

### Lecture 10: Linear Discriminant Functions (2)

Dr. Chengjiang Long Computer Vision Researcher at Kitware Inc. Adjunct Professor at RPI. Email: longc3@rpi.edu

### **Recap Previous Lecture**



ECSE-6610 Pattern Recognition

C. Long

Lecture 10

#### Outline

- Perceptron Rule
- Minimum Squared-Error Procedure
- Ho–Kashyap Procedure

#### Outline

#### Perceptron Rule

- Minimum Squared-Error Procedure
- Ho–Kashyap Procedure

### "Dual" Problem

#### Classification rule: If $\alpha^t y_i > 0$ assign $y_i$ to $\omega_1$ else if $\alpha^t y_i < 0$ assign $y_i$ to $\omega_2$



Seek a hyperplane that separates patterns from different categories

- If y<sub>i</sub> in ω<sub>2</sub>, replace y<sub>i</sub> by -y<sub>i</sub>
- Find α such that: α<sup>t</sup>y<sub>i</sub>>0



Seek a hyperplane that puts normalized patterns on the same (positive) side

ECSE-6610 Pattern Recognition

Lecture 10

#### Perceptron rule

 Use Gradient Descent assuming that the error function to be minimized is:



- If  $Y(\alpha)$  is empty,  $J_p(\alpha)=0$ ; otherwise,  $J_p(\alpha) \ge 0$ .
- $J_p(\alpha)$  is  $||\alpha||$  times the sum of distances of misclassified.
- $J_p(\alpha)$  is is piecewise linear and thus suitable for gradient descent.



#### Perceptron Batch Rule

• The gradient of  $J_{p}(\alpha)$  is:

$$J_p(\boldsymbol{\alpha}) = \sum_{\mathbf{y} \in Y(\boldsymbol{\alpha})} (-\boldsymbol{\alpha}^t \mathbf{y}) \qquad \square \searrow \qquad \nabla J_p = \sum_{\mathbf{y} \in Y(\boldsymbol{\alpha})} (-\mathbf{y})$$

- It is not possible to solve analytically  $\nabla J_p = 0$ .
- The perceptron update rule is obtained using gradient descent:

$$\boldsymbol{\alpha}(k+1) = \boldsymbol{\alpha}(k) + \eta(k) \sum_{\mathbf{y} \in Y(\boldsymbol{\alpha})} \mathbf{y}$$

It is called batch rule because it is based on all misclassified examples

Lecture 10

#### Perceptron Single Sample Rule

• The gradient decent single sample rule for  $J_p(a)$  is:

 $\boldsymbol{a}^{(k+1)} = \boldsymbol{a}^{(k)} + \boldsymbol{\eta}^{(k)} \boldsymbol{y}_{M}$ 

- Note that y<sub>M</sub> is one sample misclassified by **a**<sup>(k)</sup>
- Must have a consistent way of visiting samples
- Geometric Interpretation:

- Note that  $y_{M}$  is one sample misclassified by  $(a^{(k)})^{t} y_{M} \leq 0$ - yM is on the wrong side of decision hyperplane - Adding  $\eta y_{M}$  to a moves the new decision hyperplane in the right direction with respect to  $y_{M}$ 



Perceptron Single Sample Rule



Lecture 10

|       |                     | grade   |                  |               |   |
|-------|---------------------|---------|------------------|---------------|---|
| name  | good<br>attendance? | tall?   | sleeps in class? | chews<br>gum? |   |
| Jane  | yes (1)             | yes (1) | no (-1)          | no (-1)       | A |
| Steve | yes (1)             | yes (1) | yes (1)          | yes (1)       | F |
| Mary  | no (-1)             | no (-1) | no (-1)          | yes (1)       | F |
| Peter | yes (1)             | no (-1) | no (-1)          | yes (1)       | A |

- Class 1: students who get A
- Class 2: students who get F

|       | features            |         |                  |               | grade |
|-------|---------------------|---------|------------------|---------------|-------|
| name  | good<br>attendance? | tall?   | sleeps in class? | chews<br>gum? |       |
| Jane  | yes (1)             | yes (1) | no (-1)          | no (-1)       | A     |
| Steve | yes (1)             | yes (1) | yes (1)          | yes (1)       | F     |
| Mary  | no (-1)             | no (-1) | no (-1)          | yes (1)       | F     |
| Peter | yes (1)             | no (-1) | no (-1)          | yes (1)       | A     |

 Augment samples by adding an extra feature (dimension) equal to 1

|       |                     | features |                  |               |   |  |
|-------|---------------------|----------|------------------|---------------|---|--|
| name  | good<br>attendance? | tall?    | sleeps in class? | chews<br>gum? |   |  |
| Jane  | yes (1)             | yes (1)  | no (-1)          | no (-1)       | A |  |
| Steve | yes (1)             | yes (1)  | yes (1)          | yes (1)       | F |  |
| Mary  | no (-1)             | no (-1)  | no (-1)          | yes (1)       | F |  |
| Peter | yes (1)             | no (-1)  | no (-1)          | yes (1)       | А |  |

#### • Normalize:

- Replace all examples from class 2 by their negative values  $y_i \rightarrow -y_i \quad \forall y_i \in c_2$
- Seek **a** such that:  $a^t y_i > 0 \quad \forall y_i$

Lecture 10

|       | features            |         |                  |               | grade |
|-------|---------------------|---------|------------------|---------------|-------|
| name  | good<br>attendance? | tall?   | sleeps in class? | chews<br>gum? |       |
| Jane  | yes (1)             | yes (1) | no (-1)          | no (-1)       | A     |
| Steve | yes (1)             | yes (1) | yes (1)          | yes (1)       | F     |
| Mary  | no (-1)             | no (-1) | no (-1)          | yes (1)       | F     |
| Peter | yes (1)             | no (-1) | no (-1)          | yes (1)       | А     |

#### Single Sample Rule: ۲

- Sample is misclassified if  $a^t y_i = \sum_{k=0}^{4} a_k y_i^{(k)} < 0$  Gradient descent single sample rule:  $a^{(k+1)} = a^{(k)} + \eta^{(k)} \sum_{y \in Y_M} y$
- Set **η** fixed learning rate to  $\eta^{(k)} = 1$ :  $a^{(k+1)} = a^{(k)} + y_M$

• Set equal initial weights

```
a^{(1)} = [0.25, 0.25, 0.25, 0.25, 0.25]
```

 Visit all samples sequentially, modifying the weights after each misclassified example

| name  | a <sup>t</sup> y                                    | misclassified? |
|-------|-----------------------------------------------------|----------------|
| Jane  | 0.25*1+0.25*1+0.25*1+0.25*(-1)+0.25*(-1)>0          | no             |
| Steve | 0.25*(-1)+0.25*(-1)+0.25*(-1)+0.25*(-1)+0.25*(-1)<0 | yes            |

• New weights

$$a^{(2)} = a^{(1)} + y_{M} = \begin{bmatrix} 0.25 & 0.25 & 0.25 & 0.25 \\ + \begin{bmatrix} -1 & -1 & -1 & -1 \end{bmatrix} = \\ = \begin{bmatrix} -0.75 & -0.75 & -0.75 & -0.75 \end{bmatrix}$$

#### $a^{(2)} = [-0.75 - 0.75 - 0.75 - 0.75 - 0.75]$

| name | a <sup>t</sup> y                                  | misclassified? |
|------|---------------------------------------------------|----------------|
| Mary | -0.75*(-1)-0.75*1 -0.75 *1 -0.75 *1 -0.75*(-1) <0 | yes            |

• New weights

$$a^{(3)} = a^{(2)} + y_M = [-0.75 - 0.75 - 0.75 - 0.75] + + [-1 1 1 1 - 1] = = [-1.75 0.25 0.25 0.25 - 1.75]$$

#### $a^{(3)} = [-1.75 \quad 0.25 \quad 0.25 \quad 0.25 \quad -1.75]$

| name  | a <sup>t</sup> y                                   | misclassified? |
|-------|----------------------------------------------------|----------------|
| Peter | -1.75 *1 +0.25* 1+0.25* (-1) +0.25 *(-1)-1.75*1 <0 | yes            |

• New weights

$$a^{(4)} = a^{(3)} + y_M = [-1.75 \quad 0.25 \quad 0.25 \quad 0.25 \quad -1.75] +$$
  
+ $[1 \quad 1 \quad -1 \quad -1 \quad 1] =$   
= $[-0.75 \quad 1.25 \quad -0.75 \quad -0.75 \quad -0.75$ 

 $a^{(4)} = [-0.75 \ 1.25 \ -0.75 \ -0.75 \ -0.75]$ 

| name  | a <sup>t</sup> y                                       | misclassified? |
|-------|--------------------------------------------------------|----------------|
| Jane  | -0.75 *1 +1.25*1 -0.75*1 -0.75 *(-1) -0.75 *(-1)+0     | no             |
| Steve | -0.75*(-1)+1.25*(-1) -0.75*(-1) -0.75*(-1)-0.75*(-1)>0 | no             |
| Mary  | -0.75 *(-1)+1.25*1-0.75*1 -0.75 *1 -0.75*(-1) >0       | no             |
| Peter | -0.75 *1+ 1.25*1-0.75* (-1)-0.75* (-1) -0.75 *1 >0     | no             |

- Thus the discriminant function is:  $g(y) = -0.75 * y^{(0)} + 1.25 * y^{(1)} - 0.75 * y^{(2)} - 0.75 * y^{(3)} - 0.75 * y^{(4)}$
- Converting back to the original features x:

 $g(x) = 1.25 * x^{(1)} - 0.75 * x^{(2)} - 0.75 * x^{(3)} - 0.75 * x^{(4)} - 0.75$ 

• Converting back to the original features x:

 $\begin{array}{c} 1.25 * x^{(1)} - 0.75 * x^{(2)} - 0.75 * x^{(3)} - 0.75 * x^{(4)} > 0.75 \Rightarrow grade \ A \\ 1.25 * x^{(1)} - 0.75 * x^{(2)} - 0.75 * x^{(3)} - 0.75 * x^{(4)} < 0.75 \Rightarrow grade \ F \\ & & & & & & & \\ good & tall & sleeps in class & chews gum \\ attendance \end{array}$ 

- This is just one possible solution vector.
- If we started with weights a<sup>(1)</sup>=[0,0.5, 0.5, 0, 0], the solution would be [-1,1.5, -0.5, -1, -1]

 $1.5 * x^{(1)} - 0.5 * x^{(2)} - x^{(3)} - x^{(4)} > 1 \Rightarrow grade A$  $1.5 * x^{(1)} - 0.5 * x^{(2)} - x^{(3)} - x^{(4)} < 1 \Rightarrow grade F$ 

• In this solution, being tall is the least important feature

- Suppose we have 2 features and the samples are:
  - Class 1: [2,1], [4,3], [3,5]
  - Class 2: [1,3] and [5,6]
- These samples are not separable by a line
- Still would like to get approximate separation by a line
  - A good choice is shown in green

Some samples may be "noisy", and we could accept them being misclassified



 Obtain y1, y2, y3, y4 by adding extra feature and "normalizing"

$$y_{1} = \begin{bmatrix} 1\\2\\1 \end{bmatrix} \quad y_{2} = \begin{bmatrix} 1\\4\\3 \end{bmatrix} \quad y_{3} = \begin{bmatrix} 1\\3\\5 \end{bmatrix} \quad y_{4} = \begin{bmatrix} -1\\-1\\-3 \end{bmatrix} \quad y_{5} = \begin{bmatrix} -1\\-5\\-6 \end{bmatrix}$$

- Apply Perceptron single sample algorithm
- Initial equal weights

   a<sup>(1)</sup> = [1 1 1]
   Line equation x<sup>(1)</sup>+x<sup>(2)</sup>+1=0
- Fixed learning rate  $\eta = 1$  $a^{(k+1)} = a^{(k)} + y_M$

$$\boldsymbol{y}_1 = \begin{bmatrix} \boldsymbol{1} \\ \boldsymbol{2} \\ \boldsymbol{1} \end{bmatrix} \quad \boldsymbol{y}_2 = \begin{bmatrix} \boldsymbol{1} \\ \boldsymbol{4} \\ \boldsymbol{3} \end{bmatrix} \quad \boldsymbol{y}_3 = \begin{bmatrix} \boldsymbol{1} \\ \boldsymbol{3} \\ \boldsymbol{5} \end{bmatrix} \quad \boldsymbol{y}_4 = \begin{bmatrix} -\boldsymbol{1} \\ -\boldsymbol{1} \\ -\boldsymbol{3} \end{bmatrix} \quad \boldsymbol{y}_5 = \begin{bmatrix} -\boldsymbol{1} \\ -\boldsymbol{5} \\ -\boldsymbol{6} \end{bmatrix}$$

- $y_{1}^{t}a^{(1)} = [1 \ 1 \ 1]^{*}[1 \ 2 \ 1]^{t} > 0$
- $y_{2}^{t}a^{(1)} = [1 \ 1 \ 1]^{*}[1 \ 4 \ 3]^{t} > 0$
- $y_{3}a^{(1)} = [1 \ 1 \ 1]^{*}[1 \ 3 \ 5]^{t} > 0$



$$a^{(1)} = \begin{bmatrix} 1 \ 1 \ 1 \ 1 \end{bmatrix} a^{(k+1)} = a^{(k)} + y_M$$
  

$$y_1 = \begin{bmatrix} 1 \ 2 \ 1 \end{bmatrix} y_2 = \begin{bmatrix} 1 \ 4 \ 3 \end{bmatrix} y_3 = \begin{bmatrix} 1 \ 3 \ 5 \end{bmatrix} y_4 = \begin{bmatrix} -1 \ -1 \ -3 \end{bmatrix} y_5 = \begin{bmatrix} -1 \ -5 \ -6 \end{bmatrix}$$
  

$$y^t_4 a^{(1)} = \begin{bmatrix} 1 \ 1 \ 1 \end{bmatrix}^* \begin{bmatrix} -1 \ -1 \ -3 \end{bmatrix}^t = -5 < 0$$
  

$$a^{(2)} = a^{(1)} + y_M = \begin{bmatrix} 1 \ 1 \ 1 \end{bmatrix} + \begin{bmatrix} -1 \ -1 \ -3 \end{bmatrix} = \begin{bmatrix} 0 \ 0 \ -2 \end{bmatrix}$$
  

$$y^t_5 a^{(2)} = \begin{bmatrix} 0 \ 0 \ -2 \end{bmatrix}^* \begin{bmatrix} -1 \ -5 \ -6 \end{bmatrix}^t = 12 > 0$$
  

$$y^t_1 a^{(2)} = \begin{bmatrix} 0 \ 0 \ -2 \end{bmatrix}^* \begin{bmatrix} 1 \ 2 \ 1 \end{bmatrix}^t < 0$$
  

$$a^{(3)} = a^{(2)} + y_M = \begin{bmatrix} 0 \ 0 \ -2 \end{bmatrix} + \begin{bmatrix} 1 \ 2 \ 1 \end{bmatrix} = \begin{bmatrix} 1 \ 2 \ -1 \end{bmatrix}$$

ECSE-6610 Pattern Recognition

$$a^{(3)} = \begin{bmatrix} 1 \ 2 \ -1 \end{bmatrix} \quad a^{(k+1)} = a^{(k)} + y_{M}$$
  

$$y_{1} = \begin{bmatrix} \frac{1}{2} \\ 1 \end{bmatrix} \quad y_{2} = \begin{bmatrix} \frac{1}{4} \\ 3 \end{bmatrix} \quad y_{3} = \begin{bmatrix} \frac{1}{3} \\ 5 \end{bmatrix} \quad y_{4} = \begin{bmatrix} -1 \\ -1 \\ -3 \end{bmatrix} \quad y_{5} = \begin{bmatrix} -1 \\ -5 \\ -6 \end{bmatrix}$$
  

$$y^{t}_{2} a^{(3)} = \begin{bmatrix} 1 \ 4 \ 3 \end{bmatrix}^{*} \begin{bmatrix} 1 \ 2 \ -1 \end{bmatrix}^{t} = 6 > 0 \quad \checkmark$$
  

$$y^{t}_{3} a^{(3)} = \begin{bmatrix} 1 \ 4 \ 3 \end{bmatrix}^{*} \begin{bmatrix} 1 \ 2 \ -1 \end{bmatrix}^{t} = 6 > 0 \quad \checkmark$$
  

$$y^{t}_{4} a^{(3)} = \begin{bmatrix} -1 \ -1 \ -3 \end{bmatrix}^{*} \begin{bmatrix} 1 \ 2 \ -1 \end{bmatrix}^{t} > 0 \quad \checkmark$$
  

$$y^{t}_{4} a^{(3)} = \begin{bmatrix} -1 \ -1 \ -3 \end{bmatrix}^{*} \begin{bmatrix} 1 \ 2 \ -1 \end{bmatrix}^{t} = 0$$
  

$$a^{(4)} = a^{(3)} + y_{M} = \begin{bmatrix} 1 \ 2 \ -1 \end{bmatrix}^{t} = \begin{bmatrix} -1 \ -1 \ -1 \ -1 \ -3 \end{bmatrix} = \begin{bmatrix} 0 \ 1 \ -4 \end{bmatrix}$$

ECSE-6610 Pattern Recognition

Lecture 10

$$\boldsymbol{a}^{(4)} = \begin{bmatrix} \boldsymbol{0} \ \boldsymbol{1} - \boldsymbol{4} \end{bmatrix} \qquad \boldsymbol{a}^{(k+1)} = \boldsymbol{a}^{(k)} + \boldsymbol{y}_{M}$$
$$\boldsymbol{y}_{1} = \begin{bmatrix} \boldsymbol{1} \\ \boldsymbol{2} \\ \boldsymbol{1} \end{bmatrix} \qquad \boldsymbol{y}_{2} = \begin{bmatrix} \boldsymbol{1} \\ \boldsymbol{4} \\ \boldsymbol{3} \end{bmatrix} \qquad \boldsymbol{y}_{3} = \begin{bmatrix} \boldsymbol{1} \\ \boldsymbol{3} \\ \boldsymbol{5} \end{bmatrix} \qquad \boldsymbol{y}_{4} = \begin{bmatrix} -\boldsymbol{1} \\ -\boldsymbol{1} \\ -\boldsymbol{3} \end{bmatrix} \qquad \boldsymbol{y}_{5} = \begin{bmatrix} -\boldsymbol{1} \\ -\boldsymbol{5} \\ -\boldsymbol{6} \end{bmatrix}$$



- y<sub>5</sub><sup>t</sup>a<sup>(4)</sup>=[-1 -5 -6]\*[0 1 -4]=19>0
- y<sub>1</sub><sup>t</sup>a<sup>(4)</sup>=[1 2 1]\*[0 1 -4]=-2<0</li>

$$\boldsymbol{a}^{(4)} = \begin{bmatrix} \boldsymbol{0} \ \boldsymbol{1} - \boldsymbol{4} \end{bmatrix} \quad \boldsymbol{a}^{(k+1)} = \boldsymbol{a}^{(k)} + \boldsymbol{y}_{M}$$
$$\boldsymbol{y}_{1} = \begin{bmatrix} \boldsymbol{1} \\ \boldsymbol{2} \\ \boldsymbol{1} \end{bmatrix} \quad \boldsymbol{y}_{2} = \begin{bmatrix} \boldsymbol{1} \\ \boldsymbol{4} \\ \boldsymbol{3} \end{bmatrix} \quad \boldsymbol{y}_{3} = \begin{bmatrix} \boldsymbol{1} \\ \boldsymbol{3} \\ \boldsymbol{5} \end{bmatrix} \quad \boldsymbol{y}_{4} = \begin{bmatrix} -\boldsymbol{1} \\ -\boldsymbol{1} \\ -\boldsymbol{3} \end{bmatrix} \quad \boldsymbol{y}_{5} = \begin{bmatrix} -\boldsymbol{1} \\ -\boldsymbol{5} \\ -\boldsymbol{6} \end{bmatrix}$$



- y<sub>5</sub><sup>t</sup>a<sup>(4)</sup>=[-1 -5 -6]\*[0 1 -4]=19>0
- y<sub>1</sub><sup>t</sup>a<sup>(4)</sup>=[1 2 1]\*[0 1 -4]=-2<0</li>

- We can continue this forever.
- There is no solution vector **a** satisfying for all **x**i

$$\boldsymbol{a}^{t}\boldsymbol{y}_{i} = \sum_{k=0}^{5} \boldsymbol{a}_{k}\boldsymbol{y}_{i}^{(k)} > \boldsymbol{0}$$

- Need to stop but at a good point
- Will not converge in the nonseparable case
- To ensure convergence can set

$$\eta^{(k)} = \frac{\eta^{(1)}}{k}$$

 However we are not guaranteed that we will stop at a good point

ECSE-6610 Pattern Recognition



#### **Convergence of Perceptron Rules**

- If classes are linearly separable and we use fixed learning rate, that is for  $\eta(k)$  =const
- Then, both the single sample and batch perceptron rules converge to a correct solution (could be any a in the solution space)
- If classes are not linearly separable:

- The algorithm does not stop, it keeps looking for a solution which does not exist

– By choosing appropriate learning rate, we can always ensure convergence:

- For example inverse linear learning rate:

- For inverse linear learning rate, convergence in the linearly separable case can also be proven

– No guarantee that we stopped at a good point, but there are good reasons to choose inverse linear learning rate

#### Perceptron Rule and Gradient decent

Linearly separable data

 perceptron rule with gradient decent works well

# Linearly non-separable data need to stop perceptron rule algorithm at a good point, this maybe tricky

#### **Batch Rule**

 Smoother gradient because all samples are used

#### Single Sample Rule

- easier to analyze
- Concentrates more than necessary on any isolated "noisy" training examples

#### Outline

- Perceptron Rule
- Minimum Squared-Error Procedure
- Ho–Kashyap Procedure

#### Minimum Squared-Error Procedures

• Idea: convert to easier and better understood problem



- MSE procedure
  - Choose positive constants  $b_1, b_2, \ldots, b_n$
  - Try to find weight vector a such that at  $y_i = b_i$  for all samples  $y_i$
  - If we can find such a vector, then a is a solution because the bi's are positive
  - Consider all the samples (not just the misclassified ones)

## **MSE** Margins



- If a<sup>t</sup>y<sub>i</sub> = b<sub>i</sub>, yi must be at distance bi from the separating hyperplane (normalized by ||a||)
- Thus b<sub>1</sub>, b<sub>2</sub>,..., b<sub>n</sub> give relative expected distances or "margins" of samples from the hyperplane
- Should make bi small if sample i is expected to be near separating hyperplane, and large otherwise
- In the absence of any additional information, set b<sub>1</sub> = b<sub>2</sub>
   =... = b<sub>n</sub> = 1

#### **MSE Matrix Notation**

Need to solve n equations

$$\begin{cases} \boldsymbol{a}^{t}\boldsymbol{y}_{1} = \boldsymbol{b}_{1} \\ \vdots \\ \boldsymbol{a}^{t}\boldsymbol{y}_{n} = \boldsymbol{b}_{n} \end{cases}$$

In matrix form Ya=b

$$\begin{bmatrix} y_{1}^{(0)} & y_{1}^{(1)} & \cdots & y_{1}^{(d)} \\ y_{2}^{(0)} & y_{2}^{(1)} & \cdots & y_{2}^{(d)} \\ \vdots & & & \vdots \\ \vdots & & & & \vdots \\ y_{n}^{(0)} & y_{n}^{(1)} & \cdots & y_{n}^{(d)} \end{bmatrix} \begin{bmatrix} a_{0} \\ a_{1} \\ \vdots \\ a_{d} \end{bmatrix} = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{n} \end{bmatrix}$$

#### **Exact Solution is Rare**

- Need to solve a linear system Ya = b
  - -Y is an  $n \times (d + 1)$  matrix
- Exact solution only if Y is non-singular and square (the inverse Y<sup>-1</sup> exists)
  - $-a = Y^{-1}b$
  - (number of samples) = (number of features + 1)
  - Almost never happens in practice
  - Guaranteed to find the separating hyperplane

## **Approximate Solution**

• Typically **Y** is overdetermined, that is it has more rows (examples) than columns (features)

If it has more features than examples, should reduce dimensionality

- Need Ya = b, but no exact solution exists for an overdetermined system of equations
  - More equations than unknowns
- Find an approximate solution
  - Note that approximate solution a does not necessarily give the separating hyperplane in the separable case

 But the hyperplane corresponding to a may still be a good solution, especially if there is no separating hyperplane

### **MSE** Criterion Function

 Minimum squared error approach: find a which minimizes the length of the error vector e



Thus minimize the minimum squared error criterion function:

$$J_{s}(a) = ||Ya - b||^{2} = \sum_{i=1}^{n} (a^{t}y_{i} - b_{i})^{2}$$

 Unlike the perceptron criterion function, we can optimize the minimum squared error criterion function analytically by setting the gradient to 0

Lecture 10

Computing the Gradient

$$J_{s}(a) = \|Ya - b\|^{2} = \sum_{i=1}^{n} (a^{t}y_{i} - b_{i})^{2}$$

$$\nabla J_{s}(a) = \begin{bmatrix} \frac{\partial J_{s}}{\partial a_{0}} \\ \vdots \\ \frac{\partial J_{s}}{\partial a_{d}} \end{bmatrix} = \frac{dJ_{s}}{da} = \sum_{i=1}^{n} \frac{d}{da} (a^{t}y_{i} - b_{i})^{2}$$

$$= \sum_{i=1}^{n} 2(a^{t}y_{i} - b_{i}) \frac{d}{da} (a^{t}y_{i} - b_{i})$$

$$= \sum_{i=1}^{n} 2(a^{t}y_{i} - b_{i})y_{i}$$

$$= 2Y^{t}(Ya - b)$$

ECSE-6610 Pattern Recognition

**Pseudo-Inverse Solution** 

$$\nabla \boldsymbol{J}_{\boldsymbol{s}}(\boldsymbol{a}) = \boldsymbol{2}\boldsymbol{Y}^{t}(\boldsymbol{Y}\boldsymbol{a} - \boldsymbol{b})$$

• Setting the gradient to 0:

$$2Y^{t}(Ya-b)=0 \implies Y^{t}Ya=Y^{t}b$$

- The matrix YtY is square (it has d +1 rows and columns) and it is often non-singular
- If YY is non-singular, its inverse exists and we can solve for a uniquely:

$$\boldsymbol{a} = \left(\boldsymbol{Y}^{t}\boldsymbol{Y}\right)^{-1}\boldsymbol{Y}^{t}\boldsymbol{b}$$

pseudo inverse of  $\mathbf{Y}$  $((\mathbf{Y}^{t}\mathbf{Y})^{-1}\mathbf{Y}^{t})\mathbf{Y} = (\mathbf{Y}^{t}\mathbf{Y})^{-1}(\mathbf{Y}^{t}\mathbf{Y}) = \mathbf{I}$ 

### **MSE Procedures**

- Only guaranteed separating hyperplane if  $Ya \ge 0$ 
  - That is if all elements of vector Ya are positive

$$\mathbf{Y}\mathbf{a} = \begin{bmatrix} \mathbf{b}_1 + \mathbf{\varepsilon}_1 \\ \vdots \\ \mathbf{b}_n + \mathbf{\varepsilon}_n \end{bmatrix}$$

– where  $\varepsilon$  may be negative

If ε<sub>1</sub>,..., ε<sub>n</sub> are small relative to b<sub>1</sub>,..., b<sub>n</sub>, then each element of Ya is positive, and a gives a separating hyperplane

- If the approximation is not good,  $\varepsilon_i$  may be large and negative, for some i, thus  $b_i + \varepsilon_i$  will be negative and a is not a separating hyperplane

 In linearly separable case, least squares solution a does not necessarily give separating hyperplane

#### **MSE Procedures**

- We are free to choose b. We may be tempted to make b large as a way to ensure Ya =b > 0
  - Does not work
  - Let  $\beta$  be a scalar, let's try  $\beta$  b instead of b
- If a\* is a least squares solution to Ya = b, then for any scalar  $\beta$ , the least squares solution to Ya =  $\beta$  b is  $\beta$  a\*

$$\arg \min_{a} \|\mathbf{Y}a - \beta \mathbf{b}\|^{2} = \arg \min_{a} \beta^{2} \|\mathbf{Y}(a / \beta) - \mathbf{b}\|^{2} = \beta a^{*}$$

 Thus if the i-th element of Ya is less than 0, that is y<sub>i</sub><sup>t</sup>a < 0, then y<sub>i</sub><sup>t</sup>(βa) < 0</li>

 The relative difference between components of b matters, but not the size of each individual component

- Class 1: (6 9), (5 7)
- Class 2: (5 9), (0 4)
- Add extra feature and "normalize"



$$y_{1} = \begin{bmatrix} 1\\6\\9 \end{bmatrix} \quad y_{2} = \begin{bmatrix} 1\\5\\7 \end{bmatrix} \quad y_{3} = \begin{bmatrix} -1\\-5\\-9 \end{bmatrix} \quad y_{4} = \begin{bmatrix} -1\\0\\-4 \end{bmatrix}$$
$$Y = \begin{bmatrix} 1&6&9\\1&5&7\\-1&-5&-9\\-1&0&-4 \end{bmatrix}$$

ECSE-6610 Pattern Recognition

- Choose **b=[1111]**<sup>⊤</sup>
- In Matlab, a=Y\b solves the least squares problem

$$a = \begin{bmatrix} 2.66 \\ 1.045 \\ -0.944 \end{bmatrix}$$



- Note a is an approximation to Ya = b, since no exact solution exists
- This solution gives a separating hyperplane since Ya > 0



- Class 1: (6 9), (5 7)
- Class 2: (5 9), (0 10)
- The last sample is very far compared to others from the separating hyperplane

10-9-8-7-6-1 0 1 2 3 4 5 6

$$\mathbf{y}_{1} = \begin{bmatrix} \mathbf{1} \\ \mathbf{6} \\ \mathbf{9} \end{bmatrix} \quad \mathbf{y}_{2} = \begin{bmatrix} \mathbf{1} \\ \mathbf{5} \\ \mathbf{7} \end{bmatrix} \quad \mathbf{y}_{3} = \begin{bmatrix} -\mathbf{1} \\ -\mathbf{5} \\ -\mathbf{9} \end{bmatrix} \quad \mathbf{y}_{4} = \begin{bmatrix} -\mathbf{1} \\ \mathbf{0} \\ -\mathbf{10} \end{bmatrix}$$
$$\mathbf{Y} = \begin{bmatrix} \mathbf{1} & \mathbf{6} & \mathbf{9} \\ \mathbf{1} & \mathbf{5} & \mathbf{7} \\ -\mathbf{1} & -\mathbf{5} & -\mathbf{9} \\ -\mathbf{1} & \mathbf{0} & -\mathbf{10} \end{bmatrix}$$

- Choose **b=[1 1 1 1]**<sup>T</sup>
- In Matlab, a=Y\b solves the least squares problem

$$a = \begin{bmatrix} 3.2 \\ 0.2 \\ -0.4 \end{bmatrix} \qquad Ya = \begin{bmatrix} 0.2 \\ 0.9 \\ -0.04 \\ 1.16 \end{bmatrix} \neq \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$



This solution does not provide a separating hyperplane since a<sup>t</sup>y<sub>3</sub> < 0</li>

- MSE pays too much attention to isolated "noisy" examples
  - such examples are called outliers



- No problems with convergence
- Solution ranges from reasonable to good

- We can see that the 4-th point is vary far from separating hyperplane
   In practice we don't know this
- A more appropriate b could be b =
- In Matlab, a=Y\b solves the least squares problem



$$a = \begin{bmatrix} -1.1 \\ 1.7 \\ -0.9 \end{bmatrix} \qquad Ya = \begin{bmatrix} 0.9 \\ 1.0 \\ 0.8 \\ 10.0 \end{bmatrix} \neq \begin{bmatrix} 1 \\ 1 \\ 1 \\ 10 \end{bmatrix}$$

 This solution gives the separating hyperplane since Ya > 0

Lecture 10

#### Gradient Descent for MSE

$$\boldsymbol{J_s(a)} = \left\|\boldsymbol{Ya} - \boldsymbol{b}\right\|^2$$

- May wish to find MSE solution by gradient descent:
  - 1. Computing the inverse of Y'Y may be too costly
  - Y<sup>t</sup>Y may be close to singular if samples are highly correlated (rows of Y are almost linear combinations of each other) computing the inverse of Y<sup>t</sup>Y is not numerically stable
- As shown before, the gradient is:

$$\nabla \boldsymbol{J}_{\boldsymbol{s}}(\boldsymbol{a}) = \boldsymbol{2}\boldsymbol{Y}^{t}(\boldsymbol{Y}\boldsymbol{a} - \boldsymbol{b})$$

#### Widrow-Hoff Procedure

$$\nabla \boldsymbol{J}_{\boldsymbol{s}}(\boldsymbol{a}) = \boldsymbol{2}\boldsymbol{Y}^{t}(\boldsymbol{Y}\boldsymbol{a} - \boldsymbol{b})$$

• Thus the update rule for gradient descent is:

$$\boldsymbol{a}^{(k+1)} = \boldsymbol{a}^{(k)} - \boldsymbol{\eta}^{(k)} \boldsymbol{Y}^{t} \left( \boldsymbol{Y} \boldsymbol{a}^{(k)} - \boldsymbol{b} \right)$$

- If n<sup>(k)</sup>=n<sup>(1)</sup>/k, then a<sup>(k)</sup> converges to the MSE solution a, that is Y<sup>t</sup>(Ya-b)=0
- The Widrow-Hoff procedure reduces storage requirements by considering single samples sequentially

$$\boldsymbol{a}^{(k+1)} = \boldsymbol{a}^{(k)} - \eta^{(k)} \boldsymbol{y}_i (\boldsymbol{y}_i^t \boldsymbol{a}^{(k)} - \boldsymbol{b}_i)$$

#### Outline

- Perceptron Rule
- Minimum Squared-Error Procedure
- Ho–Kashyap Procedure

- In the MSE procedure, if **b** is chosen arbitrarily, finding separating hyperplane is not guaranteed.
- Suppose training samples are linearly separable. Then there is **a**<sup>s</sup> and positive **b**<sup>s</sup> s.t.

 $Ya^s = b^s > 0$ 

- If we knew **b**<sup>s</sup> could apply MSE procedure to find the separating hyperplane
- Idea: find both **a**<sup>s</sup> and **b**<sup>s</sup>
- Minimize the following criterion function, restricting to positive b:

$$\boldsymbol{J}_{HK}(\boldsymbol{a},\boldsymbol{b}) = \left\|\boldsymbol{Y}\boldsymbol{a} - \boldsymbol{b}\right\|^2$$

$$\boldsymbol{J}_{HK}(\boldsymbol{a},\boldsymbol{b}) = \|\boldsymbol{Y}\boldsymbol{a} - \boldsymbol{b}\|^2$$

• As usual, take partial derivatives w.r.t. a and b

$$\nabla_a J_{HK} = 2Y^t (Ya - b) = 0$$
$$\nabla_b J_{HK} = -2(Ya - b) = 0$$

- Use modified gradient descent procedure to find a minimum of JHK(a,b)
- Alternate the two steps below until convergence:
  - **(1)** Fix b and minimize  $J_{HK}(a,b)$  with respect to a
  - **(2)** Fix a and minimize  $J_{HK}(a,b)$  with respect to b

$$\nabla_a J_{HK} = 2Y^t (Ya - b) = 0 \qquad \nabla_b J_{HK} = -2(Ya - b) = 0$$

- Alternate the two steps below until convergence:
  - (1) Fix b and minimize  $J_{HK}(a,b)$  with respect to a
  - **(2)** Fix a and minimize  $J_{HK}(a,b)$  with respect to b
- Step (1) can be performed with pseudoinverse –For fixed b minimum of JHK(a,b) with respect to a is found by solving

$$2Y^t(Ya-b)=0$$

-Thus

$$\boldsymbol{a} = \left(\boldsymbol{Y}^{t}\boldsymbol{Y}\right)^{-1}\boldsymbol{Y}^{t}\boldsymbol{b}$$

- Step 2: fix a and minimize JHK(a,b) with respect to b
- We can't use **b** = **Ya** because **b** has to be positive
- Solution: use modified gradient descent
- Regular gradient descent rule:

$$\boldsymbol{b}^{(k+1)} = \boldsymbol{b}^{(k)} - \eta^{(k)} \nabla_{\boldsymbol{b}} \boldsymbol{J} (\boldsymbol{a}^{(k)}, \boldsymbol{b}^{(k)})$$

$$b^{(k+1)} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - 2 \cdot \begin{bmatrix} 2 \\ -3 \\ -2 \end{bmatrix} = \begin{bmatrix} -3 \\ 7 \\ 5 \end{bmatrix}$$

- Start with positive b, follow negative gradient but refuse to decrease any components of b
- This can be achieved by setting all the positive components of ⊽<sub>▶</sub>J to 0

$$b^{(k+1)} = b^{(k)} - \eta \frac{1}{2} \Big[ \nabla_{b} J \big( a^{(k)}, b^{(k)} \big) - |\nabla_{b} J \big( a^{(k)}, b^{(k)} \big) | \Big]$$

here |v| denotes vector we get after applying absolute value to all elements of v

$$b^{(k+1)} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - 2 * \frac{1}{2} \begin{bmatrix} 2 \\ -3 \\ -2 \end{bmatrix} - \begin{bmatrix} 2 \\ 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 0 \\ -6 \\ -4 \end{bmatrix} = \begin{bmatrix} 1 \\ 7 \\ 5 \end{bmatrix}$$

 Not doing steepest descent anymore, but we are still doing descent and ensure that b is positive

$$b^{(k+1)} = b^{(k)} - \eta \frac{1}{2} \left[ \nabla_{b} J(a^{(k)}, b^{(k)}) - |\nabla_{b} J(a^{(k)}, b^{(k)})| \right]$$
$$\nabla_{b} J = -2(Ya - b) = 0$$

Let 
$$e^{(k)} = Ya^{(k)} - b^{(k)} = -\frac{1}{2}\nabla J_b(a^{(k)}, b^{(k)})$$

Then

$$b^{(k+1)} = b^{(k)} - \eta \frac{1}{2} \left[ -2e^{(k)} - |2e^{(k)}| \right]$$
$$= b^{(k)} + \eta \left[ e^{(k)} + |e^{(k)}| \right]$$

ECSE-6610 Pattern Recognition

• The final Ho–Kashyap procedure:

0) Start with arbitrary *a*<sup>(1)</sup> and *b*<sup>(1)</sup> > 0, let k = 1
 *repeat* steps (1) through (4)
 1) *e*<sup>(k)</sup> = *Ya*<sup>(k)</sup> - *b*<sup>(k)</sup>

2) Solve for  $b^{(k+1)}$  using  $a^{(k)}$  and  $b^{(k)}$  $b^{(k+1)} = b^{(k)} + \eta [e^{(k)} + |e^{(k)}|]$ 

3) Solve for 
$$a^{(k+1)}$$
 using  $b^{(k+1)}$   
 $a^{(k+1)} = (Y^{t}Y)^{-1}Y^{t}b^{(k+1)}$   
4)  $k = k + 1$   
*until*  $e^{(k)} \ge 0$  or  $k \ge k_{max}$  or  $b^{(k+1)} = b^{(k)}$ 

• For convergence, learning rate should be fixed between  $0 < \eta < 1$ .

$$\boldsymbol{b}^{(k+1)} = \boldsymbol{b}^{(k)} + \eta \left[ \boldsymbol{e}^{(k)} + | \boldsymbol{e}^{(k)} | \right]$$

• What if **e**<sup>(k)</sup> is negative for all components?

 $b^{(k+1)} = b^{(k)}$  and corrections stop

- Write  $e^{(k)}$  out:  $e^{(k)} = Ya^{(k)} - b^{(k)} = Y(Y^{t}Y)^{-1}Y^{t}b^{(k)} - b^{(k)}$
- Multiply by  $\mathbf{Y}^t$ :  $\mathbf{Y}^t \mathbf{e}^{(k)} = \mathbf{Y}^t \left( \mathbf{Y} \left( \mathbf{Y}^t \mathbf{Y} \right)^{-1} \mathbf{Y}^t \mathbf{b}^{(k)} - \mathbf{b}^{(k)} \right) = \mathbf{Y}^t \mathbf{b}^{(k)} - \mathbf{Y}^t \mathbf{b}^{(k)} = \mathbf{0}$
- Thus

$$Y^t e^{(k)} = 0$$

Suppose training samples are linearly separable.
 Then there is a<sup>s</sup> and positive b<sup>s</sup> s.t

$$Ya^s = b^s > 0$$

- Multiply both sides by  $(\mathbf{e}^{(k)})^t$  $\mathbf{0} = \left(\mathbf{e}^{(k)}\right)^t \mathbf{Y} \mathbf{a}^s = \left(\mathbf{e}^{(k)}\right)^t \mathbf{b}^s$
- Either by  $e^{(k)} = 0$  or one of its components is positive

- In the linearly separable case,
  - $-\mathbf{e}^{(k)}=0$ , found solution, stop
  - one of components of  $e^{(k)}$  is positive, algorithm continues
- In non separable case,
  - $e^{(k)}$  will have only negative components eventually, thus found proof of nonseparability

No bound on how many iteration need for the proof of nonseparability

#### Example

- Class 1: (6,9), (5,7)
- Class 2: (5,9), (0, 10)

• Matrix 
$$Y = \begin{bmatrix} 7 & 6 & 9 \\ 1 & 5 & 7 \\ -1 & -5 & -9 \\ -1 & 0 & -10 \end{bmatrix}$$

• Start with 
$$\mathbf{a}^{(1)} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$
 and  $\mathbf{b}^{(1)} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ 

• Use fixed learning  $\eta = 0.9$ 

• At the start 
$$Ya^{(1)} = \begin{bmatrix} 16\\13\\-15\\-11 \end{bmatrix}$$



### Example

• Iteration 1:

$$\mathbf{e}^{(1)} = \mathbf{Y}\mathbf{a}^{(1)} - \mathbf{b}^{(1)} = \begin{bmatrix} 16\\13\\-15\\-11 \end{bmatrix} - \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} 15\\12\\-16\\-12 \end{bmatrix}$$

- solve for  $\mathbf{b}^{(2)}$  using  $\mathbf{a}^{(1)}$  and  $\mathbf{b}^{(1)}$  $\mathbf{b}^{(2)} = \mathbf{b}^{(1)} + 0.9[\mathbf{e}^{(1)} + /\mathbf{e}^{(1)}] = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} + 0.9\begin{bmatrix} 15\\12\\-16\\-12 \end{bmatrix} + \begin{bmatrix} 15\\12\\16\\12 \end{bmatrix} = \begin{bmatrix} 28\\22.6\\1\\1 \end{bmatrix}$
- solve for **a**<sup>(2)</sup> using **b**<sup>(2)</sup>

$$\boldsymbol{a}^{(2)} = (\boldsymbol{Y}^{T} \boldsymbol{Y})^{-1} \boldsymbol{Y}^{T} \boldsymbol{b}^{(2)} = \begin{bmatrix} -2.6 & 4.7 & 1.6 & -0.5 \\ 0.16 & -0.1 & -0.1 & 0.2 \\ 0.26 & -0.5 & -0.2 & -0.1 \end{bmatrix} * \begin{bmatrix} 28 \\ 22.6 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 34.6 \\ 2.7 \\ -3.8 \end{bmatrix}$$

### Example

- Continue iterations until Ya > 0

   In practice, continue until minimum component of Ya is less than 0.01
- After 104 iterations converged to solution

$$a = \begin{bmatrix} -34.9\\27.3\\-11.3 \end{bmatrix} \qquad b = \begin{bmatrix} 28\\23\\1\\147 \end{bmatrix}$$

• a does gives a separating hyperplane

$$Ya = \begin{bmatrix} 27.2 \\ 22.5 \\ 0.14 \\ 1.48 \end{bmatrix}$$



# LDF Summary

- Perceptron procedures
  - Find a separating hyperplane in the linearly separable case,
  - Do not converge in the non-separable case
  - Can force convergence by using a decreasing learning rate, but are not guaranteed a reasonable stopping point
- MSE procedures
  - Converge in separable and not separable case
  - May not find separating hyperplane even if classes are linearly separable
  - Use pseudoinverse if Y'Y is not singular and not too large
  - Use gradient descent (Widrow-Hoff procedure) otherwise
- Ho–Kashyap procedures
  - always converge
  - find separating hyperplane in the linearly separable case
  - more costly



ECSE-6610 Pattern Recognition

C. Long

Lecture 10

February 17, 2018

63