
INFORMATION SCIENCES 77,253-273 (1994) 253

Constrained Tree Editing

B. JOHN OOMMEN

and

WILLIAM LEE

School of Computer Science, Carleton University Ottawa, Ont., Canada KlS 586

ABSTRACT

The distance between two ordered labeled trees is considered to be the minimum
sum of the weights associated with the edit operations (insertion, deletion, and substitu-
tion) required to transform one tree to another. The problem of computing this distance
and the optimal transformation using no edit constraints has been studied in the
literature [3,4,7-9, 111. In this paper, we consider the problem of transforming one tree
T1 to another tree T2 using any arbitrary edit constraint involving the number and type
of edit operations to be performed. An algorithm to compute this constrained distance
is presented. If for a tree T, Span(T) is defined as the Min(Depth(T),Leaves(T)), the
time and space complexities of this algorithm are:

Time: O(ITlj* IT,I*(Min{IT,I,IT,I})2 *Span(T,)*Span(T,))

Space: 0(lTIl*IT21*Min{lT,l,IT21}).

1. INTRODUCTION

Trees, graphs, and webs are typically considered as a multidimensional
generalization of strings. Among these different structures, trees are
considered to be the most important “nonlinear” structures in computer
science, and the tree-editing problem has been studied since 1976.

Similar to the string-editing problem [l, 2, 5-7, 101, the tree-editing
problem concerns the determination of the distance between two trees as
measured by the minimum cost sequence of edit operations. Typically, the
edit sequence considered includes the substitution, insertion, and deletion

OElsevier Science Inc. 1994
655 Avenue of the Americas, New York, NY 10010 0020-0255/94/$7.00

254 B. J. OOMMEN AND W. LEE

of nodes needed to transform one tree into the other. Applications of the
tree-editing problem can be found in the theory of amino-acid sequence
comparison, pattern recognition, and in the parsing of sentences from a
grammar. For example, the secondary structure of RNA is a single strand
of nucleotides which folds back onto itself into a shape that is topologically
a tree 17, 111. This strand influences the translation rates from RNA to
proteins. A comparison of these structures yields information about the
comparative functionali~ of different RNAs.

Unlike the string-editing problem which has been well developed, only a
few results have been published concerning the tree-editing problem. In
1979, Selkow [8] presented a tree-editing algorithm in which insertions and
deletions were only restricted to the leaves. Later, Tai [9] presented
another scheme in which insertions/deletions were prohibited at the root.
The algorithm of Lu [3], on the other hand, solved the problem for trees of
depth two. The best known algorithm for solving the general tree-editing
problem is the one due to Zhang and Shasha [ll].

All of the above algorithms considered the editing of one tree, say T,,
and transforming it to another, T,, with the edit processes being absolutely
unconstrained. In this paper, we consider the problem of editing r, to T.
subject to any general edit constraint. This ~nstraint can be arbitrarily
complex as long as it is specified in terms of the number and type of edit,
operations to be included in the optimal edit sequence. Some examples of
constrained editing are presented below:

(a) What is the optimal way of editing T, to Tz using no more than k
deletions?

(b) How can we optimally transform Tl to T2 using exactly k substitu-
tions?

Cc) Is it possible to transform Tl to T2 using exactly ki insertions, k,
deletions, and k, substitutions? If so, what is the distance between Tl to
T2 subject to this constraint?

In this paper, we present a consistent method of specifying arbitrary
edit constraints. This method is analogous (but not identical) to the one
shown in [5] and is specified by a constraint set, 7. We will then discuss the
computation of D,(T,,T,), the edit distance between Tl and 7; subject to
this constraint. A similar algorithm to achieve this was independently.
reported in [12]. However, the differences between our scheme and the
latter will be discussed in a later section.

With regard to applications, just as the constrained string-editing algo-
rithm [5, 61 has been used successfully to solve the noisy subsequence
problem, we believe that .to obtain acceptable recognition rates for subse-
quence trees, one must resort to constrained edit distances between the

CONSTRAINED TREE EDITING 255

trees and not merely their unconstrained distances. We are currently
investigating this in the pattern recognition of noisy (garbled) subsequence
trees, and in analyzing biochemical structures.

2. NOTATIONS AND DEFINITIONS

A tree will be represented in terms of the postorder numbering of its
nodes, where the postorder tree traversal is defined by the follo~ng
recursive steps:

1. Visit each of the subtrees from left to right in the postorder se-
quence.

2. Visit the node.

The sequence of nodes generated by the postorder traversal is called
the postorder sequence of the tree. Zhang and Shasha 1111 have shown the
advantages of this ordering over the other well-known orderings.

Let T[il be the ith node in the tree according to the left-to-right
postorder numbering, and let 6(i) represent the postorder number of the
leftmost leaf descendant of the subtree rooted at T[il. Note that when T[il
is a leaf, 6(i) = i. T[i +--jl represents the postorder forest induced by nodes
T[il to T[j] inclusive of tree T. T[6(i)*--il will be referred to as Tree(i).
Size(i) is the number of nodes in Tree(i). An example of these terms is
shown pictorially in Figure 1.

Finally, the father of T[i] is denoted as f(i) and f’(i)= i, f’(i)=f(i),
f2G) =f(f’G>>, d an so on, and using this, we define the set of ancestors of
i as Ant(i) as:

Am(i) =(fk(i)lO<k<Depth(i)}.

2.1, EDIT OPERATIONS AND DISTANCE BETWEEN TREES

Let A be the null node. It is distinct from h, the null tree. An edit
operation on a tree is either a node insertion, a node deletion, or a
substitution of one’ node by another. S~~lica~y, an edit operation
is represented as: ~+y where x and y can either be a node value or A.
x= A and y # A represents an insertion; x # A and y = A represents a
deletion; and x + A and y # A represents a substitution. Note that the case
of x = A and y = A has not been defined because it is not needed. The
formal definitions of these operations are described below.

B. J. OOMMEN AND W. LEE 256

T= W
T[1..6] =

Ti31 TI71 T[31

A T[fi, T/j,] I: T[6]
TV1 7-M

I

T31
Tree(3) = T[6(3)..3] =

A
-VI J-PI

Fig. 1. An example of a tree, a postorder forest, a subtree, and the associated
notations.

(i) Insertion of node x.
Node x will be inserted as a son of some node u of T. It may either be

inserted with no sons or take as sons any subsequence of the sons of u.
Formally, if u has sons ul, u2,. . ., uk, then for some 0 G i <j 6 k, node u in
the resulting tree will have sons u1 ,..., ui,x,uj ,..., uk, and node x will
have no sons if j=i+l, or else have sons z++~,...,u~_~. An example of
this is in Figure 2.

(ii) A deletion of node y from a tree T. (See Figure 3).
If node y has sons y,, y2,. . . , y, and node u, the father of y, has sons

Ul,UZ,..., uj with ui =y, then node u in the resulting tree obtained by the

Fig. 2. An example of the insertion of a node.

CONST~INED TREE EDITING 257

Fig. 3. An example of the deletion of a node.

deletion will have sons zq, 29,. . -, ui_ Ir y,, y2,. . . , ykr ui+ i,. . . , ai. The dele-
tion of the root is not allowed if the root has more than one son.

(iii) Substitution of node x by node y in T.
In this case, node y in the resulting tree will have the same father and

sons as node x in the original tree. An example of substitution is shown in
Figure 4.

Let d(x, y) 2 0 be the cost of transforming node x to node y. If
x z A zy, d(x, y) will represent the cost of substitution of node x by node
y. Similarly, x + h, y = A and x = h, y # A will represent the cost of deletion
and insertion of node x and y, respectively. We assume that:

d(x,y) 200; d(x,x) =o; (1)

d(x,y) =d(y,x); (2)

and

&v) ,<d(x,y) +d(y,z) (3)

Fig. 4. An example of the substitution of a node by another.

258 B. J. OOMMEN AND W. LEE

where (3) ensures that no sequence of edit operations can achieve, at
lower cost, the same effect as a single operation, and is thus a “triangular”
inequality constraint.

Let S be a sequence s1,..., sk of edit operations. An S-derivation from
A to B is a sequence of trees &,...,A, such that A=& B=A,, and
Ai_, -+Ai via si for 1 ,<i <k. We extend d(*, *) to the sequence S by
assigning W(S)= C\%1d(s,). With the introduction of W(S), the distance
between T1 and T2 can be defined as follows:

D(T,,T,) =Min{IV(S)lS is an S-derivation transforming T, to T2 .)

It is easy to observe that:

IT11- 1 IT,l- 1

o(T,,T,)gd(T,[lT,l],T,[lT,I])+ c d(T,[ib)+ c 4h7T2[jl).
i=l j=l

2.2. MAPPINGS BETWEEN TREES

A Mapping is a description of how a sequence of edit operations
transforms Tl into T2. A pictorial representation of a mapping is given in
Figure 5. Informally, in it the following hold:

(i) Lines connecting T,[i] and T2[jl correspond to substituting T,[i] by
T2[jl.

(ii) Nodes in Tl not touched by any line are to be deleted.
(iii) Nodes in T2 not touched by any line are to be inserted.

T1[8] 11-11----- T2[6]

Td31 - ~

/\

Tl[ll T1 PI

T1-[4]

Fig. 5. An example of a mapping.

CONSTRAINED TREE EDITING 259

Formally, a mapping is a triple (M, T,, T,), where M is any set of pairs
of integers (i, j) satisfying:

(ii) For any pair of (i,, jl> and (iz, j,) in M,
(a) i, = i, if and only if j, = j2 (one-to-one).
(b) T,[i,] is to the left of T,[i,] if and only if T2[jll is to the left of

T2[j2]. This is referred to as the Sibling Property.
(c) T,[i,] is an ancestor of T,[i,] if and only if T2[j,] is an ancestor of

T2[j,]. This is referred to as the Ancestor Property.

Whenever there is no ambiguity, we will use A4 to represent the triple
04, T,, T,), the mapping from Tl to T2. Let I, .Z be sets of nodes in Tl and
T2, respectively, not touched by any lines in M. Then we can define the
cost of A4 as follows:

cost(M) = c d(Tl[i],T2[jl) + c d(T,[ilA) + c d(AJ’djl).
(i, j)EM iEI js.l

Since mappings can be composed to yield new mappings [9, 111, the
relationship between a mapping and a sequence of edit operations can now
be specified.

LEMMA 1. Given S, an S-derivation sl,. . . , sk of edit operations from Tl to
T2, there exists a mapping M from T, to T2 such that cost(M) < W(S).
Conversely, for any mapping M, there exists a sequence of editing operations
such that W(S) = cost(M).

Proof. Same as the proof of Lemma 2 in [ll].
Due to the above lemma, we obtain

D(T,, T2) = Min{cost(M) IA4 is a mapping from T, to Tz .)

Thus, to search for the minimal cost edit sequence, we need to only search
for the optimal mapping.

3. EDIT CONSTRAINTS

Consider the problem of editing T, to T2, where ITI1 = N and IT,1 =M.
Editing a postorder-forest of Tl into a postorder-forest of T2 using exactly
i insertions, e deletions, and s substitutions corresponds to editing T,[l-**
e fs] into TJ1o.e i +s]. To obtain bounds on the magnitudes of variables,

260 B. J. OOMMEN AND W. LEE

i, e, s, we observe that they are constrained by the sizes of trees T, and Tz.
Thus, if r = e + s, q = i + s, and R = Min{N, M}, these variables will have to
obey the following constraints:

max{O,M-N} GiGq<M; O<egr,<N; O<s<R.

Values of (i, e, s) which satisfy these constraints are termed feasible values
of the variables. Let

Hi=(jlmax(O,M-Nj <j<M), H,={jlO<j<N}, and

Hi, H,, and H, are called the set of permissible values of i, e, and s.
Theorem I specifies the feasible triples for editing T,[l *a* rl toT,[l ... ql.

THEOREM I. To edit TI[l... r 1, the postorder-forest of TI of size r, to
T,[l*** q], the postorder-forest of Tz of size q, the set of feasible triples is given
by {(q -s, r -s, s>lO G s G Min(M, NH.

Proof. Consider the constraints imposed on feasible values of i, e, and
s. Since we are interested in editing T,[l +**r] to T,[l ***q], we have to
consider only those triples (i, e, s) in which i + s = r and e + s = q. But, the
number of substitution can take any value from 0 to Min{r, q]. Therefore,
for every value of s in this range, the feasible triples (i,e, s) must have
exactly r-s deletions since r = e +s. Similarly, the triples (i, e, s> must
have exactly q -s insertions since q =s + i. The result follows. n

An edit constraint is specified in terms of the number and type of edit
operations that are required in the process of transforming TI to Tz. It is
expressed by formulating the number and type of edit operations in terms
of three sets Qi, Q,, and Q, which are subsets of the sets Hi, H,, and H,
defined above. The following examples could clarify the issue:

(a) To edit TI to Tz performing no more than k deletions, the sets Q,
and Qi are both equal to 0, the null set, and Q, = {jlj EH,, j Q k].

(b) To edit T, to Tz performing exactly ki insertions, k, deletions, and
k, substitutions yields Qi = {ki] n Hi, Q, = {k,] n H,, and Q, = Ik,] n H,.

THEOREM II. Every edit constraint specified for the process of editing TI to
Tz is a unique subset of H,.

Proof. Let the constraint be specified by the sets Qi, Q,, and Q,. Every
element j E Qi requires editing to be performed using exactly j insertions.
Since IT21 =M, from Theorem I, this requires that the number of substitu-

CONSTRAINED TREE EDITING 261

tions be M-j. Similarly, if j E Q,, the edit transformation must constain
exactly j deletions. Since IT1 I = N, Theorem I requires that N -j substitu-
tions be performed. Let

Q:={N-~~~EQ,) and Qr={M-jljEQi}*

Thus, for any constraint, the number of substitutions permitted is Q, n Qz
nQ;rH,. m

For example, let T1 and T2 be the trees shown in Figure 5. Suppose we
want to transform T1 to T, by performing at most 5 insertions, at least 3
substitutions, and exactly 3 deletions. Then

Qj={O,l,2,3,4,5}, Q,={3}, and Q,={3,4,5,6}.

Hence, Q: = {S}, and QT = {1,2,3,4,5,6), yielding r= Q, I’? Q: n Qr = I-51.
Hence, the optimal transformation must contain exactly 5 substitutions.

We shall refer to the edit distance subject to the constraint 7 as
D,(T,,T,). By definition, Dr(TI,T2)= ~0 if r= 0, the null set. We now
consider the computation of T),(T,, T2)-

4. CONSTRAINED TREE-EDITING ALGORITHM

Since edit constraints can be written as unique subsets of HJ, we denote
the distance between forest T,[i’ -1. i] and forest T&j ---j] subject to
the constraint that exactly s substitutions are performed by
Const_F_Wt(T,[i .a+ i], T,[j’ --- jl, s> or, more precisely, by
Const_F_Wt([i’ *** i],[j’ ... j],s). The distance between T,[l .** i] and
T,[l ***j] subject to this constraint is given by Const_F_Wt(i, j, s) since the
starting index of both trees is unity. As opposed to this, the distance
between the subtree rooted at i and the subtree rooted at j subject to the
same constraint is given by Const_T_Wi(i, j, s). The difference between
Const_F_Wt and Const_T_Wt is subtle. Indeed,

These weights obey the following properties.

LEMMA II (a>. Let i, E Am(i) and jl E And j); then

(8 ConstJ_ Wt(p, CL, 0) = 0.
(ii) Const_F_Wt(T,[S(i,)...i],~,O)=Const_F_Wt(T,[S(i,).~.i-

11, p,O) + d(T,[il, A).

262 B. J. OOMMEN AND W. LEE

(iii> Const-F_Wt(p,T2[6(jl)...j],0)= Const_F_IVt(~,T~[S(ji)...j -
ll,O)+d(A,T,[jl).

(iv) Const_F_Wt(T,[S(i,)...i],T,[G(j,)...j],O)

= Min

i

Const-F_IVt(Ti [6(il) ***i-l],T,[6(j,)...j],O)+d(T,[i],h)

Const_F_Wt(T,[6(i,)...i],T,[6(j,)...j-l],O)+d(h,T,[j]).

Proof. Case (i) requires no edit operations. In cases (ii) and (iii), the
distance corresponds to the cost of deleting and inserting nodes in
Ti[S(i,) ... i] and T2[6(j,) ..* j], respectively. In case (iv>, since no substitu-
tion is allowed, the minimum cost mapping can be extended to T,[il and
T2[j] by either inserting T2[j] or deleting T,[i] only. Hence, the lemma. n

LEMMA II (b). Let i, E AncW and j, E Am(j); then

(i) Const__F_Wt(T,[S(i,) *** i], p, s) = 03 if s > 0.
(ii) Const-F_Wt(CL, T,[6(j,) *a* j], S) = cQ if s > 0.
(iii) Const_F_Wt(CL, CL, s) = 00 if s > 0.

Proof. Obvious since s > 0. n

THEOREM III. Let i, E Ax(i) and j, E Anc(j); then

= Min

’ f
(

I’

\

Zonst_F_Wt([6(iI) *e-i-1],[6(j,)..*j],s)+d(T,[i],h)

~onst_F_Wt([S(i,)...i],[6(j,)...j-l],s)+d(A,T,[j])

Min
1 GS, G Min{Size(i); Size(j); s)

Const-F_Wt([S(iI) *** S(i) - 11,

[6(j,)...6(j)-l],s-s,)

+Const-F_Wt([S(i)~~~i-11,

[S(j)***j-l],s,-1)

+4~I[W2[jl)

Proof. We are trying to find a minimum cost mapping A4 between
T,[S(i,)~*~i] and T,[G(j,)~*~j] using exactly s substitutions. The map can
be extended to T,[il and T2[j1 in the following three ways:

(i) If T,[i] is not touched by any line in M, then T,[il is to be deleted.
Thus, since the number of substitutions in Const_F_Wt(*, ., *) remains

CONSTRAINED TREE EDITING 263

unchanged, we have:

(ii) If 7’J j] is not touched by any line in M, then 7’& j] is to be inserted.
Again, since the number of substitutions in Const_F_Wt(., a, *) remains
unchanged, we have:

Const_F_Wt(T,[G(i,)...i],T,[G(j,)...j],s)

=Const_F_W(T,[6(i,)***i],

(iii) Consider the case when both T,[i] and T2[j] are touched by lines in
M. Let (i,k) and (h, j) be the respective lines, i.e., (i, k) and (h, j)EM. If
S(i,)< h G 6(i) - 1, then i is to the right of h, and so k, must be to the
right of j by virtue of the sibling property of M. But this is impossible in
7’,[6(j,) ... j] since j is the rightmost sibling in 7’,[S(j,) a.0 jl. Similarly, if i
is a proper ancestor of h, then k must be a proper ancestor of j by virtue
of the ancestor property of M. This is again impossible since k <j. So h
has to equal i. By symmetry, k must equal j, so (i, j) EM.

Now, by the ancestor property of M, any node in the subtree rooted at
T,[i] can only be touched by a node in the subtree rooted at 7’J jl. This
situation is depicted by Figure 6.

Fig. 6. Case 3 of Theorem III.

264 B. J. OOMMEN AND W. LEE

Since exactly s substitutions must be performed in this transformation,
the total number of substitutions used in the subtr~sformation from
T,[&$,) -.a 6(i) - 11 to T.[6(j,)..* S(j) - 11 and the subtransfo~ation from
7i[S(i) *** i - 11 to T,[S(j) ..* j - 11 must be equal to s - 1 (the last substitu-
tion being the operation 7;[i] -+ 7’,[j]>. Let s2 - 1 be the number
of substitutions used in the subtransformation from T1[6(i)**+ i - 11 to
T2[S(j) -.. j - 11; then s2 can take any value between 1 to
Min{Siz~~), Sizef j), s}. Hence, we have:

= Min
1 G:.s, G MinkSize(Size(j); s)

(+Const_F_Wt(T,[S(i)***i--11,

T2[S(j)..*j-1],s2--1)

, +~(~~~~~,~~~j~~

Since these three cases exhaust the possible ways for yielding
Const_F_Wt (S(i,).hei, 6(j,)...j, s), the minimum of these three costs
yields the result. D

It is easy to construct a recursive algorithm by using the above theorem.
However, both the time and space complexities of the algorithm will be
prohibitively large. Note that the main handicap with Theorem III is that
when substitutions are involved, the quantity Const_F-Wt (T,[S(i,)**.
i],T,[S(j,)..*j],s) between the forests T,[G(i,)*-+il and T,[G(j,)***jl is
computed using the Const-F-I% of the forests T,[SCI‘,) *SW 66) - 11 and
T2[Stjl)**. S(j) - I] and the Const_F_lRs of the remaining forests
T1[S(i) -em i - l] and T,[S(j)*** j - 11. If we note that, under certain condi-
tions, the removal of a subforest leaves us with an entire tree, the
computation is simplified. Thus, if 6(i) = S(i,) and 6(j) = S(j,) (i.e., both i
and i, and j and j, span the same subtree), the subforests from
r,[6(i,) *.* 6(i) - l] and T,[6(j,> =** s(j) - 1] do not get included in the
computation. However, if this is not the case, the Const_F_Wt(T,[S(i,) a-*
i], T2[S(j,) ‘.a j], s) can be considered as a combination of the
Const_F_Wt(7;[S(i,)... 6(i) - 1],7’,[6(j,).e* S(j)- 11,s -sZ)) and the tree
weight between the trees rooted at i and j, respectively, which is
Const_T_Wt(i, j, ~~1. This is formally proved below.

CONSTRAINED TREE EDITING 265

THEOREM IV. Let i, E Ax(i) and j, E And j>. Then the following is true:
If 6(i)= S(i,) and S(j)= S(j,), then

Const_F_Wt(T,[S(i,)...i],T,[G(j,)...j],s)

‘Const_F_Wt(T,[G(i,)~*~i-11,

T2[S(j,) . ..j] ,s) +d(T,[iI, A)

= Mint
Const_F_Wt(TI [6(iI) .*a i] ,

T,[G(j,)...j-l],s)+d(h,T,[j])

Const_F_Wt(T, [S(il) ... 6(i) - 11,

,T2[6(jl)...W-11 ,s- 1) +d(T,[il,T2[jl)

otherwise,

Const-F_Wt(T,[6(i,) . ..i-l].T,[G(j,)...j],s)

~Const_F_Wt(T,[G(i,)**~i-1],

T,[a(j,) -...j] ,s) +d(T,[i], A)
Const_F_Wt(T,[6(i,)~~~i],

=Min(T,[S(j,)...j-I],s)+d(A,T,[jl)

Const-_F_Wt(T,[S(i,) a** 6(i) -11,

Min
1 G s2 Q Min(Size(i); Size(j)s)

T,[6(j,)...6(j)-l],s-s,

\
+Const-T_Wt(i,j,s,)

Proof. By Theorem III, if 6(i) = Ni,) and S(j) = 6(j, 1, then the forests
TI[S(i,)*** S(i) - 11 and TJ S(jI)*** 6(j) - 11 are both empty. Thus,

= ConstLF_Wt(p, P,S -sZ)

which is equal to zero if s2 =s, or is equal to w if s2 <s. The first part of
the theorem follows.

266 B. J. OOMMEN AND W. LEE

For the second part, since the distance is the cost of the minimal cost
mapping, we know that:

Const_F_Wt(T,[S(i,)...i],T,[G(j,)...j],s)

gConst_F_Wt(T,[G(i,)...S(i)-11,

G[S(j,) ... S(j) -11 ,S--S2)+Const_T_Wt(i,j,s,).

This is because the latter formula represents a particular mapping of
T,[G(i)***il to T,[S(j)...j] in which the forest T,[6(i,)*** 6(i)--11 is
transformed into the forest T,[6(j,) ... S(j) - 11, and subsequently the tree
rooted at i is transformed into the tree rooted at j. Thus, the second term
in the above expression is a Const-T-B? and not a Const-F-B+. For the
same reason we have:

Const_T_Wt(i, j, s2)

G Const_F_Wt(T, [S(i) ..*i-1],T2[8(j)*..j-1],s2-1)

+~(~I[W2[.il).

Theorem III and these two inequalities justify the substituting of
Const-T-W,! (i, j, s2) for the corresponding Const_F_Wt expressions, and
the result follows. n

Theorem IV suggests that we can use a dynamic programming flavored
algorithm to solve the constrained tree-editing problem. First of all, note
that the second part of Theorem IV suggests that if we are to compute the
quantity Const_T_Wt (i,, j,,s), we have to have available the quantities
Const_T_Wt (i, j, s2) for all i and j and for all feasible values of 0 Q s2 QS,
where the nodes i and j are all the descendants of i, and j,, except nodes
on the path from i, to 6(i,) and the nodes on the path from j, to S(j,).
Furthermore, the theorem asserts that the distances associated with the
nodes which are on the path from i, to 6(i,) get computed (as a
byproduct’) in the process of computing the Const-F-Wt between the
trees rooted at i, and j,. Indeed, the set of nodes for which the computa-
tion of Const-T-II? must be done independently before the Const_T_Wt
associated with their ancestors can be computed is called the set of
“Essential-Nodes,” and these are merely those nodes for which the
computation would involve the second case of Theorem IV as opposed to

‘The reason why this is obtained as a byproduct will be clear when the algorithm is
formally presented. Indeed, whenever a Const_F_W is computed, if the forests are
trees, it is retained as a Const_T_Wt.

CONSTRAINED TREE EDITING 267

the first. Thus, the Const-T-l+? can be computed for the entire tree if
Const-T.-H0 of the Essential-Nodes is computed, and using this stored
value, the rest of the Const-T-H& can be computed. This suggests a
bottom-up approach for computing the Const_T_Wt between all pairs of
subtrees. To formally present the algorithm, we define the set
Essential-Nodes2 of tree T as:

Essential_Nodes(T) = { klthere exists no k’ > k such that 6(k) = 6(k’)) .

That is, if k is in Essential-Nodes(T), then either k is the root or k has
a left sibling. Intuitively, this set will be the roots of all subtrees of tree T
that need separate computations. Thus, for the trees in Figure 5,
Essential _Nodes(T,) = {2,6,7,8} and Essential _Nodes(T,) = {4,5,6].

The function 60 and the set Essential-Nodes0 can be computed in
linear time. We assume that these are stored in arrays S]], and
Essential-Nodes [I, respectively. Furthermore, we assume that the ele-
ments in Essential-Nodes [] are sorted as per the postorder representa-
tion.

ALGORITHM T-Weights
INPUT: Trees T, and T2 and the set of elementary edit

distances.
OUTPUT: Const-T-H+ (i,j,s), l<i<]T,(, lQ<lT,], and 16s

< MidlT,I, IT,D.
ASSUMPTION: Preprocess (T,,T,) yields the S[] and Essential-Nodes

[I arrays for both trees. These quantities are assumed
to be global.

BEGIN
Preprocess (Tl, T2 >;
FOR i’ = 1 to]Essential_Nodes,[]lDO

FOR j’ = 1 to lEssential_Nodes,[]lDO
i = Essential_Nodes,[i’];
j = Essential-Nodes&‘];

‘The set of nodes which we refer to as the set of Essential-Nodes happens to be
exactly the same as the set of nodes defined in [ll] as the LR_keyroots set. Although
these sets are identical, the implication of a node being in the sets is slightly different.
In [111, i E LR_keyroots[T,] and j E LR_keyroots[T2] implies that the corresponding
tree weights associated with the trees rooted at these nodes need precomputation. In
our case, i E Essential_Nodes[T,] and j E Essential_Nodes[T,] implies that the corre-
sponding constrained tree weights rooted at these trees need precomputation, and that
this precomputation must be achieved for all feasible values of s which are relevant.

268 B. J. OOMMEN AND W. LEE

Compute_Const_T_Wt (i, j);
ENDFOR

ENDFOR
END.

In the succeeding computation, we shall attempt to evaluate
Const_T_ Wt (i, j, S) and store it in a permanent three-dimensional array
Const_T_Wt. From Theorem IV, we observe that to compute the quantity
Const_T_Wt (i, j, s), the quantities which are involved are precisely the
terms Const_F_Wt ([S(i) ... h], [S(j) ... k], s’) defined for a particular in-
put pair (i, j), where h and k are the internal nodes of Tree,(i) and
Tree,(j) satisfying 6(i)< h pi, S(j)< k,<j, and where s’ is in the set of
feasible values and satisfies 0 Q s’ <s = Min{lTree,(i)l, lTree,(j)l). Our in-
tention is to store these values using a single temporary three-dimensional
array Const_F_ Wt[., *, *I. But in order to achieve this, it is clear that the
base indices of the temporary three-dimensional array Const_F_Wt[*, *, *I
will have to be adjusted each time the procedure is invoked so as to permit
us the possibility of utilizing the same memory allocations repeatedly for
every computation. This is achieved by assigning the base values b, and b,
as b, = S,(i) - 1 and b, = S,(j) - 1.

Thus, for a particular input pair (i, j), the same memory allocations
Const_-KWt[*, a, +I can be used to store the values in each phase of the
computation by assigning:

Const_F_Wt[x,,y,,s’]

=Const_F_Wt ([S(i).**S(i)+ x1 - 11, [S(j) +.* 6(j) +yl - 11, s’)

for all 1 <x1 Q i - S(i) + 1, 1 <yl Q j - 6(j) + 1.
Consequently, we note that for every x1, y,, and s’ in any intermediate

step in the algorithm, the quantity Const-T-Wt 0 that has to be stored in
the permanent array can be obtained by incorporating these base values
again, and has the form Const_T_Wt[x, + b,, y, + b,, s’].

After the array Const_T_Wt[.;, -1 has been computed, the distance
D,(T,, T2) between the trees Tl and T2 subject to the constraint T can be
directly evaluated using the ALGORITHM Constrained-Tree-Distance
presented thereafter.

ALGORITHM Compute_Const_T_Wt
INPUT: Indexes i, j and the quantities assumed global in T-Weights.
OUTPUT: Const_T_Wt[i,, j,, $1, 6,(i) G i, G i, S,(j) Q j, < j,O <S G

Min(Size(i), Size(j)].

CONSTRAINED TREE EDITING 269

BEGIN
N=i- 6,(i)+ 1;
M =j - S,(j) + 1;
R = Min{M, NJ
b, = S,(i) - 1;

b, = S,(j) - 1;

/* size of subtree rooted at T,[il */
/* size of subtree rooted at T,[jl */

/* adjustment for nodes in subtree rooted at
TJil */

/* adjustment for nodes in subtree rooted at
T,[jl */

Const__F_JVf[O][O][O] = 0; /* Initialize Const_F_Wt */
FOR x,=1 to N DO

Const-F- Wt[x1][O][O]
= Const_F_Wt[x, - l][Ol[Ol + d(T,[x, + b,l --f A);
Const_T_Wt[x, +b,][0][01=Const_F_Wt[x,1[01[01;

ENDFOR
FORy,=l to M DO

Const_F_Wt[O][y,][O] = ConstJ’_Wt[Ol[y, - ll[Ol +d(h -+ T2[yl + b,l);
Const_T_Wt[O][y, + b,l[Ol = ConstJ’_Wt[Ol[y,1[0];

ENDFOR
FOR s=l to R DO

Const_-F_Wf[O][O][s] = m;
Const_T_wt[O][O][s] = Const._F_Wt[01[01[sl;

ENDFOR
FORx,=ltoNDO

FOR y,=l to A4 DO
Const-F_Wt[x,][y,][O]

= Min
i

Const_F_Wt[x,][y,-l][O]+d(h*T,[y,+b,])

Const_F_Wt[x, - l][y,][O]+d(T,[x,+b,] -+A)
Const_T_Wt[x, + b,][y, + bZ][Ol = Const_J_Wt[x,][y,1[0];

ENDFOR
ENDFOR
FOR x,=1 to N DO

FOR s=l to R DO
Const_F_Wt[x,][O][s]=~;
Const_T_Wt[x, + b,][O][s] = Const_F_Wt[x,][O][s];

ENDFOR
ENDFOR
FOR y,=l to M DO

FORs=ltoRDO
Const-_F_Wt[O][y,][s] = 03;
Const_T_Wt[O][y, + b,][sl= Const_F_Wt[Ol[y,l[sl;

ENDFOR

270 B. J. OOMMEN AND W. LEE

ENDFOR
FORx,=ltoNDO

FORyi=ltoMDO
FORs=ltoRDO

IF 6,(x, + b,) = 6,(x) and 6,(y, + b,) = 6,(y) THEN
Const-J_Wt[x,][y,I[sl

Const_F_Wt[x,--l][y,][s]+d(T,[x,+b,]+h)

= Min

1

Const_F_Wt[x,][y,-l][s]+d(A+T,[y,+b,])

Const_F_Wt[xi - l][yi - l][s - l]

+V,[x, +&I + T*[Y, +w
Const_T_Wt[x, +b,l[y, +b,l[sl=ConstJ;_Wt[x,l[y,I[sl;

ELSE
Const_F_Wf[x,l[y,l[sl

= Min

:

Const_F_Wt[x, - l][y,][s] +d(T,[x, t-b,] -+A)

Const_F_Wt[x,][y,-l][s]+d(h-+T,[y,+b,])

Min
i

Const_F_Wt[u][[b][s-s,l]

1 <s2$ Mink; d; s) +Const_T_Wt[x, +b,][y, +b,][s,]

where a = 6,(x, + b,) - 1 -b,, b = 6,(y, + b2) - 1 -b,,
c = Size(x, + b,) and d = Size(y, + b,).

ENDIF
ENDFOR

ENDFOR
ENDFOR

END.

ALGORITHM Constrained_Tree_Distance
INPUT: The array Const_T_Wt[*, *, -1 computed using Algorithm

T-Weights,
and the constraint set 7.

OUTPUT: The constrained distance D,(Ti, T2).
BEGIN

D,(T,,T,)=m;
FORall SET DO

D,~T,,T,~=MinID,~T,,T,~,Const-~-W~~l~~I1~I~zll~~ll
ENDFOR

END.

THEOREM V. The basic algorithm is correct.

Proof. The proof follows along the lines of the proof for the uncon-
strained distance [ll]. We prove that the invariants hold for all (i, j) such
that i E Essential_Nodes(T,) and j E Essential_Nodes(T,):

CONSTRAINED TREE EDITING 271

(i) Immediately before the computation of Const_T_Wt(i,j,s) for all
valid values of s, all distances Const_T_Wt(h, k, s’> are available, where
6(i) <h <i, S(j) < k <j, 0 G s’ G Min{Size(h), Size(k)}, and either 6(i) Z
S(h) or S(j) + 6(k). This is true because the values of h and k are either
contained in Essential_Nodes(T,) and Essential-Nodes(&), respectively,
or can be computed from them. Thus, Const_T_Wt(h, k,s’) is available if
h is in the subtree of Tree(i), but not in the path from 6(i) to i, and k is
in the subtree of Tree(j), but not in the path from S(j) to j.

(ii) After the computation of Const_T_Wf(i, j, s), every
Const_T_Wt(h, k, s’) is available, where 6(i) G h G i, SC j) G k ~j, and 0 <
s’ < Min(Size(h),Size(k)}. Thus, every Const_T_Wt(h, k, s’) is available,
including those nodes in the path from 6(i) to i, and in the path from 6(j)
to j.

We will show that if (i) is true, then (ii) is true. From Theorem IV and
(9, we know that all required subtree-to-subtree distances are available.
We compute each Const-T-Wt(h, k, $7, where 6(h) = SW, 6(k) = 6(j>,
and 0 < s’ < Min{Size(h), Size(k)} using the IF part of Theorem IV, and
subsequently include them in the permanent array Const_T_Wt. So (ii)
holds.

Let us show that (9 always holds. Suppose 6(h)# 6(i). Let h’ be the
lowest ancestor of h such that h’ E Essential-Nodes (T,). Clearly, such an
ancestor exists since the root of T, is in Essential-Nodes [I. Since
S(h’) = S(h) # S(i), we conclude that h’ #i. Further, i E Essential-Nodes
CT,), we have h’ G i. Combining the latter two assertions, we obtain h’ <i.
Similarly, we have k’ <j. This means that Const_T_Wt(h’, k’, s” 1 will be
computed for all valid values of s” before Const_T_Wf(i, j, s) because
elements in Essential-Nodes (T,) and Essential-Nodes (T,) are stored in
their increasing orders. Hence, Const_T_Wt(h, k, s’) is available for all
valid values of s’ after Const_T_Wt(h’, k’,s”) is computed for all valid
values of s”. So (i) always holds, and this proves the theorem. n

Note that our algorithm is similar in spirit to the one independently
reported in 1121, although the latter, just as in [51, deals with the problem
by utilizing the number of insertions permitted as the “free” variable. In
this case, however, we have chosen to use the number of substitutions as
the free variable. This makes it differ from the philosophies of both 151 and
[12], but helps us to retain the same underlying principles of tree editing as
in [ll], in which the substitution operation has to be handled differently
from both the insertion and deletion operations.

The space required by our scheme is obviously O(lT,I * IT,1 * Min{lT,I,
IT21)). To analyze the time complexity, we use the following results which
are a consequence of the equivalence of the sets Essential-Nodes(T) and

272 B. J. OOMMEN AND W. LEE

LR_keyroots(T) defined in [II] (see the proof of Lemma 6 of [ll]):

(9 Cardinali~ (Essential_Node~~)) G &eaves(T)/
(ii)

IEssential_Nodes(T)I

c Size(i)~lIrl*Min{Depth(T),Leaves(T)} (4)
i=l

THEOREM VI. Zf Span(T) is the Min{Depth(T),Leaves(T)}, the time
complex@ of our algorithm is:

Proof. We first observe that the preprocessing takes linear time. Also,
note that if the array Const-T-Wt is computed, the constrained tree-edit-
ing distance, D,(*, * 1, can be computed using Algorithm
Constrained-Tree-Distance in time ITI, which in the worst case is
O(Min{lT, 1, IT,/}) which is also linear. Hence, the dominant term involves
computing the array Const_T_Wt(i,j,s) for all relevant i, j, and s. This
algorithm involving the subtrees rooted at i and j involves: O(Size(i)*
Size(j) * Min(Size(i), Size(j>)‘) computation. Therefore, the time required
is:

lEssential_Ncdes(T,)l lEssential_NodesfTZ)/

c c Size(i) *Size(j) *Min{Size(i),Size(j)}”
i=l j=l

IEssentiai_Nodes(T,)I

< Min~~T~l, lT21}2 *

/Essential_NodesfT2)I

x Size(i) * c Size(j) .
i=l j=l

The result follows as a consequence of (4). n

5. CONCLUSIONS

In this paper, we have considered the problem of editing a tree T, to a
tree T2 subject to a set of specified edit constraints. The edit constraint is
fairly arbitrary, and can be specified in terms of the number and type of
edit operations desired in optimal transformation just as in the case of

CONSTRAINED TREE EDITING 273

strings [5, 61. Given the trees T, and T2, an intermediate quantity which is
the array of constrained edit distances Const_T_Wt(i,j,s) can be com-
puted using dynamic programming, whence D,(T,, T2) can be evaluated in
linear time. If for a tree T, Span(T) is defined as the
Min{Depth(T),Leaves(T)}, the scheme to compute this array requires
O(ITll* IT2]*Min{lT,I, lT,D2 *Span(T,)*Span(T,)) time. The space re-
quired for this computation is cubic.

We are currently investigating the use of constrained edit distances
between trees in the pattern recognition of noisy (garbled) trees, and in
analyzing biochemical structures.

This work was supported in part by the Natural Sciences and Engineering Research
Council of Canada. A preliminary version of some of these results is found in the
Proceedings of the Second International Computer Sciences Conference: Data and Knowl-
edge Engineering: Theory and Applications, Hong Kong, December 1992, pp. 409-415.

REFERENCES

1. R. L. Kashyap and B. J. Oommen, A common basis for similarity measures involving
two strings, Inter. J. Computer Math. 13:17-40 (1983).

2. R. L. Kashyap and B. J. Oommen, Spelling correction using probabilistic methods,
Pattern Recognition Letters 2:147-154 (1984).

3. S. Y. Lu, A tree-to-tree distance and its application to cluster analysis, IEEE Trans.
Pattern Anal. and Mach. Intell. PAMI-1(2):219-224 (1979).

4. S. Y. Lu, A tree-matching algorithm based on node splitting and merging, IEEE
Trans. Pattern Anal. and Mach. Intell. PAMI-6(2):249-256 (1984).

5. B. J. Oommen, Constrained string editing, Inform. Sci. 40:267-284 (1986).
6. B. J. Oommen, Recognition of noisy subsequences using constrained edit distances,

IEEE Trans. Pattern Anal. and Mach. Intell. PAMI-X51676-685 (1987).
7. D. Sankoff and J. B. Kruskal, Time Warps, String Edits, and Macromolecules: Theory

and Practice of Sequence Comparison, Addison-Wesley, 1983.
8. S. M. Selkow, The tree-to-tree editing problem, Inform. Process. Letters 6(6):184-186

(1977).
9. K. C. Tai, The tree-to-tree correction problem, J. Assoc. Comput. Mach. 26:422-433

(1979).
10. R. A. Wagner and M. J. Fischer, The string-to-string correction problem, J. Assoc.

Comput. Mach. 21:168-173 (1974).
11. K. Zhang and D. Shasha, Simple fast algorithms for the editing distance between

trees and related problems, SLAM J. Comput. 18(6):1245-1262 (1989).
12. K. Zhang, Constrained string and tree editing distance, Proceedings of the LASTED

International Symposium, New York, 1990, pp. 92-95.

Received 23 April 1992; revised 15 June 1992, 19 November 1992

