CARLETON UNIVERSITY School of Computer Science Winter 2022

<u>COMP 5107</u>

Assignment II Due: February 9, 2022

Consider a two-class problem in which the class conditional distributions are both normally distributed in 3-dimensions with means M_1 and M_2 , where:

 $M_1 = [4 \ 1 \ 3]$, and, $M_2 = [-4 \ 1 \ -3]$.

The covariance matrices Σ_1 and Σ_2 are :

- (a) Write a program to generate Gaussian random **vectors** assuming that you only have access to a function which generates *Uniform* random variables.
- (b) Using the strategy taught in class, write a program to simultaneously diagonalize both the distributions. Print out the diagonalizing matrices for a few cases, and in particular, for the case of a=4, b=3, c=2 and $\alpha=0.1$, $\beta=0.2$. Show the intermediate covariance matrices in the process.
- (c) Generate 200 points of each distribution for the case of a=4, b=3, c=2 and α =0.1, β =0.2. before diagonalization and plot them in the (x₁- x₂) and (x₁- x₃) domains. These points are 200 3-D vectors, but the *projected* points in the (x₁- x₂) and (x₁- x₃) domains must be plotted graphically.
- (d) Consider the *same* 200 generated in (b) above for the case of a=4, b=3, c=2 and α =0.1, β =0.2. after diagonalization and plot them in the (x₁- x₂) and (x₁- x₃) domains. Again, remember that these points are 200 3-D vectors, but the points in the (x₁- x₂) and (x₁- x₃) domains must be plotted graphically.