
A Nearly-optimal Fano-based Coding Algorithm

Luis G. Rueda
∗
and B. John Oommen

†

Abstract

Statistical coding techniques have been used for a long time in lossless data compression, using methods

such as Hu�man's algorithm, arithmetic coding, Shannon's method, Fano's method, etc. Most of these

methods can be implemented either statically or adaptively. In this paper, we show that although Fano

coding is suboptimal, it is possible to generate static Fano-based encoding schemes which are arbitrarily

close to the optimal, i.e. those generated by Hu�man's algorithm. By taking advantage of the properties of

the encoding schemes generated by this method, and the concept of �code word arrangement�, we present

an enhanced version of the static Fano's method, namely Fano+. We formally analyze Fano+ by presenting

some properties of the Fano tree, and the theory of list rearrangements. Our enhanced algorithm achieves

compression ratios arbitrarily close to those of Hu�man's algorithm on �les of the Calgary corpus and the

Canterbury corpus.

1 Introduction

1.1 Problem Statement

Hu�man's algorithm is a well-known encoding method that generates an optimal pre�x encoding scheme, in

the sense that the average code word length is minimum. As opposed to this, Fano's method has not been

used so much because it generates pre�x encoding schemes that can be sub-optimal.

In this paper, we present an enhancement of the traditional Fano's method by which encoding schemes,

which are arbitrarily close to the optimum, can be easily constructed.

1.2 Overview

We assume that we are given a source alphabet, S = {si, . . . , sm}, whose probabilities of occurrence are P =

[p1, . . . , pm], and a code alphabet, A = {a1, . . . , ar}. We intend to generate an encoding scheme, {si → wi},

in such a way that �̄ =
∑m

i=1 pi�i is minimized, where �i is the length of wi. Although, we speci�cally consider

the binary code alphabet, the generalization to the r-ary case is not too intricate.

Lossless encoding methods used to solve this problem include Hu�man's algorithm (Hu�man, 1952), Shan-

non's method (Shannon and Weaver, 1949), arithmetic coding (Sayood, 2000), Fano's method (Hankerson

∗Member, IEEE. School of Computer Science, University of Windsor, 401 Sunset Ave., Windsor, ON, N9B 3P4, Canada. E-

mail: lrueda@uwindsor.ca. Partially supported by Departamento de Informática, Universidad Nacional de San Juan, Argentina,

and NSERC, the Natural Science and Engineering Research Council of Canada. A preliminary version of this paper was presented

at the 2001 IEEE Conference on Systems, Man and Cybernetics, Tucson, Arizon, USA.
†Fellow, IEEE. School of Computer Science, Carleton University, 1125 Colonel By Dr., Ottawa, ON, K1S 5B6, Canada. E-mail:

oommen@scs.carleton.ca. Partially supported by NSERC, the Natural Science and Engineering Research Council of Canada.

1

et al., 1998), etc. Adaptive versions of these methods have been proposed, and can be found in (Faller, 1973;

Gallager, 1978; Hankerson et al., 1998; Knuth, 1985; Rueda, 2002; Sayood, 2000). Our survey is necessarily

brief as this is a well-reputed �eld.

We assume that the source is memoryless or zeroth-order, which means that the occurrence of the next

symbol is independent of any other symbol that has occurred previously. Higher-order models include Markov

models (Hankerson et al., 1998), dictionary techniques (Ziv and Lempel, 1977; Ziv and Lempel, 1978), predic-

tion with partial matching (Witten et al., 1999), grammar based compression (Kie�er and Yang, 2000), etc.,

and the techniques introduced here are also readily applicable for such �structure� models.

1.3 Our Contribution

Hu�man's algorithm proceeds by generating the so called Hu�man tree, by recursively merging symbols (nodes)

into a new conceptual symbol which constitutes an internal node of the tree. In this way, Hu�man's algorithm

generates the tree in a bottom-up fashion. As opposed to this, Fano's method proceeds by generating a coding

tree as well, but it proceeds in a top-down fashion. At each step, the list of symbols is partitioned into

two (or more, if the output alphabet is non-binary) new sublists, generating two or more new nodes in the

corresponding coding tree. Although Fano's method, typically, generates a sub-optimal encoding scheme1, the

loss in compression ratio with respect to Hu�man's algorithm can be relatively small, but can also be quite

signi�cant if the optimality of the partitioning is small.

The binary alphabet version of Fano's method proceeds by partitioning the list of symbols into two new

sublists in such a way that the sums of probabilities of these two new sublists are as close to being equal

as possible. This procedure is recursively applied to the new sublists until two atomic sublists with a single

symbol are obtained, and simultaneously a bit is appended to the code words of each symbol in these sublists.

As a result of this, if we start with the probabilities of occurrence in a decreasing order, it can be seen

that, occasionally, symbols with higher probabilities are assigned to longer code words than those with lower

probabilities. This condition is not desirable; we attempt to rectify this condition in Fano+, a superior Fano-

based scheme which we develop in this paper.

On the other hand, after constructing a coding tree (such as a Hu�man tree or a Fano tree), an encoding

scheme is generated from that tree by labeling the branches with the code alphabet (typically, binary) symbols.

Given a tree constructed from a source alphabet of m symbols, 2m−1 di�erent encoding schemes can be

generated. Of these, only one of them is of a family of codes known as canonical codes, in which the code

words are arranged in a lexicographical order (Witten et al., 1999). Canonical codes are desired because they

allow extremely fast decoding, and require approximately half of the space used by a decoding tree. These

codes are generated by Fano coding in a natural way.

In this paper, we introduce Fano+, an enhanced version of the static Fano coding approach utilizing the

concept which we called �code word arrangement�, and which is based on a fundamental property of two lists

arranged in an increasing and decreasing order respectively (Hardy et al., 1959). In our context, these lists are

the code words (in terms of their lengths) and their probabilities respectively. This paper formally details the

encoding scheme generation algorithm, the partitioning procedures suitable for Fano+, and a rigorous analysis

1Even if optimal partition is in P, Fano coding is still sub-optimal (Storer, 1988).

2

of their respective properties.

We �nally discuss some empirical results obtained from running the static Hu�man's algorithm, the static

version of the traditional Fano coding, and Fano+, on real life data. Our empirical results show that the

compression ratios achieved by Fano+ are comparable to those of other optimal encoding methods such as

Hu�man's algorithm. Although we use the zeroth order statistical model, other structure/statistical models

such as higher-order models, dictionary models, etc., can also be used in conjunction with Fano+ to achieve

compression ratios that are close to those attained by most well known compression schemes.

2 Properties of the Traditional Fano Coding

Consider the source alphabet S = {s1, . . . , sm} with probabilities of occurrence P = [p1, . . . , pm], where

p1 ≥ p2 ≥ . . . ≥ pm. Unless otherwise stated, in this paper, we assume that the code alphabet is A = {0, 1}.
We de�ne an encoding scheme as a mapping, φ : s1 → w1, . . . , sm → wm, where wi ∈ A+, for i = 1, . . . , m.

One of the properties of the encoding schemes generated by Hu�man's algorithm is that �1 ≤ �2 ≤ . . . ≤ �m,

where �i is the length of wi. In general, this property is not satis�ed by the encoding schemes generated by

Fano's method. We also introduce a de�nition that is important to our work.

De�nition 1. Let S = {s1, . . . , sm} be the source alphabet whose probabilities of occurrence are P =

[p1, . . . , pm], and let A = {0, 1} be the code alphabet. A binary coding tree, T = {t1, . . . , t2m−1}, is a binary

tree in which:

(i) Every node has zero or two children.

(ii) Every internal node, tk, has a weight, τk, calculated as the sum of the weights of its two children.

(iii) Every leaf, tj , has a symbol, si, associated with it, and a weight, τj , which represents the probability

of occurrence of si, namely pi.

It is also important to mention that if the code word lengths are not in this order, the binary coding tree

does not satisfy a fundamental property called the sibling property (Gallager, 1978; Hankerson et al., 1998),

which is de�ned as follows.

De�nition 2. Let T = {t1, . . . , t2m−1} be a binary coding tree, whose weights are {τ1, . . . , τ2m−1}, and where

t1 is the root node. T satis�es the sibling property if the following conditions hold:

(i) τ2 ≥ . . . ≥ τ2m−1 .

(ii) t2k and t2k+1 are siblings in T , for k = 1, . . . , m− 1.

Before we proceed with the theoretical analysis of the relation between the code word lengths and the

sibling property, we recursively de�ne the length of the path in a binary coding tree.

De�nition 3. Consider a binary coding tree T = {t1, . . . , t2m−1} in which each leaf is associated with a source

alphabet symbol, si. The code word length of a node tj , where tj is any node of the tree, is de�ned as follows:

(i) 1 if tj is a leaf, or

3

1.0

.58

.14 .13

.15 .27

.19.19

.38.20

.42

a

b c

d

fe

Figure 1: An example of a binary coding tree, which was constructed by following the principles of Fano

coding, and does not satisfy the sibling property.

(ii) 1 + length(tjc), where tjc is the left or right child of tj , whenever tj is an internal node.

Using this de�nition, we shall prove that whenever the probabilities of occurrences of the input symbols

are in a non-increasing order, if the code words are in a non-decreasing order of length, the binary coding

tree associated with such an encoding scheme does not satisfy the sibling property. This fact is clari�ed in

Example 1 below and formally stated and proved in Theorem 1. It is thereafter used in Fano+ to modify the

binary coding tree so as to get an enhanced performance.

Example 1. Consider the source alphabet, S = {a, b, c, d, e, f}, and the probabilities of occurrence P =

[.2, .19, .19, .15, .14, .13]. Suppose that a particular binary coding tree, T , constructed from S and P following

the principles of Fano coding is the one depicted in Figure 1.

Note that the list positions that we referred to as ti, and the positions of the symbols of S in the list are

tki , which are listed in the following tables:

List Id τi

t1 1.00

t2 .58

t3 .42

t4 .20

t5 .38

t6 .15

t7 .27

t8 .19

t9 .19

t10 .14

t11 .13

tki ki

tk1 4

tk2 8

tk3 9

tk4 6

tk5 10

tk6 11

The complete table of the indices, the probabilities of occurrence, P , and the code word lengths, {�i}, for
the symbols are given in the following table:

4

si pi �i

a .2 2

b .19 3

c .19 3

d .15 2

e .14 3

f .13 3

Observe that �i = 3 > 2 = �j , where i = 3 < 4 = j. The corresponding locations in the list are t9 and t6

whose weights are 0.19 and 0.15 respectively. The sibling property is violated, since 0.19 = p3 > p4 = 0.15. �

Example 1 depicts a rather simple case, which is likely to occur when constructing the tree for real-life

scenarios using Fano's method. We will observe this later when we present our empirical simulations on real-life

�les from standard benchmarks.

Theorem 1. Let T be a binary coding tree constructed from the source alphabet S = {s1, . . . , sm} whose
probabilities of occurrence P = [p1, . . . , pm] are sorted, i.e. p1 ≥ . . . ≥ pm. For any encoding scheme,

φ : S → {w1, . . . , wm}, obtained after labeling as per the tree T , where �i is the length of wi, if there exist i

and j such that i < j and �i > �j , then T does not satisfy the sibling property.

Sketch of Proof. Let T � = {t�1, . . . , t�2m−1} be a binary coding tree. T � satis�es the sibling property if and

only if its nodes can be arranged in a sequence, t�1, t
�
2, . . . , t

�
2m−1, such that all non-root nodes of the form t�2i

and t�2i+1 are siblings in T �, i = 1, . . . , m− 1, and τ�
2 ≥ τ�

3 ≥ . . . ≥ τ�
2m−1.

Let φ : s1 → w1, . . . , sm → wm be an encoding scheme generated from the coding tree T = {t1, . . . , t2m−1}.
Also, let �i is the length of wi. Suppose that ∃ i and j, i < j, such that �i > �j. The proof is done by showing

that the leaves associated with si and sj , tk and tl, violate the sibling property for the three possible cases

encountered:

(i) tk and tl are siblings.

(ii) tk and tl are not siblings, but they are in the same level.

(iii) tk and tl are not in the same level.

The details of the proof are omitted, and can be found in (Rueda, 2002; Rueda and Oommen, 2001).

The reader will observe from Theorem 1 that when there is a leaf whose weight is greater than that of a

leaf located in a lower level of the tree, the sibling property is not satis�ed. As a consequence, the average

code word length of any encoding scheme obtained from this tree is not minimal.

3 The Enhanced Coding Algorithm

Considering the facts discussed above, we now propose Fano+ using the following modi�cation to the tradi-

tional static Fano's method. It is well known that Fano's method requires that the source symbols and their

5

probabilities are sorted in a non-increasing order of the probabilities. What we incorporate is as follows: After

all the code words are generated, we sort them in terms of their increasing order of lengths maintaining S and

P in the order of the probabilities. This enhancement leads to Fano+, a modi�ed Fano coding algorithm which

generates encoding schemes whose average code word lengths are arbitrarily close to those of the optimal ones

(i.e. those generated by Hu�man's algorithm). This enhancement is formalized in Rule 1 given below.

Rule 1. Consider the source alphabet S = {s1, . . . , sm} whose probabilities of occurrence are P = [p1, . . . , pm],

where p1 ≥ p2 ≥ . . . ≥ pm. Suppose that φ : s1 → w1, . . . , sm → wm is the encoding scheme obtained by

Fano's method. Rearrange w1, . . . , wm into w′
1, . . . , w

′
m such that �′i ≤ �′j for all i < j, and simultaneously

maintain s1, . . . , sm in the same order, to yield the encoding scheme: φ′ : s1 → w′
1, . . . , sm → w′

m. �

The encoder construct a code, φ, using the static Fano's method, obtains the enhanced encoding scheme

φ′ by applying Rule 1. The decoder invokes the same rule obtaining φ′, from which it generates the decoding

scheme, (φ′)−1 : w′
1 → s1, . . . , w

′
m → sm.

In Example 1, swapping the symbols b and c (and updating the content of the tree), is equivalent to

swapping their corresponding code words in any of the encoding schemes generated from T . Observe that

after this modi�cation, T satis�es the sibling property. Note that we do not obtain the optimal encoding

algorithm, like Hu�man's, since we are only swapping code words, and hence the coding tree is the same as

that constructed by Fano's method. There are some cases in which the structure of the tree must be changed

so that it satis�es the sibling property.

The procedure for generating the encoding scheme (which also includes the sorting process) is given in

Algorithm Fano+ below.

The sorting procedure works, using the principles of radix sorting (Andersson et al., 1998), as follows.

First, an array of m− 1 elements is created, where the ith cell allocates the code words of length �i. This is

accomplished in the �rst for loop. In the second for loop, the entries of the array are scanned in canonical

order, and for each entry (the inner for loop), the code words are �popped� from the array and allocated in the

list of code words. As a result, the code words will be sorted in a non-decreasing order, and the probabilities

of the symbols will preserve the original order, i.e. decreasing order.

Using the principles of radix sorting, an array of m integers in the range 1 . . . k, k = O(m), can be sorted in

O(m) time and space. Note that in the sorting procedure, the sum of sizeOf(temp[i]) is actually the number of

code words, which is m, and hence the worst-case time complexity of procedure sortSymbols(...) is O(m). In

the actual implementation, a pointer to each code word (as opposed to the code word itself) could be stored

in array �term�, in order to achieve linear space complexity.

Observe that Fano+ yields a coding sequence for every source alphabet symbol. The actual encoding and

decoding are both therefore straightforward. Elementary coding textbooks report how such table-based pre�x

codes can be implemented e�ciently.

4 Properties of the Enhanced Fano Coding

To facilitate the analysis, we �rst introduce two important properties of Fano+, the enhanced static Fano

coding. The �rst relates to the e�ciency in compression achieved by Fano+, and the second is the property

6

Algorithm 1 Fano+ // Enhanced_Fano_Coding

Input: The source alphabet, S. The probabilities of occurrence, P .
The code alphabet, A = {0, 1}.

Output: The encoding scheme {si → wi} .
Method:

procedure Fano(S,P ,A : list; var {wi} : code)
Divide S and P into two sublists S0,S1 and P0,P1, such that the sum of proba-

bilities of occurrence in each Pj is as nearly equal as possible.

for j ← 0 to 1 do
Push j to wi for each si ∈ Sj .

if |Sj | > 1 then
Fano(Sj ,Pj,A, {wi})

endif

endfor

procedure sortSymbols(S, {�i} : list)
for i← 1 to m do

Add wi to temp[�i]
endfor

for i← 1 to m do

for j ← 1 to sizeOf(temp[i]) do
wi ← temp[i][j]

endfor

endfor

endprocedure

Fano(S, P , A, {wi})
sortSymbols(S, {�i})

end Algorithm Fano+ // Enhanced_Fano_Coding

that it achieves lossless compression.

The e�ciency of compression of Fano+ is a direct consequence of the rearrangement of the code words

such that they are sorted in an increasing order of length (Rule 1). This is stated in the following theorem,

for which a proof can be found in (Hardy et al., 1959)2.

Theorem 2. Let p1, . . . , pm be positive real numbers such that p1 ≥ . . . ≥ pm, and let �1, . . . , �m be positive

integers such that �1 ≤ . . . ≤ �m. Then, for any rearrangement �′1, . . . , �
′
m of the list �1, . . . , �m,

m∑
i=1

pi�i ≤
m∑

i=1

pi�
′
i . (1)

Observe that from Theorem 2, we can infer that for any list of code word lengths, we can obtain the optimal

rearrangement, i.e. the one that satis�es �1 ≤ . . . ≤ �m, by using Rule 1. However, this does not guarantee

that we obtain the optimal encoding scheme (as in Hu�man's algorithm), which also depends on constructing

the optimal coding tree for a particular set of probabilities, p1, . . . , pm.

The following counter-example shows that even the enhanced Fano coding algorithm does not ensure the

optimal encoding scheme.

Example 2. Consider the source alphabet S = {a, b, c, d, e} whose probabilities of occurrence are P =

[.35, .17, .17, .16, .15]. The coding tree constructed using the conventional Fano's method is depicted in Figure

2 (a). The corresponding Hu�man tree is depicted in Figure 2 (b). Observe that even after rearranging the

code words obtained from labeling the tree of Figure 2 (a), it is not possible to achieve the optimal encoding

2The proof given in (Hardy et al., 1959) is also valid for all real, not necessarily positive p1, . . . , pm and �1, . . . , �m.

7

.17.35

.52

.16 .15

.48

.17 .31

1.0

ba c

d e
(a) Using Fano's method.

.16 .15

.31

.17.17

.34

.65

1.0

.35

d eb

a

c
(b) Using Hu�man's algorithm.

Figure 2: Two di�erent binary coding trees constructed with the source alphabet and probabilities of occurrence

given in Example 2.

scheme. This fact will also be observed in the empirical results shown later in this paper. �

To initiate discussions on the analysis of Fano+, we �rst prove that it generates a pre�x code. Note that

this cannot be proven by using Kraft's inequality, since the latter is a necessary condition on the lengths of

the code words, but not su�cient on the symbols composing the code words themselves.

Theorem 3. Let S = {s1, . . . , sm} be the source alphabet, and A = {0, 1} be the binary code alphabet.

Procedure Fano(...) of Algorithm Fano+ generates a pre�x code.

Sketch of Proof. This theorem can be proven by an induction on the number of steps used in the partitioning.

Let S(j) be the list being partitioned at time `j', i.e. the jth partitioning step of the invoked procedure

Fano(...). At the time instant `j', S(j) is partitioned into S0(j) and S1(j). The symbol `0' is added as a su�x

to all the code words of S0(j), and `1' is added as a su�x to all the codewords of S1(j).

The basis case is straightforward, as it involves the initial partitioning in which S(1) is partitioned into

S0(1) and S1(1), where the code words of S0(1) start with `0' and the code words of S1(1) start with `1'.

Clearly, no code word of S0(1) is a pre�x of any code word in S1(1) and vice versa.

The inductive step involves proving the hypothesis that no code word in S0(j − 1) is a pre�x of any code

word in S1(j−1) and vice versa. This proof follows the exact same steps of the basis case in which we examine

the symbols that occur after the (j−1)st. The details are actually not too complicated, although the symbolic

narration is cumbersome. The complete proof can be found in (Rueda, 2002; Rueda and Oommen, 2001).

Theorem 4. Consider the source alphabet S = {s1, . . . , sm} whose probabilities of occurrence are P =

[p1, . . . , pm], where p1 ≥ . . . ≥ pm, and the binary code alphabet. Suppose that X is encoded into Y using

Algorithm Fano+. Then X is e�ciently encoded into Y, yielding an e�ciency at least as that obtained using

the conventional Fano's method.

Proof. The proof follows by a direct invocation of the properties of Theorems 1 and 2.

8

File Orig. Hu�man Fano Fano+

Name Size: lX �Y ρ �Y ρ �Y ρ
(bytes) (bytes) (%) (bytes) (%) (bytes) (%)

bib 111,261 73,003 34.38 73,133 34.26 73,010 34.37

book1 768,771 438,619 42.94 439,322 42.85 438,803 42.92

book2 610,856 368,587 39.66 369,691 39.47 369,537 39.50

geo 102,400 73,323 28.39 73,714 28.01 73,602 28.12

news 377,109 246,687 34.58 246,890 34.53 246,773 34.56

obj1 21,504 16,819 21.78 16,845 21.66 16,822 21.77

obj2 246,814 194,863 21.04 195,324 20.86 194,933 21.02

paper1 53,161 33,621 36.75 33,655 36.69 33,653 36.69

progc 39,611 26,189 33.88 26,355 33.46 26,326 33.53

progl 71,646 43,242 39.64 43,588 39.16 43,529 39.24

progp 49,379 30,480 38.27 30,527 38.17 30,501 38.23

trans 93,695 65,514 30.08 65,723 29.85 65,515 30.08

Total 2,547,207 1,610,947 36.76 1,614,767 36.61 1,613,004 36.68

Table 1: Empirical results obtained after compressing test �les from the Calgary corpus by using the static

Hu�man's algorithm, the static Fano's method, and the sibling-enhanced version of the static Fano's method

(Fano+).

5 Empirical Results

In order to analyze the e�ciency of Fano+, we have conducted some experiments on �les of the Calgary corpus3

and the Canterbury corpus (Witten et al., 1999). The empirical results obtained are displayed in Tables 1

and 2 respectively. The columns labeled `Hu�man' and `Fano' correspond to the static Hu�man's algorithm

and the traditional static Fano's method respectively. The columns labeled `Fano+' correspond to the sibling-

enhanced version of the static Fano's method introduced in this paper. The columns labeled `�Y ' represent

the size (in bytes) of the compressed �le. The columns labeled `ρ' tabulate the percentage of compression

obtained by the di�erent methods, calculated as ρ =
(
1− �Y

lX

)
100, where lX is the length of the input �le.

The last row contains the total for each column except for the column labeled `ρ', for which the value of the

cell corresponds to the weighted average of compression ratio.

Observe that the gain in percentage of compression is 0.06% and 0.07% on the �les of the Calgary corpus

and the Canterbury corpus respectively. For example, for the �le trans, Hu�man and Fano+attain the same

percentage of compression, e.g. 30.08%, whereas the traditional Fano coding compresses slightly less, e.g.

29.85%. Although the improved version of Fano's method does not guarantee the optimal encoding scheme,

the weighted averages obtained from Fano+ are signi�cantly closer to those obtained by Hu�man's algorithm.

Observe also that in all the �les, there is some gain in the compression ratio. This implies that in all the �les

encoded, �1 ≤ �2 ≤ . . . ≤ �m was not satis�ed by the encoding schemes generated by the traditional static

Fano's method, and validates the results for such an enhancement.

We also observe that the compression ratios achieved by our implementation of Fano+, which are very

close to the optimal, can be signi�cantly improved by incorporating higher-order structure models, such as

dictionary based methods, Markovian models, etc. This is currently being investigated.

3Electronically available at ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus/.

9

File Orig. Hu�man Fano Fano+

Name Size: lX �Y ρ �Y ρ �Y ρ
(bytes) (bytes) (%) (bytes) (%) (bytes) (%)

alice29.txt 148,481 84,765 42.91 85,254 42.58 84,999 42.75

asyoulik.txt 125,179 76,010 39.27 76,195 39.13 76,124 39.18

cp.html 24,603 16,456 33.11 16,477 33.02 16,458 33.10

�elds.c 11,150 7,295 34.56 7,354 34.03 7,349 34.08

grammar.lsp 3,721 2,397 35.56 2,402 35.44 2,397 35.56

kennedy.xls 1,029,744 463,300 55.00 465,368 54.80 464,612 54.88

ice10.txt 419,235 244,124 41.76 244,197 41.75 244,141 41.76

plrabn12.txt 471,162 266,423 43.45 266,984 43.33 266,592 43.41

ptt5 513,216 107,027 79.14 107,138 79.12 107,075 79.13

sum 38,240 26,409 30.93 26,501 30.69 26,463 30.79

xargs.1 4,227 2,823 33.20 2,825 33.16 2,824 33.18

Total 2,788,958 1,297,029 53.49 1,300,695 53.36 1,299,034 53.42

Table 2: Details of the experiments performed with the static version of Hu�man's algorithm, the traditional

static Fano's method and the sibling-enhanced version of static Fano's method on �les of the Canterbury

corpus.

6 Conclusions

In this paper, we present an encoding scheme generation algorithm which is Fano-based and almost optimal.

We �rst showed that for the encoding schemes, whose code words are not arranged in an increasing order

of lengths, the corresponding coding tree does not satisfy the so-called sibling property. To rectify this, we

introduced an enhanced version of the static Fano's method, Fano+, whose properties have been formally

proven.

The encoding algorithm associated with Fano+ have been formally presented, rigorously analyzed, and

empirically tested. Our empirical results on �les of the Calgary corpus and the Canterbury corpus show

that Fano+ achieves percentages of compression which are almost optimal � very marginally below those of

Hu�man's algorithm.

The extension of Fano+ for multi-symbol code alphabets follows directly from the binary solution proposed.

The main problem in dealing with multi-symbol code alphabets is that a more elaborate partitioning procedure

is required, which we propose in (Rueda, 2002). The zeroth-order model implemented here can also be extended

to higher order models such as dictionary-based methods, Markovian models, etc., so as to achieve compression

ratios comparable to those of the best state-of-art compression methods.

References

Andersson, A., Hagerup, H., Nilsson, S., and Raman, R. (1998). Sorting in Linear Time? Journal of Computer

and System Sciences, 57:74�93.

Faller, N. (1973). An Adaptive System for Data Compression. Seventh Asilomar Conference on Circuits,

Systems, and Computers, pages 593�597.

Gallager, R. (1978). Variations on a Theme by Hu�man. IEEE Transactions on Information Theory, 24(6):668�

674.

10

Hankerson, D., Harris, G., and Jr., P. J. (1998). Introduction to Information Theory and Data Compression.

CRC Press.

Hardy, G., Littlewood, J., and Póyla, G. (1959). Inequalities. Cambridge University Press, 2nd. edition.

Hu�man, D. (1952). A Method for the Construction of Minimum Redundancy Codes. Proceedings of IRE,

40(9):1098�1101.

Kie�er, J. C. and Yang, E. (2000). Grammar-Bassed Codes: A new Class of Universal Lossless Source Codes.

IEEE Transactions on Information Theory, 46(3):737�754.

Knuth, D. (1985). Dynamic Hu�man Coding. Journal of Algorithms, 6:163�180.

Rueda, L. (2002). Advances in Data Compression and Pattern Recognition. PhD thesis, School of Computer

Science, Carleton University, Ottawa, Canada.

Rueda, L. and Oommen, B. J. (2001). Nearly Optimal Fano-Based Canonical Codes. Technical Report SCS

TR-01-05, School of Computer Science, Carleton University, Ottawa, Canada.

Sayood, K. (2000). Introduction to Data Compression. Morgan Kaufmann, 2nd. edition.

Shannon, C. E. and Weaver, W. (1949). The Mathematical Theory of Communications. University of Illinois

Press.

Storer, J. (1988). Data Compression: Methods and Theory. Computer Science Press.

Witten, I., Mo�at, A., and Bell, T. (1999). Managing Gigabytes: Compressing and Indexing Documents and

Images. Morgan Kaufmann, 2nd. edition.

Ziv, J. and Lempel, A. (1977). A Universal Algorithm for Sequential Data Compression. IEEE Transactions

on Information Theory, 23(3):337�343.

Ziv, J. and Lempel, A. (1978). Compression of Individual Sequences via Variable-Rate Coding. IEEE Trans-

actions on Information Theory, 25(5):530�536.

11

