}_i - \boldsymbol{\mu})(\mathbf{x}_i - \boldsymbol{\mu})^T\right)^{-1}$	covariance matrix was estimated from $ u$ observations with sum of pairwise deviation products ${f V}^{-1}$	$t_{ u'-p+1}\left(\mathbf{ ilde{x}}\mid oldsymbol{\mu}, rac{1}{ u'-p+1}\mathbf{V'}^{-1} ight)$ [5]