Lecture 10: Linear Discriminant Functions (2)

Dr. Chengjiang Long
Computer Vision Researcher at Kitware Inc. Adjunct Professor at RPI. Email: longc3@rpi.edu

Recap Previous Lecture

Outline

- Perceptron Rule
- Minimum Squared-Error Procedure
- Ho-Kashyap Procedure

Outline

- Perceptron Rule
- Minimum Squared-Error Procedure
- Ho-Kashyap Procedure

"Dual" Problem

Classification rule:
If $\boldsymbol{\alpha}^{\text {t }} \boldsymbol{y}_{i}>0$ assign \boldsymbol{y}_{i} to ω_{1} else if $\boldsymbol{\alpha}^{\mathrm{t}} \mathbf{y}_{\mathbf{i}}<0$ assign \mathbf{y}_{i} to ω_{2}

Seek a hyperplane that separates patterns from different categories

- If \mathbf{y}_{i} in ω_{2}, replace \mathbf{y}_{i} by $-\boldsymbol{y}_{\mathrm{i}}$
- Find $\boldsymbol{\alpha}$ such that: $\boldsymbol{\alpha}^{+} \mathbf{y}_{i}>0$

Seek a hyperplane that puts normalized patterns on the same (positive) side

Perceptron rule

- Use Gradient Descent assuming that the error function to be minimized is:

$$
J_{p}(\boldsymbol{\alpha})=\sum_{\mathbf{y} \in Y(\boldsymbol{\alpha})}\left(-\boldsymbol{\alpha}^{t} \mathbf{y}\right) \quad \begin{aligned}
& \\
& \begin{array}{l}
\text { the set of samples } \\
\text { misclassified by } \boldsymbol{\alpha} .
\end{array}
\end{aligned}
$$

- If $Y(\boldsymbol{\alpha})$ is empty, $J_{p}(\boldsymbol{\alpha})=0$; otherwise, $J_{p}(\boldsymbol{\alpha}) \geq 0$.
- $J_{p}(\boldsymbol{\alpha})$ is $\|\alpha\|$ times the sum of distances of misclassified.
- $J_{p}(\boldsymbol{\alpha})$ is is piecewise linear and thus suitable for gradient descent.

Perceptron Batch Rule

- The gradient of $J_{p}(\boldsymbol{\alpha})$ is:

$$
J_{p}(\boldsymbol{\alpha})=\sum_{\mathbf{y} \in Y(\boldsymbol{\alpha})}\left(-\boldsymbol{\alpha}^{t} \mathbf{y}\right) \quad \square \nabla J_{p}=\sum_{\mathbf{y} \in Y(\boldsymbol{\alpha})}(-\mathbf{y})
$$

- It is not possible to solve analytically $\nabla J_{p}=0$.
- The perceptron update rule is obtained using gradient descent:

$$
\boldsymbol{\alpha}(k+1)=\boldsymbol{\alpha}(k)+\eta(k) \sum_{\mathbf{y} \in Y(\boldsymbol{\alpha})} \mathbf{y}
$$

- It is called batch rule because it is based on all misclassified examples

Perceptron Single Sample Rule

- The gradient decent single sample rule for $J_{p}(a)$ is:

$$
a^{(k+1)}=a^{(k)}+\eta^{(k)} y_{M}
$$

- Note that y_{m} is one sample misclassified by $a^{(k)}$
- Must have a consistent way of visiting samples
- Geometric Interpretation:
- Note that ум is one sample misclassified by $\left(a^{(k)}\right)^{t} y_{M} \leq 0$

$$
\left(a^{(k)}\right)^{\prime} y_{m} \leq 0
$$

-yM is on the wrong side of decision
hyperplane

- Adding пум to a moves the new decision hyperplane in the right direction with respect to ум

Perceptron Single Sample Rule

$$
a^{(k+1)}=a^{(k)}+\eta^{(k)} y_{M}
$$

η is too large, previously correctly classified sample $\boldsymbol{y}_{\boldsymbol{k}}$ is now misclassified

Perceptron Example

	features				grade
name	good attendance?	tall?	sleeps in class?	chews gum?	
Jane	yes (1)	yes (1)	no (-1)	no (-1)	A
Steve	yes (1)	yes (1)	yes (1)	yes (1)	F
Mary	no (-1)	no (-1)	no (-1)	yes (1)	F
Peter	yes (1)	no (-1)	no (-1)	yes (1)	A

- Class 1: students who get A
- Class 2: students who get F

Perceptron Example

	features				grade
name	good attendance?	tall?	sleeps in class?	chews gum?	
Jane	yes (1)	yes (1)	no (-1)	no (-1)	A
Steve	yes (1)	yes (1)	yes (1)	yes (1)	F
Mary	no (-1)	no (-1)	no (-1)	yes (1)	F
Peter	yes (1)	no (-1)	no (-1)	yes (1)	A

- Augment samples by adding an extra feature (dimension) equal to 1

Perceptron Example

	features				grade
name	good attendance?	tall?	sleeps in class?	chews gum?	
Jane	yes (1)	yes (1)	no (-1)	no (-1)	A
Steve	yes (1)	yes (1)	yes (1)	yes (1)	F
Mary	no (-1)	no (-1)	no (-1)	yes (1)	F
Peter	yes (1)	no (-1)	no (-1)	yes (1)	A

- Normalize:
- Replace all examples from class 2 by their negative values $\quad y_{i} \rightarrow-y_{i} \quad \forall y_{i} \in c_{2}$
- Seek a such that: $\quad \boldsymbol{a}^{t} \boldsymbol{y}_{i}>0 \quad \forall \boldsymbol{y}_{i}$

Perceptron Example

	features				grade
name	good attendance?	tall?	sleeps in class?	chews gum?	
Jane	yes (1)	yes (1)	no (-1)	no (-1)	A
Steve	yes (1)	yes (1)	yes (1)	yes (1)	F
Mary	no (-1)	no (-1)	no (-1)	yes (1)	F
Peter	yes (1)	no (-1)	no (-1)	yes (1)	A

- Single Sample Rule:
- Sample is misclassified if $\quad a^{t} \boldsymbol{y}_{i}=\sum_{k=0}^{4} a_{k} y_{i}^{(k)}<0$
- Gradient descent single sample rule: $a^{(k+1)}=a^{(k)}+\eta^{(k)} \sum_{y \in \gamma_{\mu}} y$
- Set η fixed learning rate to $\eta^{(k)}=1: \quad a^{(k+1)}=\boldsymbol{a}^{(k)}+y_{M}$

Perceptron Example

- Set equal initial weights

$$
a^{(1)}=[0.25,0.25,0.25,0.25,0.25]
$$

- Visit all samples sequentially, modifying the weights after each misclassified example

name	$\boldsymbol{a}^{\boldsymbol{t}} \boldsymbol{y}$	misclassified?
Jane	$0.25^{*} 1+0.25^{*} 1+0.25^{*} 1+0.25^{*}(-1)+0.25^{*}(-1)>0$	no
Steve	$0.25^{*}(-1)+0.25^{*}(-1)+0.25^{*}(-1)+0.25^{*}(-1)+0.25^{*}(-1)<0$	yes

- New weights

$$
\begin{aligned}
a^{(2)}=a^{(1)}+y_{M} & =\left[\begin{array}{lllll}
0.25 & 0.25 & 0.25 & 0.25 & 0.25
\end{array}\right]+ \\
& +\left[\begin{array}{lllll}
-1 & -1 & -1 & -1 & -1
\end{array}\right]= \\
& =\left[\begin{array}{llll}
-0.75 & -0.75 & -0.75 & -0.75-0.75
\end{array}\right]
\end{aligned}
$$

Perceptron Example

$$
a^{(2)}=[-0.75-0.75-0.75-0.75-0.75]
$$

name	$\boldsymbol{a}^{\boldsymbol{t}} \boldsymbol{y}$	misclassified?
Mary	$-0.75^{\star}(-1)-0.75^{\star 1}-0.75^{\star} 1-0.75^{*} 1-0.75^{\star}(-1)<0$	yes

- New weights

$$
\begin{aligned}
a^{(3)}=a^{(2)}+y_{M} & =\left[\begin{array}{lllll}
-0.75-0.75 & -0.75-0.75-0.75
\end{array}\right]+ \\
& +\left[\begin{array}{lllll}
-1 & 1 & 1 & 1 & -1
\end{array}\right]= \\
& =\left[\begin{array}{lllll}
-1.75 & 0.25 & 0.25 & 0.25-1.75
\end{array}\right]
\end{aligned}
$$

Perceptron Example

$$
a^{(3)}=\left[\begin{array}{lllll}
-1.75 & 0.25 & 0.25 & 0.25 & -1.75
\end{array}\right]
$$

name	$\boldsymbol{a}^{\boldsymbol{t}} \boldsymbol{y}$	misclassified?
Peter	$-1.75^{*} 1+0.25^{*} 1+0.25^{*}(-1)+0.25^{*}(-1)-1.75^{*} 1<0$	yes

- New weights

$$
\begin{aligned}
a^{(4)}=a^{(3)}+y_{M} & =\left[\begin{array}{lllll}
-1.75 & 0.25 & 0.25 & 0.25 & -1.75
\end{array}\right]+ \\
& +\left[\begin{array}{lllll}
1 & 1 & -1 & -1 & 1
\end{array}\right]= \\
& =\left[\begin{array}{lllll}
-0.75 & 1.25 & -0.75 & -0.75-0.75
\end{array}\right]
\end{aligned}
$$

Perceptron Example

$$
a^{(4)}=\left[\begin{array}{lllll}
-0.75 & 1.25 & -0.75 & -0.75 & -0.75
\end{array}\right]
$$

name	$\boldsymbol{a}^{\boldsymbol{t}} \boldsymbol{y}$	misclassified?
Jane	$-0.75^{*} 1+1.25^{*} 1-0.75^{*} 1-0.75^{*}(-1)-0.75^{*}(-1)+0$	no
Steve	$-0.75^{*}(-1)+1.25^{*}(-1)-0.75^{*}(-1)-0.75^{*}(-1)-0.75^{*}(-1)>0$	$n o$
Mary	$-0.75^{*}(-1)+1.25^{*} 1-0.75^{\star} 1-0.75^{*} 1-0.75^{*}(-1)>0$	$n o$
Peter	$-0.75^{*} 1+1.25^{*} 1-0.75^{*}(-1)-0.75^{*}(-1)-0.75^{*} 1>0$	no

- Thus the discriminant function is:

$$
g(y)=-0.75^{*} y^{(0)}+1.25^{*} y^{(1)}-0.75^{*} y^{(2)}-0.75^{*} y^{(3)}-0.75^{*} y^{(4)}
$$

- Converting back to the original features x :

$$
g(x)=1.25^{\star} x^{(1)}-0.75^{\star} x^{(2)}-0.75^{\star} x^{(3)}-0.75^{\star} x^{(4)}-0.75
$$

Perceptron Example

- Converting back to the original features x :

- This is just one possible solution vector.
- If we started with weights $a^{(1)}=[0,0.5,0.5,0,0]$, the solution would be $[-1,1.5,-0.5,-1,-1]$

$$
\begin{aligned}
& 1.5^{*} x^{(1)}-0.5^{*} x^{(2)}-x^{(3)}-x^{(4)}>1 \Rightarrow \text { grade } A \\
& 1.5^{*} x^{(1)}-0.5^{*} x^{(2)}-x^{(3)}-x^{(4)}<1 \Rightarrow \text { grade } F
\end{aligned}
$$

- In this solution, being tall is the least important feature

LDF: Non-separable Example

- Suppose we have 2 features and the samples are:
- Class 1: [2,1], [4,3], [3,5]
- Class 2: [1,3] and [5,6]
- These samples are not separable by a line
- Still would like to get approximate separation by a line
- A good choice is shown in green
- Some samples may be "noisy", and we could accept them being misclassified

LDF: Non-separable Example

- Obtain $\mathrm{y} 1, \mathrm{y} 2, \mathrm{y} 3, \mathrm{y} 4$ by adding extra feature and "normalizing"

$$
y_{1}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] \quad y_{2}=\left[\begin{array}{l}
1 \\
4 \\
3
\end{array}\right] \quad y_{3}=\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right] \quad y_{4}=\left[\begin{array}{l}
-1 \\
-1 \\
-3
\end{array}\right] \quad y_{5}=\left[\begin{array}{l}
-1 \\
-5 \\
-6
\end{array}\right]
$$

LDF: Non-separable Example

- Apply Perceptron single sample algorithm
- Initial equal weights

$$
a^{(1)}=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]
$$

- Line equation $x^{(1)}+x^{(2)}+1=0$
- Fixed learning rate $\boldsymbol{\eta}=1$

$$
\begin{gathered}
a^{(k+1)}=a^{(k)}+y_{M} \\
y_{1}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] \quad y_{2}=\left[\begin{array}{l}
1 \\
4 \\
3
\end{array}\right] \quad y_{3}=\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right] \quad y_{4}=\left[\begin{array}{l}
-1 \\
-1 \\
-3
\end{array}\right] \quad y_{5}=\left[\begin{array}{c}
-1 \\
-5 \\
-6
\end{array}\right] \\
=y^{t} a^{(1)}=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]^{*}\left[\begin{array}{lll}
1 & 2 & 1
\end{array}\right]^{t}>0 \\
= \\
y_{2}^{t} a^{(1)}=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]^{*}\left[\begin{array}{lll}
1 & 4 & 3
\end{array}\right]^{t}>0 \\
\\
=y_{3_{3}^{t}} a^{(1)}=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]^{*}\left[\begin{array}{lll}
1 & 3 & 5
\end{array}\right]^{t}>0
\end{gathered}
$$

LDF: Non-separable Example

$$
\begin{aligned}
& a^{(t)}=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right] \quad a^{(k+1)}=a^{(k)}+y_{M} \\
& y_{1}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] \quad y_{2}=\left[\begin{array}{l}
1 \\
4 \\
3
\end{array}\right] \quad y_{3}=\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right] \quad y_{4}=\left[\begin{array}{l}
-1 \\
-1 \\
-3
\end{array}\right] \quad y_{s}=\left[\begin{array}{c}
-1 \\
-5 \\
-6
\end{array}\right] \\
& \text { - } \boldsymbol{y}_{4}^{t} \boldsymbol{a}^{(1)}=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]^{*}\left[\begin{array}{lll}
-1 & -1 & -3
\end{array}\right]^{t}=-5<0 \\
& a^{(2)}=a^{(1)}+y_{M}=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]+\left[\begin{array}{ll}
-1 & -1
\end{array}-3\right]=\left[\begin{array}{lll}
0 & 0 & -2
\end{array}\right] \\
& \text { - } \boldsymbol{y}^{\boldsymbol{t}}{ }_{5} \boldsymbol{a}^{(2)}=\left[\begin{array}{lll}
0 & 0 & -2]^{*}\left[\begin{array}{lll}
-1 & -5 & -6
\end{array}\right]^{t}=12>0
\end{array}\right. \\
& \text { - } \boldsymbol{y}^{t}{ }_{1} \boldsymbol{a}^{(2)}=\left[\begin{array}{lll}
0 & 0 & -2
\end{array}\right]^{*}\left[\begin{array}{lll}
1 & 2 & 1
\end{array}\right]^{t}<0 \\
& a^{(3)}=a^{(2)}+y_{M}=\left[\begin{array}{lll}
0 & 0 & -2
\end{array}\right]+\left[\begin{array}{ll}
1 & 2
\end{array}\right]=\left[\begin{array}{lll}
1 & 2 & -1
\end{array}\right]
\end{aligned}
$$

LDF: Non-separable Example

$$
\begin{gathered}
a^{(3)}=\left[\begin{array}{lll}
1 & 2 & -1
\end{array}\right] \quad a^{(k+1)}=a^{(k)}+y_{M} \\
y_{1}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] \quad y_{2}=\left[\begin{array}{l}
1 \\
4 \\
3
\end{array}\right] \quad y_{3}=\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right] \quad y_{4}=\left[\begin{array}{l}
-1 \\
-1 \\
-3
\end{array}\right] \quad y_{5}=\left[\begin{array}{l}
-1 \\
-5 \\
-6
\end{array}\right]
\end{gathered}
$$

- $\boldsymbol{y}^{t}{ }_{2} \boldsymbol{a}^{(3)}=\left[\begin{array}{lll}1 & 4 & 3\end{array}\right]^{*}\left[\begin{array}{lll}1 & 2 & -1\end{array}\right]^{t}=6>0$
- $\boldsymbol{y}^{t}{ }_{3} \boldsymbol{a}^{(3)}=\left[\begin{array}{lll}1 & 3 & 5\end{array}\right]^{*}\left[\begin{array}{lll}1 & 2 & -1\end{array}\right]^{t}>0$ レ
- $\boldsymbol{y}_{4}^{t} a^{(3)}=\left[\begin{array}{lll}-1 & -1 & -3\end{array}\right]^{*}\left[\begin{array}{lll}1 & 2 & -1\end{array}\right]^{t}=0$

$$
a^{(4)}=a^{(3)}+y_{M}=\left[\begin{array}{lll}
1 & 2 & -1
\end{array}\right]+\left[\begin{array}{lll}
-1 & -1 & -3
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & -4
\end{array}\right]
$$

LDF: Non-separable Example

$$
\begin{aligned}
& a^{(4)}=\left[\begin{array}{lll}
0 & 1 & -4
\end{array}\right] \quad a^{(k+1)}=a^{(k)}+y_{M} \\
& y_{1}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] \quad y_{2}=\left[\begin{array}{l}
1 \\
4 \\
3
\end{array}\right] \quad y_{3}=\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right] \quad y_{4}=\left[\begin{array}{l}
-1 \\
-1 \\
-3
\end{array}\right] \quad y_{5}=\left[\begin{array}{l}
-1 \\
-5 \\
-6
\end{array}\right]
\end{aligned}
$$

- $y_{5}{ }^{\text {ta }}{ }^{(4)}=\left[\begin{array}{cc}-1 & -5 \\ -6\end{array}\right]^{*}\left[\begin{array}{lll}0 & 1 & -4]\end{array}\right]=19>0$
- $y_{1}{ }^{\text {ta }}{ }^{(4)}=\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]^{*}[01-4]=-2<0$

LDF: Non-separable Example

$$
\begin{aligned}
& a^{(4)}=\left[\begin{array}{lll}
0 & 1 & -4
\end{array}\right] \quad a^{(k+1)}=a^{(k)}+y_{M} \\
& y_{1}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] \quad y_{2}=\left[\begin{array}{l}
1 \\
4 \\
3
\end{array}\right] \quad y_{3}=\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right] \quad y_{4}=\left[\begin{array}{l}
-1 \\
-1 \\
-3
\end{array}\right] \quad y_{5}=\left[\begin{array}{l}
-1 \\
-5 \\
-6
\end{array}\right]
\end{aligned}
$$

- $\mathrm{y}_{5}{ }^{\mathrm{t}}{ }^{(4)}=\left[\begin{array}{lll}-1 & -5 & -6\end{array}\right]^{*}\left[\begin{array}{lll}0 & 1 & -4\end{array}\right]=19>0$
- $\mathrm{y}_{1}{ }^{\mathrm{t}}{ }^{(4)}=\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]^{*}\left[\begin{array}{lll}0 & 1 & -4\end{array}\right]=-2<0$

LDF: Non-separable Example

- We can continue this forever.
- There is no solution vector a satisfying for all $\mathbf{x i}_{\mathbf{i}}$

$$
a^{t} y_{i}=\sum_{k=0}^{5} a_{k} y_{i}^{(k)}>0
$$

- Need to stop but at a good point
- Will not converge in the nonseparable case
- To ensure convergence can set

$$
\eta^{(k)}=\frac{\eta^{(1)}}{k}
$$

- However we are not guaranteed that we will stop at a good point

Convergence of Perceptron Rules

- If classes are linearly separable and we use fixed learning rate, that is for $\eta(k)=$ const
- Then, both the single sample and batch perceptron rules converge to a correct solution (could be any a in the solution space)
- If classes are not linearly separable:
- The algorithm does not stop, it keeps looking for a solution which does not exist
- By choosing appropriate learning rate, we can always ensure convergence:
- For example inverse linear learning rate:
- For inverse linear learning rate, convergence in the linearly separable case can also be proven
- No guarantee that we stopped at a good point, but there are good reasons to choose inverse linear learning rate

Perceptron Rule and Gradient decent

- Linearly separable data
-perceptron rule with gradient decent works well
- Linearly non-separable data
-need to stop perceptron rule algorithm at a good point, this maybe tricky

Batch Rule

- Smoother gradient because all samples are used

Single Sample Rule

- easier to analyze
- Concentrates more than necessary on any isolated "noisy" training examples

Outline

- Perceptron Rule
- Minimum Squared-Error Procedure
- Ho-Kashyap Procedure

Minimum Squared-Error Procedures

- Idea: convert to easier and better understood problem

- MSE procedure
- Choose positive constants $b_{1}, b_{2}, \ldots, b_{n}$
- Try to find weight vector a such that at $y_{i}=b_{i}$ for all samples y_{i}
- If we can find such a vector, then a is a solution because the bi's are positive
- Consider all the samples (not just the misclassified ones)

MSE Margins

- If $a^{t} y_{i}=b_{i}$, yi must be at distance bi from the separating hyperplane (normalized by \|a\|l)
- Thus $b_{1}, b_{2}, \ldots, b_{n}$ give relative expected distances or "margins" of samples from the hyperplane
- Should make bi small if sample i is expected to be near separating hyperplane, and large otherwise
- In the absence of any additional information, set $b_{1}=b_{2}$ $=\ldots=b_{n}=1$

MSE Matrix Notation

- Need to solve n equations $\left\{\begin{array}{c}a^{t} y_{1}=b_{1} \\ \vdots \\ a^{t} y_{n}=b_{n}\end{array}\right.$
- In matrix form Ya=b

$$
\underbrace{\left[\begin{array}{cccc}
\boldsymbol{y}_{1}^{(0)} & \boldsymbol{y}_{1}^{(1)} & \cdots & \boldsymbol{y}_{1}^{(d)} \\
\boldsymbol{y}_{2}^{(0)} & \boldsymbol{y}_{2}^{(1)} & \cdots & \boldsymbol{y}_{2}^{(d)} \\
\vdots & & & \vdots \\
\vdots & & & \vdots \\
\boldsymbol{y}_{n}^{(0)} & \boldsymbol{y}_{n}^{(1)} & \cdots & \boldsymbol{y}_{n}^{(d)}
\end{array}\right]}_{\boldsymbol{Y}} \underbrace{\left[\begin{array}{c}
\boldsymbol{a}_{0} \\
\boldsymbol{a}_{0} \\
\vdots \\
\vdots \\
\boldsymbol{a}_{d}
\end{array}\right]}_{\boldsymbol{a}}=\underbrace{\left[\begin{array}{c}
\boldsymbol{b}_{1} \\
\boldsymbol{b}_{2} \\
\vdots \\
\vdots \\
\boldsymbol{b}_{n}
\end{array}\right]}_{\boldsymbol{b}}
$$

Exact Solution is Rare

- Need to solve a linear system $\mathrm{Ya}=\mathrm{b}$
-Y is an $\mathrm{n} \times(\mathrm{d}+1)$ matrix
- Exact solution only if Y is non-singular and square (the inverse Y^{-1} exists)
$-a=\gamma^{-1} b$
$-($ number of samples $)=($ number of features +1$)$
- Almost never happens in practice
- Guaranteed to find the separating hyperplane

Approximate Solution

- Typically \mathbf{Y} is overdetermined, that is it has more rows (examples) than columns (features)
- If it has more features than examples, should reduce dimensionality
- Need $\mathbf{Y a}=\mathbf{b}$, but no exact solution exists for an overdetermined system of equations
- More equations than unknowns
- Find an approximate solution
- Note that approximate solution a does not necessarily give the separating hyperplane in the separable case
- But the hyperplane corresponding to a may still be a good solution, especially if there is no separating hyperplane

MSE Criterion Function

- Minimum squared error approach: find a which minimizes the length of the error vector \mathbf{e}

$$
e=Y a-b
$$

- Thus minimize the minimum squared error criterion function:

$$
J_{s}(a)=\|Y a-b\|^{2}=\sum_{i=1}^{n}\left(a^{t} y_{i}-b_{i}\right)^{2}
$$

- Unlike the perceptron criterion function, we can optimize the minimum squared error criterion function analytically by setting the gradient to 0

Computing the Gradient

$$
\begin{aligned}
& J_{s}(a)=\|Y a-b\|^{2}=\sum_{i=1}^{n}\left(a^{t} y_{i}-b_{i}\right)^{2} \\
& \nabla J_{s}(a)=\left[\begin{array}{c}
\frac{\partial J_{s}}{\partial a_{0}} \\
\vdots \\
\frac{\partial J_{s}}{\partial a_{d}}
\end{array}\right]=\frac{d J_{s}}{d a}=\sum_{i=1}^{n} \frac{d}{d a}\left(a^{t} y_{i}-b_{i}\right)^{2} \\
&=\sum_{i=1}^{n} 2\left(a^{t} y_{i}-b_{i}\right) \frac{d}{d a}\left(a^{t} y_{i}-b_{i}\right) \\
&=\sum_{i=1}^{n} 2\left(a^{t} \boldsymbol{y}_{i}-b_{i}\right) \boldsymbol{y}_{i} \\
&=2 \boldsymbol{Y}^{t}(Y a-b)
\end{aligned}
$$

Pseudo-Inverse Solution

$$
\nabla J_{s}(a)=2 Y^{t}(Y a-b)
$$

- Setting the gradient to 0 :

$$
2 Y^{t}(Y a-b)=0 \Rightarrow Y^{t} Y a=Y^{t} b
$$

- The matrix $Y^{\prime} Y$ is square (it has $d+1$ rows and columns) and it is often non-singular
- If $\mathrm{Y}^{\prime} \mathrm{Y}$ is non-singular, its inverse exists and we can solve for a uniquely:

$$
\begin{aligned}
& \boldsymbol{a}=\left(\boldsymbol{Y}^{t} \boldsymbol{Y}\right)^{-1} \boldsymbol{Y}^{t} \boldsymbol{b} \\
& \text { pseudo inverse of } \boldsymbol{Y} \\
& \left(\begin{array}{l}
\left.\left(Y^{\prime} Y\right)^{-1} \boldsymbol{Y}^{\prime}\right) \boldsymbol{Y}=\left(\boldsymbol{Y}^{\prime} \boldsymbol{Y}\right)^{-1}\left(\boldsymbol{Y}^{\prime} \boldsymbol{Y}\right)=1
\end{array}\right.
\end{aligned}
$$

MSE Procedures

- Only guaranteed separating hyperplane if $\mathrm{Ya} \geq 0$
- That is if all elements of vector Ya are positive

$$
Y a=\left[\begin{array}{c}
b_{1}+\varepsilon_{1} \\
\vdots \\
b_{n}+\varepsilon_{n}
\end{array}\right]
$$

- where ε may be negative
- If $\varepsilon_{1}, \ldots, \varepsilon_{\mathrm{n}}$ are small relative to $\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{n}}$, then each element of Ya is positive, and a gives a separating hyperplane
- If the approximation is not good, ε imay be large and negative, for some i , thus $\mathrm{b}_{\mathrm{i}}+\varepsilon \mathrm{i}$ will be negative and a is not a separating hyperplane
- In linearly separable case, least squares solution a does not necessarily give separating hyperplane

MSE Procedures

- We are free to choose b . We may be tempted to make b large as a way to ensure $\mathrm{Ya}=\mathrm{b}>0$
- Does not work
- Let β be a scalar, let's try β b instead of b
- If a^{*} is a least squares solution to $\mathrm{Ya}=\mathrm{b}$, then for any scalar β, the least squares solution to $Y a=\beta b$ is $\beta a *$

$$
\underset{a}{\arg \min }\|Y a-\beta b\|^{2}=\underset{a}{\arg \min } \beta^{2}\|Y(a / \beta)-b\|^{2}=\beta a^{*}
$$

- Thus if the i -th element of Ya is less than 0 , that is $\mathrm{y}_{\mathrm{i}}^{\mathrm{t}}{ }^{\mathrm{t}}<0$, then $y_{i}{ }^{\mathrm{t}}(\beta a)<0$
- The relative difference between components of b matters, but not the size of each individual component

LDF using MSE: Example 1

- Class 1: (69), (57)
- Class 2: (59), (04)
- Add extra feature and "normalize"

$$
\begin{gathered}
y_{1}=\left[\begin{array}{l}
1 \\
6 \\
9
\end{array}\right] \quad y_{2}=\left[\begin{array}{l}
1 \\
5 \\
7
\end{array}\right] \quad y_{3}=\left[\begin{array}{r}
-1 \\
-5 \\
-9
\end{array}\right] \quad y_{4}=\left[\begin{array}{r}
-1 \\
0 \\
-4
\end{array}\right] \\
Y=\left[\begin{array}{rrr}
1 & 6 & 9 \\
1 & 5 & 7 \\
-1 & -5 & -9 \\
-1 & 0 & -4
\end{array}\right]
\end{gathered}
$$

LDF using MSE: Example 1

- Choose b=[111111] ${ }^{\top}$
- In Matlab, $\mathbf{a}=\mathbf{Y} \mathbf{b}$ solves the least squares problem

$$
a=\left[\begin{array}{c}
2.66 \\
1.045 \\
-0.944
\end{array}\right]
$$

- Note a is an approximation to $\mathrm{Ya}=\mathrm{b}$, since no exact solution exists
- This solution gives a separating hyperplane since $\mathrm{Ya}>0$

$$
Y a=\left[\begin{array}{l}
0.44 \\
1.28 \\
0.61 \\
1.11
\end{array}\right]
$$

LDF using MSE: Example 2

- Class 1: (6 9), (57)
- Class 2: (5 9) , (010)
- The last sample is very far compared to others from the separating hyperplane

$$
\begin{aligned}
y_{1}=\left[\begin{array}{l}
1 \\
6 \\
9
\end{array}\right] \quad y_{2} & =\left[\begin{array}{l}
1 \\
5 \\
7
\end{array}\right] \quad y_{3}=\left[\begin{array}{l}
-1 \\
-5 \\
-9
\end{array}\right] \quad y_{4}=\left[\begin{array}{r}
-1 \\
0 \\
-10
\end{array}\right] \\
Y & =\left[\begin{array}{rrr}
1 & 6 & 9 \\
1 & 5 & 7 \\
-1 & -5 & -9 \\
-1 & 0 & -10
\end{array}\right]
\end{aligned}
$$

LDF using MSE: Example 2

- Choose b=[111111] ${ }^{\top}$
- In Matlab, $\mathbf{a}=\mathbf{Y} \mathbf{b}$ solves the least squares problem
$a=\left[\begin{array}{r}3.2 \\ 0.2 \\ -0.4\end{array}\right]$

$$
Y a=\left[\begin{array}{r}
0.2 \\
0.9 \\
-0.04 \\
1.16
\end{array}\right] \neq\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

- This solution does not provide a separating hyperplane since $\mathrm{at}_{3}<0$

LDF using MSE: Example 2

- MSE pays too much attention to isolated "noisy" examples
- such examples are called outliers

- No problems with convergence
- Solution ranges from reasonable to good

LDF using MSE: Example 2

- We can see that the 4 -th point is vary far from separating hyperplane - In practice we don't know this
- A more appropriate b could be $b=$
- In Matlab, $\mathbf{a}=\mathrm{Y} \backslash \mathbf{b}$ solves the
 least squares problem

$$
a=\left[\begin{array}{r}
-1.1 \\
1.7 \\
-0.9
\end{array}\right] \quad Y a=\left[\begin{array}{r}
0.9 \\
1.0 \\
0.8 \\
10.0
\end{array}\right] \neq\left[\begin{array}{c}
1 \\
1 \\
1 \\
10
\end{array}\right]
$$

- This solution gives the separating hyperplane since $\mathrm{Ya}>0$

Gradient Descent for MSE

$$
J_{s}(a)=\|Y a-b\|^{2}
$$

- May wish to find MSE solution by gradient descent:

1. Computing the inverse of $Y^{I} Y$ may be too costly
2. $Y^{\dagger} Y$ may be close to singular if samples are highly correlated (rows of Y are almost linear combinations of each other) computing the inverse of $Y^{ } Y$ is not numerically stable

- As shown before, the gradient is:

$$
\nabla J_{s}(a)=2 Y^{t}(Y a-b)
$$

Widrow-Hoff Procedure

$$
\nabla J_{s}(a)=2 Y^{t}(Y a-b)
$$

- Thus the update rule for gradient descent is:

$$
a^{(k+1)}=a^{(k)}-\eta^{(k)} \boldsymbol{Y}^{t}\left(\boldsymbol{Y a}^{(k)}-b\right)
$$

 is $\mathrm{Y}^{\mathrm{t}}(\mathrm{Ya}-\mathrm{b})=0$

- The Widrow-Hoff procedure reduces storage requirements by considering single samples sequentially

$$
a^{(k+1)}=a^{(k)}-\eta^{(k)} \boldsymbol{y}_{i}\left(y_{i}^{t} a^{(k)}-b_{i}\right)
$$

Outline

- Perceptron Rule
- Minimum Squared-Error Procedure
- Ho-Kashyap Procedure

Ho-Kashyap Procedure

- In the MSE procedure, if \mathbf{b} is chosen arbitrarily, finding separating hyperplane is not guaranteed.
- Suppose training samples are linearly separable. Then there is \mathbf{a}^{S} and positive \mathbf{b}^{S} s.t.

$$
Y a^{s}=b^{s}>0
$$

- If we knew \mathbf{b}^{S} could apply MSE procedure to find the separating hyperplane
- Idea: find both \mathbf{a}^{S} and \mathbf{b}^{S}
- Minimize the following criterion function, restricting to positive b:

$$
\begin{gathered}
\boldsymbol{J}_{H K}(\boldsymbol{a}, \boldsymbol{b})=\|\boldsymbol{Y a}-\boldsymbol{b}\|^{2} \\
\boldsymbol{J}_{H K}\left(\boldsymbol{a}^{\boldsymbol{s}}, \boldsymbol{b}^{\boldsymbol{s}}\right)=0
\end{gathered}
$$

Ho-Kashyap Procedure

$$
J_{H K}(a, b)=\|Y a-b\|^{2}
$$

- As usual, take partial derivatives w.r.t. a and b

$$
\begin{aligned}
\nabla_{a} J_{H K}=2 Y^{t}(Y a-b) & =0 \\
\nabla_{b} J_{H K}=-2(Y a-b) & =0
\end{aligned}
$$

- Use modified gradient descent procedure to find a minimum of Јнк (a,b)
- Alternate the two steps below until convergence:
(1) Fix b and minimize $\mathrm{J}_{\mathrm{HK}}(\mathrm{a}, \mathrm{b})$ with respect to a
(2) Fix a and minimize $\operatorname{JHK}(a, b)$ with respect to b

Ho-Kashyap Procedure

$$
\nabla_{a} J_{H K}=2 Y^{t}(Y a-b)=0 \quad \nabla_{b} J_{H K}=-2(Y a-b)=0
$$

- Alternate the two steps below until convergence:
(1) Fix b and minimize $\operatorname{Jнк}(\mathrm{a}, \mathrm{b})$ with respect to a
(2) Fix a and minimize $\mathrm{JHK}^{(a, b)}$ with respect to b
- Step (1) can be performed with pseudoinverse -For fixed b minimum of $\operatorname{JHK}(a, b)$ with respect to a is found by solving

$$
2 Y^{t}(Y a-b)=0
$$

-Thus

$$
a=\left(Y^{t} \boldsymbol{Y}\right)^{-1} \boldsymbol{Y}^{t} b
$$

Ho-Kashyap Procedure

- Step 2: fix a and minimize $\operatorname{Jнк}(\mathbf{a}, \mathrm{b})$ with respect to \mathbf{b}
- We can't use $\mathbf{b}=Y a$ because \mathbf{b} has to be positive
- Solution: use modified gradient descent
- Regular gradient descent rule:

$$
b^{(k+1)}=b^{(k)}-\eta^{(k)} \nabla_{b} J\left(a^{(k)}, b^{(k)}\right)
$$

- If any components of $\nabla_{\mathbf{b}} \mathbf{J}$ are positive, \mathbf{b} will decrease and can possibly become negative

$$
b^{(k+1)}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]-2 *\left[\begin{array}{r}
2 \\
-3 \\
-2
\end{array}\right]=\left[\begin{array}{r}
-3 \\
7 \\
5
\end{array}\right]
$$

Ho-Kashyap Procedure

- Start with positive \mathbf{b}, follow negative gradient but refuse to decrease any components of \mathbf{b}
- This can be achieved by setting all the positive components of $\nabla_{\mathfrak{b}}$ J to 0

$$
b^{(k+1)}=b^{(k)}-\eta \frac{1}{2}\left[\nabla_{b} J\left(a^{(k)}, b^{(k)}\right)-/ \nabla_{b} J\left(a^{(k)}, b^{(k)}\right) \mid\right]
$$

here $|\mathrm{v}|$ denotes vector we get after applying absolute value to all elements of v

$$
b^{(k+1)}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]-2 * \frac{1}{2}\left[\left[\begin{array}{r}
2 \\
-3 \\
-2
\end{array}\right]-\left[\begin{array}{l}
2 \\
3 \\
2
\end{array}\right]\right]=\left[\begin{array}{r}
1 \\
1 \\
1
\end{array}\right]-\left[\begin{array}{r}
0 \\
-6 \\
-4
\end{array}\right]=\left[\begin{array}{l}
1 \\
7 \\
5
\end{array}\right]
$$

- Not doing steepest descent anymore, but we are still doing descent and ensure that \mathbf{b} is positive

Ho-Kashyap Procedure

$$
\begin{gathered}
b^{(k+1)}=b^{(k)}-\eta \frac{1}{2}\left[\nabla_{b} J\left(a^{(k)}, b^{(k)}\right)-/ \nabla_{b} J\left(a^{(k)}, b^{(k)}\right)\right] \\
\nabla_{b} J=-2(Y a-b)=0 \\
\text { Let } \quad e^{(k)}=Y a^{(k)}-b^{(k)}=-\frac{1}{2} \nabla J_{b}\left(a^{(k)}, b^{(k)}\right)
\end{gathered}
$$

Then

$$
\begin{aligned}
b^{(k+1)} & =b^{(k)}-\eta \frac{1}{2}\left[-2 e^{(k)}-\left|2 e^{(k)}\right|\right] \\
& =b^{(k)}+\eta\left[e^{(k)}+\left|e^{(k)}\right|\right]
\end{aligned}
$$

Ho-Kashyap Procedure

- The final Ho-Kashyap procedure:
$0)$ Start with arbitrary $\boldsymbol{a}^{(1)}$ and $\boldsymbol{b}^{(1)}>0$, let $\mathrm{k}=1$
repeat steps (1) through (4)

1) $\boldsymbol{e}^{(k)}=\boldsymbol{Y} \boldsymbol{a}^{(k)}-\boldsymbol{b}^{(k)}$
2) Solve for $\boldsymbol{b}^{(k+1)}$ using $\boldsymbol{a}^{(k)}$ and $\boldsymbol{b}^{(k)}$

$$
b^{(k+1)}=b^{(k)}+\eta\left[e^{(k)}+\left|e^{(k)}\right|\right]
$$

3) Solve for $\boldsymbol{a}^{(k+1)}$ using $\boldsymbol{b}^{(k+1)}$

$$
\boldsymbol{a}^{(k+1)}=\left(\boldsymbol{Y}^{t} \boldsymbol{Y}\right)^{-1} \boldsymbol{Y}^{t} \boldsymbol{b}^{(k+1)}
$$

4) $k=k+1$
until $\boldsymbol{e}^{(k)}>=0$ or $\boldsymbol{k}>\boldsymbol{k}_{\text {max }}$ or $\boldsymbol{b}^{(k+1)}=\boldsymbol{b}^{(k)}$

- For convergence, learning rate should be fixed between $0<\eta<1$.

Ho-Kashyap Procedure

$$
\boldsymbol{b}^{(k+1)}=\boldsymbol{b}^{(k)}+\eta\left[\boldsymbol{e}^{(k)}+\left|\boldsymbol{e}^{(k)}\right|\right]
$$

- What if $\mathbf{e}^{(k)}$ is negative for all components?

$$
\boldsymbol{b}^{(k+1)}=\boldsymbol{b}^{(\boldsymbol{k})} \text { and corrections stop }
$$

- Write $\mathbf{e}^{(k)}$ out:

$$
e^{(k)}=Y a^{(k)}-b^{(k)}=Y\left(Y^{t} Y\right)^{-1} Y^{t} b^{(k)}-b^{(k)}
$$

- Multiply by \mathbf{Y}^{t} :

$$
\boldsymbol{Y}^{t} e^{(k)}=Y^{t}\left(\boldsymbol{Y}\left(\boldsymbol{Y}^{t} \boldsymbol{Y}\right)^{-1} \boldsymbol{Y}^{t} b^{(k)}-b^{(k)}\right)=\boldsymbol{Y}^{t} b^{(k)}-\boldsymbol{Y}^{t} b^{(k)}=0
$$

- Thus

$$
Y^{t} e^{(k)}=0
$$

Ho-Kashyap Procedure

- Suppose training samples are linearly separable. Then there is \mathbf{a}^{s} and positive \mathbf{b}^{s} s.t

$$
Y a^{s}=b^{s}>0
$$

- Multiply both sides by $\left(\mathbf{e}^{(k)}\right)^{t}$

$$
0=\left(e^{(k)}\right)^{t} Y a^{s}=\left(e^{(k)}\right)^{t} b^{s}
$$

- Either by $\mathbf{e}^{(k)}=0$ or one of its components is positive

Ho-Kashyap Procedure

- In the linearly separable case,
$-\mathbf{e}^{(k)}=0$, found solution, stop
- one of components of $\mathbf{e}^{(k)}$ is positive, algorithm continues
- In non separable case,
- $\mathbf{e}^{(k)}$ will have only negative components eventually, thus found proof of nonseparability
- No bound on how many iteration need for the proof of nonseparability

Example

- Class $1:(6,9),(5,7)$
- Class 2: $(5,9),(0,10)$
- Matrix $Y=\left[\begin{array}{rrr}1 & 6 & 9 \\ 1 & 5 & 7 \\ -1 & -5 & -9 \\ -1 & 0 & -10\end{array}\right]$
- Start with $a^{(1)}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $b^{(1)}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$
- Use fixed learning $\eta=0.9$
- At the start

$$
Y a^{(1)}=\left[\begin{array}{r}
16 \\
13 \\
-15 \\
-11
\end{array}\right]
$$

Example

- Iteration 1 :

$$
e^{(1)}=Y a^{(1)}-b^{(1)}=\left[\begin{array}{r}
16 \\
13 \\
-15 \\
-11
\end{array}\right]-\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{r}
15 \\
12 \\
-16 \\
-12
\end{array}\right]
$$

- solve for $\mathbf{b}^{(2)}$ using $\mathbf{a}^{(1)}$ and $\mathbf{b}^{(1)}$

$$
b^{(2)}=b^{(1)}+0.9\left[e^{(1)}+/ e^{(1)} \mid\right]=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]+0.9\left[\left[\begin{array}{r}
15 \\
12 \\
-16 \\
-12
\end{array}\right]+\left[\begin{array}{r}
15 \\
12 \\
16 \\
12
\end{array}\right]\right]=\left[\begin{array}{r}
28 \\
22.6 \\
1 \\
1
\end{array}\right]
$$

- solve for $\mathbf{a}^{(2)}$ using $\mathbf{b}^{(2)}$

$$
a^{(2)}=\left(Y^{t} Y\right)^{-1} Y^{t} b^{(2)}=\left[\begin{array}{rrrr}
-2.6 & 4.7 & 1.6 & -0.5 \\
0.16 & -0.1 & -0.1 & 0.2 \\
0.26 & -0.5 & -0.2 & -0.1
\end{array}\right] *\left[\begin{array}{r}
28 \\
22.6 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{r}
34.6 \\
2.7 \\
-3.8
\end{array}\right]
$$

Example

- Continue iterations until $\mathrm{Ya}>0$
- In practice, continue until minimum component of Ya is less than 0.01
- After 104 iterations converged to solution

$$
a=\left[\begin{array}{c}
-34.9 \\
27.3 \\
-11.3
\end{array}\right] \quad b=\left[\begin{array}{c}
28 \\
23 \\
1 \\
147
\end{array}\right]
$$

- a does gives a separating hyperplane

$$
Y a=\left[\begin{array}{l}
27.2 \\
22.5 \\
0.14 \\
1.48
\end{array}\right]
$$

LDF Summary

- Perceptron procedures
- Find a separating hyperplane in the linearly separable case,
- Do not converge in the non-separable case
- Can force convergence by using a decreasing learning rate, but are not guaranteed a reasonable stopping point
- MSE procedures
- Converge in separable and not separable case
- May not find separating hyperplane even if classes are linearly
separable
- Use pseudoinverse if $Y^{\top} Y$ is not singular and not too large
- Use gradient descent (Widrow-Hoff procedure) otherwise
- Ho-Kashyap procedures
- always converge
- find separating hyperplane in the linearly separable case
- more costly

Q
 \& A

