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CONTINUOUS AND DISCRETIZED GENERALIZED PURSUIT
LEARNING SCHEMES

Mariana Agache and B. John Oommen1

ABSTRACT

 A Learning Automaton is an automaton that interacts with a random environment, having as its

goal the task of learning the optimal action based on its acquired experience.  Many learning automata have

been proposed, with the class of Estimator Algorithms being among the fastest ones.  Thathachar and

Sastry [24], through the Pursuit Algorithm, introduced the concept of learning algorithms.  Their algorithm

pursues only the current estimated optimal action.  If this action is not the one with the minimum penalty

probability, this algorithm pursues a wrong action.  In this paper, we argue that a Pursuit scheme that

generalizes the traditional Pursuit algorithm by pursuing all the actions with higher reward estimates than

the chosen action, minimizes the probability of pursuing a wrong action, and is a faster converging scheme.

To attest this, in this paper we present two new generalized Pursuit algorithms and also present a

quantitative comparison of their performance against the existing Pursuit algorithms.

I. INTRODUCTION

The goal of many intelligent problem-solving systems is to be able to make decisions without a

complete knowledge of the consequences of the various choices available.  In order for a system to perform

well under conditions of uncertainty, it has to be able to acquire some knowledge about the consequences of

different choices.  This acquisition of the relevant knowledge can be expressed as a learning problem.  In

the quest to solve the learning problem, Tsetlin, a Russian mathematician, created in 1961 a new model of

computer learning, which is now called a Learning Automaton (LA).  The goal of such an automaton is to

determine the optimal action out of a set of allowable actions, where the optimal action is defined as the

action that maximizes the probability of being rewarded.  The functionality of the learning automaton can

be described in terms of a sequence of repetitive feedback cycles in which the automaton interacts with the

environment.  During a cycle, the automaton chooses an action, which triggers a response from the

environment, a response that can be either a reward or a penalty.  The automaton uses this response and the
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knowledge acquired in the past actions to determine which is the next action.  By learning to choose the

optimal action, the automaton adapts itself to the environment.

Learning automata have found applications in systems that posses incomplete knowledge about the

environment in which they operate, such as game playing [1], [2], [3], pattern recognition [10], [21], and

object partitioning [17], [18].  They also have been applied to systems that have time varying environments,

such as telephony routing [11], [12], and priority assignments in a queuing system [7].  The varieties of

learning automata and their applications have been reviewed by Lakshmivarahan [2], and by Narendra and

Thathachar [9].  Consequently, in this paper only a brief classification will be presented.

In the definition of a Variable Structure Stochastic Automaton (VSSA), the learning automaton is

completely defined by a set of actions (which is the output of the automata), a set of inputs (which is

usually the response of the environment) and a learning algorithm T.  The learning algorithm operates on a

probability vector

P(t) =[p1(t),…,pr(t)]
T,

where pi(t) (i = 1,…,r) is the probability that the automaton will select the action αi at the time t:

pi(t)=Pr[α(t)= αi], i=1,…,r, and it satisfies,

∑
=

=
r

1i
i 1)t(p for all ‘t’.

This vector is known in the literature as the Action Probability vector.  VSSA are completely defined by a

set of action probability updating rules operating on the action probability vector P(t) [2], [4], [9].

In practice, the relatively slow rate of convergence of these algorithms constituted a limiting factor

in their applicability.  In order to increase their speed of convergence, the concept of discretizing the

probability space was introduced in [22].  This concept is implemented by restricting the probability of

choosing an action to a finite number of values in the interval [0,1].  If the values allowed are equally

spaced in this interval, the discretization is said to be linear, otherwise, the discretization is called non-

linear.  Following the discretization concept, many of the continuous VSSA have been discretized [13],

[15].

In the quest to design faster converging learning algorithms, Thathachar and Sastry [23] opened

another avenue by introducing a new class of algorithms, called “Estimator” Algorithms.  The main feature

of these algorithms is that they maintain running estimates for the reward probability of each possible

action, and use them in the probability updating equations.  Typically, in the first step of the functional

cycle the automaton chooses an action and the environment generates a response to this action.  Based on

this response, the estimator algorithm updates the estimate of the reward probability for that action.  The

change in the action probability vector is based on both the running estimates of the reward probabilities,
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and on the feedback received from the environment.  A detailed description of the estimator algorithms can

be found in [5], [6], [16], [23], [24].

I.1. Contribution of this paper

Pursuit algorithms are a subset of the estimator algorithms.  The existing Pursuit algorithms are

characterized by the fact that the action probability vector ‘pursues’ the action that is currently estimated to

be the optimal action.  This is achieved by increasing the probability of the action whose current estimate of

being rewarded is maximal [16], [24].  This implies that if, at any time ‘t’, the action that has the maximum

reward estimate is not the action that has the minimum penalty probability, then the automaton pursues a

wrong action.  In an attempt to minimize this probability of pursuing a wrong action, our goal in this paper

is to generalize the design of the Pursuit algorithm such that it pursues a set of actions.  Specifically, these

actions have higher reward estimates than the current chosen action.  In this paper, we introduce two new

Pursuit algorithms, a continuous and a discretized version, that use such a generalized learning approach.

II. PURSUIT ALGORITHMS

Thathachar and Sastry introduced the concept of Pursuit Algorithms [24] by presenting a

continuous Pursuit algorithm that used a Reward-Penalty learning paradigm, denoted CPRP.  Later, in

1990, Oommen and Lanctôt  [16] introduced the first discretized Pursuit estimator algorithm by presenting

a discretized version, denoted DPRI, that uses a Reward-Inaction learning paradigm.  Oommen and Agache

in [20] explored all Pursuit algorithms that resulted from the combination of the continuous and discrete

probability space with the Reward-Penalty and Reward-Inaction learning paradigms, and introduced two

new Pursuit algorithms, the Continuous Reward-Inaction Pursuit Algorithm (CPRI) and the Discretized

Reward-Penalty Pursuit Algorithm (DPRP).  In the interest of brevity, we present here only the CPRP and the

DPRI algorithms.

II.1. The Continuous Pursuit Reward-Penalty (CPRP) Algorithm

The pioneering Pursuit algorithm, the Continuous Pursuit algorithm, was introduced by

Thathachar and Sastry [24].  We present it here in all brevity.  The algorithm uses a Reward-Penalty

learning paradigm, meaning that it updates the probability vector P(t) if the Environment rewards or

penalizes the chosen action. For this reason, we shall refer to it as the Continuous Pursuit Reward-Penalty

(CPRP) algorithm.  The CPRP algorithm involves three steps [24].  The first step consists of choosing an

action α(t) based on the probability distribution P(t). Whether the automaton is rewarded of penalized, the

second step is to increase the component of P(t) whose reward estimate is  maximal (the current optimal
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action), and to decrease the probability of all the other actions. Vectorially, the probability updating rules

can be expressed as follows:

P(t+1) = (1-λ) P(t) + λ em

where em is the action which is currently estimated to be the “best” action. This equation shows that the

action probability vector P(t) is moved in the direction of the action with the current maximal reward

estimate.

The last step is to update the running estimates for the probability of being rewarded.  For

calculating the vector with the reward estimates denoted by (t)d̂ , two more vectors are introduced: W(t)

and Z(t), where Zi(t) is the number of times the ith  action has been chosen and Wi(t) is the number of times

the action αi has been rewarded. Formally, the algorithm can be described as follows.

ALGORITHM CPRP

Parameters
λ the speed of learning parameter , where 0<λ<1.
m index of the maximal component of the reward estimate vector

(t)}d̂{max(t)d̂(t),ˆ
i

,..,r1i
m

=
=d .

em unit r-vector with 1 in the mth coordinate
Wi(t) the number of times the ith action has been rewarded up to time t, for 1≤i≤ r.
Zi(t) the number of times the ith action has been chosen up to time t, for 1 ≤i≤ r.

Method
Initialize pi(t)=1/r, for 1≤i≤r

Initialize )t(d̂  by choosing each action a small number of times.
Repeat

Step 1: At time t pick α(t) according to probability distribution P(t). Let α(t)= αi.

Step 2: If αm is the action with the current highest reward estimate, update P(t) as :

P(t+1) = (1-λ) P(t) + λ em    

Step 3: Update )t(d̂ according to the following equations for the action chosen:

( )

)1t(Z

)1t(W
)1t(d̂

1)t(Z)1t(Z

)t(1)t(W)1t(W

i

i
i

ii

ii

+
+

=+

+=+
β−+=+

End Repeat
END ALGORITHM CPRP
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Thathachar and Sastry in [24] proved that this algorithm is ε-optimal in any stationary random

environment.  We shall merely state their essential analytic results.

Theorem 1: For any given constants δ > 0 and M < ∞, there exist λ* >0 and t0< ∞ such that under the

CPRP algorithm, for all λ∈(0, λ*),

Pr[All actions are chosen at least M times each before time t] > 1-δ, for all t ≥ t0.     ♦♦♦

The second stage of the proof of convergence of the CPRP algorithm consists of showing that if

there is such an action αm, for which the reward estimate remains maximal after a finite number of

iterations, then the mth  component of the action probability vector converges in probability to 1.

Theorem 2: Suppose that there exists an index m and a time instant t0 < ∞ such that

0jm tt)t(,mj)j(),t(d̂)t(d̂ >∀≠∀> .

Then pm(t) →1 with probability 1 as t→∞. ♦♦♦

The final theorem that shows the ε-optimal convergence of the CPRP algorithm can be stated as:

Theorem 3: For the CPRP algorithm, in every stationary random environment, there exists λ* >0 and t0>0,

such that for all λ∈(0, λ*) and for any δ∈(0, 1) and any ε∈(0, 1),

[ ] δ−>ε−> 11)t(pPr m

for all t>t0. ♦♦♦

II.2. The Discretized Pursuit Reward-Inaction (DPRI ) Algorithm

In 1990, Oommen and Lanctôt introduced [16] a discretized version of a Pursuit algorithm.  This

Pursuit algorithm was based on the Reward-Inaction learning paradigm, meaning that it updates the action

probability vector P(t) only if the Environment rewards the chosen action, and even then, only in discrete

steps.  We refer to this algorithm as the Discretized Pursuit Reward-Inaction (DPRI) Scheme.

In the DPRI algorithm, when an action is rewarded, all the actions that do not correspond to the

highest estimate are decreased by a step ∆, where ∆=1/rN, and N is a resolution parameter.  In order to

keep the sum of the components of the vector P(t) equal to unity, the probability of the action with the

highest estimate has to be increased by an integral multiple of the smallest step size ∆.  When the action

chosen is penalized, there is no update in the action probabilities, and it is thus of the Reward-Inaction

paradigm.  This, in principle, fully describes the algorithm, given formally below.
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 ALGORITHM DPRI

Parameters
m index of the maximal component of the reward estimate vector

)}t(d̂max{)t(d̂),t(ˆ
i

r,..,1i
m

=
=d .

Wi(t) the number of times the ith action has been rewarded up to time t, for 1≤i≤ r.
Zi(t) the number of times the ith action has been chosen up to time t, for 1 ≤i≤ r.
N resolution parameter
∆=1/rN is the smallest step size

Method
Initialize pi(t)=1/r, for 1≤i≤r

Initialize )t(d̂  by choosing each action a small number of times.
Repeat

Step 1: At time t pick α(t) according to probability distribution P(t). Let α(t)= αi.

Step 2: Update P(t) according to the following equations:
If β(t)=0 and pm(t) ≠ 1 Then

{ }
∑
≠

≠

+−=+

∆−=+

mj
jm

j
mj

j

)1t(p1)1t(p

0,)t(pmax)1t(p

Else

pj(t+1) = pj(t) for all 1≤ j ≤r.

Step 3: Update )t(d̂ exactly as in the CPRP Algorithm
End Repeat
END ALGORITHM DPRI

Oommen and Lanctôt proved that this algorithm satisfies both the properties of moderation and

monotonically [16] required for any discretized “Estimator” algorithm to converge.  They also showed that

the algorithm is ε-optimal in every stationary random environment.

III. GENERALIZED PURSUIT ALGORITHMS

The main idea that characterizes the existing Pursuit algorithms is that they ‘pursue’ the best-

estimated action, which is the action corresponding to the maximal estimate.  In any iteration, these
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algorithms increase only the probability of the best-estimated action, ensuring that the probability vector

P(t) moves towards the solution that has the maximal estimate at the current time.  This implies that if, at

any time ‘t’, the action that has the maximum estimate is not the action that has the minimum penalty

probability, then the automaton pursues a wrong action.  In this paper, we generalize the design of the

Pursuit algorithms such that it pursues a set of actions.  Specifically, these actions have higher reward

estimates than the current chosen action.

Figure 1 presents a pictorial representation of the two Pursuit approaches of converging to an

action.  The first approach, adopted by the existing Pursuit Algorithms, such as CPRP, CPRI, DPRP, DPRI,

always pursues the best-estimated action.  The present approach, adopted by the Generalized Pursuit

Algorithms which we present here, does not follow only the best action - it follows all the actions that are

“better” than the current chosen action.

Solution Space Solution
em=[0 … 0 1 0 …0] T

Solution Space Solution
em=[0 … 0 1 0 …0]T

Initial action
probability vector
P(0)=[1/r...1/r…1/r] T

Pursuit Algorithm generalized Pursuit algorithms

Figure 1: Solution approach of the CPRP Pursuit and Generalized Pursuit algorithms

In a vectorial form, if action α m is the action that has the highest reward estimate at time ‘t’, the

Pursuit Algorithms always pursue the vector e(t) = [0 0  … 1 0…0 ]T, where em(t)=1. In contrast, if αi

denotes the chosen action, the Generalized Pursuit algorithms pursues the vector e(t), where
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=
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)t(d̂)t(d̂if,1

)t(d̂)t(d̂if,0
)t(e

ji
i

ij

ij
j

                      ( 1)

Since this vector e(t) represents the direction towards which the probability vector moves, it is considered

the direction vector of the Pursuit Algorithms.

We present two versions of Generalized Pursuit algorithms, followed by a comparative study of the

performance of these algorithms with the existing Pursuit algorithms.  The first algorithm introduced is the
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Generalized Pursuit Algorithm (GPA).  This algorithm moves the action probability vector “away” from

the actions that have smaller reward estimates, but it does not guarantee that it increases the probability for

all the actions with higher estimates than the chosen action.

Next, we present a pseudo-discretized Generalized Pursuit Algorithm (pDGPA).  This algorithm

follows the philosophy of a Generalized Pursuit Algorithm in the sense that it increases the action

probability for all the actions with higher reward estimates than the current chosen action.  Since the action

probabilities are increased in discrete unequal steps, this algorithm is considered a pseudo-discretized

Generalized Pursuit Algorithm.

III.1. Generalized Pursuit Algorithm

The Generalized Pursuit Algorithm (GPA) presented in this section, is an example of an algorithm

that generalizes the Pursuit Algorithm CPRP introduced by Thathachar and Sastry in [24].  It is a

continuous estimator algorithm, which moves the probability vector towards a set of possible solutions in

the probability space.  Each possible solution is a unit vector in which the value ‘1’ corresponds to an

action that has a higher reward estimate than the chosen action.

The CPRP algorithm increases the probability for the action that has the higher reward estimate, and

decreases the action probability for all the other actions. To increase the probability for the best-estimated

action and to also preserve P(t) a probability vector, the Thathachar and Sastry’s Pursuit algorithm first

decreases the probabilities of all actions:

r,...,1j),t(p)1()1t(p jj =λ−=+        ( 2)

The remaining amount ∆ that determines the sum of the action probabilities to be ‘1’ is computed as :

λ=λ+−=λ−−=+−=∆ ∑∑∑∑
====

)t(p)t(p1)t(p)1(1)1t(p1
r

1j
j

r

1j
j

r

1j
j

r

1j
j

In order to increase the probability of the best-estimated action, the CPRP Pursuit algorithm adds the

probability mass ∆ to the probability of the best-estimated action:

)}t(d̂{maxd̂where,)t(p)1()t(p)1()1t(p j
r,...,1j

mmmm =
=λ+λ−=∆+λ−=+        ( 3)

In contrast to the CPRP algorithm, the newly introduced GPA algorithm equally distributes the

remaining amount ∆ to all the actions that have higher estimates that the chosen action.  If K(t) denotes the

number of actions that have higher estimates than the chosen action at time ‘t’, then the updating equations

for the Generalized Pursuit Algorithm are expressed by the following equations:



Continuous and Discretized Generalized Pursuit Learning Schemes: Page 9

.)t(p1)1t(p

)t(d̂)t(d̂thatsuch,jallfor),t(p)1()1t(p

)t(d̂)t(d̂thatsuch,jallfor,
)t(K

)t(p)1()1t(p

mj
ji

ijjj

ijjj

∑
≠

−=+

≤λ−=+

>
λ

+λ−=+

       ( 4)

In vector form, the updating equations can be expressed as follows:

)t(
)t(K

)t()1()1t( ePP ⋅
λ

+⋅λ−=+ ,          ( 5)

where e(t) is the direction vector defined in (1).

Based on these equations, it can be seen that the GPA algorithm increases the probability for all the

actions with higher reward estimates than the estimate of the chosen action, and satisfying the following

inequality:

K

1
)t(p j <       ( 6)

   

Formally, the Generalized Pursuit Algorithm can be described as follows:

ALGORITHM GPA

Parameters
λ the learning parameter , where 0 < λ < 1

m index of the maximal component of )}t(d̂max{)t(d̂),t(ˆ
i

r,..,1i
m

=
=d

Wi(t) the number of times the ith action has been rewarded up to the time t, with 1 ≤ i ≤ r
Zi(t) the number of times the ith action has been chosen up to the time t, with 1 ≤ i ≤ r

Method
Initialization pi(t) = 1/r, for 1 ≤ i ≤ r

Initialize )t(d̂  by picking each action a small number of times.
Repeat

Step 1: At time t pick α(t) according to probability distribution P(t). Let α(t) = αi.

Step 2: If K(t) represents the number of actions with higher estimates than the chosen
action at time t, update P(t) according to the following equations:

∑
≠

+−=+

<∀⋅λ−=+

>∀
λ

+⋅λ−=+

ij
ji

ijjjj

ijjjj

)1t(p1)1t(p

)t(d̂)t(d̂thatsuch)j()t(p)t(p)1t(p

)t(d̂)t(d̂thatsuch)j(
)t(K

)t(p)t(p)1t(p

                   ( 7)
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Step 3: Update )t(d̂ exactly as in the CPRP Algorithm.

End Repeat
END ALGORITHM GPA

As in the case of the previous Pursuit algorithms, the convergence of the GPA is proven in two

steps.  First, we demonstrate that using a sufficiently small value for the learning parameter λ, all actions

are chosen enough number of times such that )t(d̂ m will remain the maximum element of the estimate

vector )t(d̂ after a finite time.  These are formalized below.

Theorem 4: For any given constants δ > 0 and M < ∞, there exist λ* > 0 and t0 < ∞ such that under the

GPA algorithm, for all λ∈(0, λ*),

Pr[All actions are chosen at least M times each before time t] > 1-δ, for all t ≥ t0.

Proof: The proof of this theorem is found in the unabridged version of this paper. ♦♦♦

The second step in proving the convergence of the GPA consists of demonstrating that if the mth

action is rewarded more than any other action from time t0 onward, then the action probability vector

converges in probability to em.  This is shown in the following theorem.

Theorem 5: Suppose that there exists an index m and a time instant t0 < ∞ such that

0jm tt)t(,mj)j(),t(d̂)t(d̂ >∀≠∀> ,

then pm(t)→1 with probability 1 as t → ∞.

Proof: : The proof of this theorem is also found in the unabridged version of this paper. ♦♦♦

Finally, the ε-optimal convergence result can be stated as follows:

Theorem 6: For the GPA algorithm, in every stationary random environment, there exists a λ* >0 and t0>0,

such that for all λ∈(0, λ*) and for any δ∈(0, 1) and any ε∈(0, 1),

[ ] δ−>ε−> 11)t(pPr m

for all t>t0.                ♦♦♦

The simulation results regarding the performance of this algorithm are presented in the section IV.
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III.2. Pseudo-Discretized Generalized Pursuit Algorithm

The Pseudo-Discretized Generalized Pursuit Algorithm, denoted pDGPA, is another algorithm that

generalizes the concepts of the Pursuit algorithm by ‘pursuing’ all the actions that have higher estimates

than the current chosen action.

At each iteration, the algorithm counts how many actions have higher estimates than the current

chosen action.  If K(t) denotes this number, the pDGPA algorithm increases the probability of all the

actions with higher estimates with the amount ∆/K(t), and decreases the probabilities for all the other

actions with the amount ∆/(r-K(t)), where ∆ is a resolution step, ∆=1/rN with N a resolution parameter.

Vectorially, the updating equations can be expressed as follows:

[ ])t(
)t(Kr

)t(
)t(K

)t()1t( euePP −⋅
−

∆
−⋅

∆
+=+                  ( 8)

where e(t) is the direction vector defined in (Eq. 1) and u is the unit vector uj=1, j=1,2,…,r.

A detailed description of the algorithm is given below:

ALGORITHM pDGPA

Parameters
N resolution parameter
K(t) the number of actions with higher estimates than the current chosen action

∆ the smallest step size 
rN

1
=∆

Wi(t) the number of times the ith action has been rewarded up to the time t, with 1 ≤ i ≤ r
Zi(t) the number of times the ith action has been chosen up to the time t, with 1 ≤ i ≤ r

Method
Initialization pi(t) = 1/r, for 1 ≤ i ≤ r

Initialize )t(d̂  by picking each action a small number of times.
Repeat

Step 1: At time t pick α(t) according to probability distribution P(t). Let α(t) = αi.

Step 2: Update P(t) according to the following equations:

∑
≠

+−=+

<∀
−

∆
−=+

>∀
∆

+=+

ij
ji

ijjj

ijjj

)1t(p1)1t(p

)t(d̂)t(d̂thatsuch)j(}0,
)t(Kr

)t(pmax{)1t(p

)t(d̂)t(d̂thatsuch)j(}1,
)t(K

)t(pmin{)1t(p

     ( 9)

Step 3: Same as in the GPA algorithm
End Repeat
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END ALGORITHM pDGPA

It can be seen that the pDGPA always increases the probability of all the actions with higher

estimates. To prove the convergence of this algorithm, we assert that the pDGPA possesses the moderation

and monotone properties [16], and this is proved in the unabridged paper.  The ε-optimal results follow.

Theorem 7: The pDGPA possesses the moderation property. ♦♦♦

Theorem 8: The pDGPA possesses the monotone property.  ♦♦♦

IV. EXPERIMENTAL RESULTS

This section presents comparison of the performance of the newly introduced Generalized Pursuit

Algorithms.  In order to compare their relative performances, we performed simulations to accurately

characterize their respective rates of convergence.  The simulations were performed imposing the same

restrictions and in the same benchmark environments as the simulations presented in [20].  In all the tests

performed, an algorithm was considered to have converged if the probability of choosing an action was

greater or equal to a threshold T (0<T≤1).  If the automaton converged to the best action (i.e., the one with

the highest probability of being rewarded), it was considered to have converged correctly.

Before comparing the performance of the automata, innumerable multiple tests were executed to

determine the “best” value of the respective learning parameters for each individual algorithm.  The value

was reckoned as the “best” value if it yielded the fastest convergence and the automaton converged to the

correct action in a sequence of NE experiments.  These best parameters were then chosen as the final

parameter values used for the respective algorithms to compare their rates of convergence.

The simulations were performed for different existing benchmark environments with ten actions,

for which the threshold T was considered 0.999 and NE=750, the same values used in  [20].  These

environments have been used also to compare a variety of continuous and discretized schemes, and in

particular the DPRI in [16] and to compare the performance of the CPRP against other traditional VSSA in

[24].  Furthermore, to keep the conditions identical, each estimator algorithm sampled all actions 10 times

each in order to initialize the estimate vector.  These extra iterations are also included in the results

presented in the following tables. The results are presented in Table 1.  For comparison, Table 2 presents

the simulation results of the existing Pursuit algorithms.
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Table 1: Performance of the Generalized Pursuit algorithms in ten-action environments for which exact

convergence was required in 750 experiments.

GPA pDGPA

Environment
λλ

No. of

Iterat.

N No. of

Iterat.

EA 0.0127 948.03 24 633.64

EB 0.0041 2759.02 52 1307.76

Note: The reward probabilities for the actions are:
EA: 0.7   0.5    0.3    0.2    0.4   0.5   0.4   0.3   0.5  0.2
EB: 0.1   0.45  0.84  0.76  0.2   0.4   0.6   0.7   0.5   0.3

Table 2: Comparison of the Pursuit algorithms in ten-action benchmark environments for which exact

convergence was required in 750 experiments [20].

DPRI DPRP CPRI CPRP
Envi

ron. N
No. of

Iterat.
N

No. of

Iterat.
λλ

No. of

Iterat.
λλ

No. of

Iterat.

EA 188 752 572 1126 0.0097 1230 0.003 2427

EB 1060 2693 1655 3230 0.002 4603 0.00126 5685

Since the GPA algorithm was designed as a generalization of the continuous reward-penalty

Pursuit algorithm, a comparison between these two algorithms is presented.  The results show that the GPA

algorithm is 60% faster than the CPRP algorithm in the EA environment and 51% faster in the EB

environment.  For example, in the EA environment, the GPA converges in average in 948.03 iterations, and

the CPRP algorithm requires in average 2427 iterations for convergence, which shows an improvement of

60%.  In the EB environment, the CPRP algorithm required on average 5685 number of iterations whereas

the GPA algorithm required on average only 2759.02 iterations for convergence, being 51% faster than the

CPRP algorithm.
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Figure 2: Performance of the Pursuit Algorithms relative to the CPRP algorithm in ten-action environments

for or which exact convergence was required in 750 experiments.

Similarly, the pDGPA is classified as a reward-penalty discretized Pursuit algorithm.  If compared

against the DPRP algorithm, the pDGPA proves to be up to 59% faster.  For example, in the EB

environment, the pDGPA algorithm converges in an average of 1307.76 iterations whereas the DPRP

algorithm requires 3230 iterations.  Also, the pDGPA algorithm proves to be the fastest Pursuit algorithm,

being up to 50% faster than the DPRI algorithm.

Figure 2 presents the graphical representation of the relative performance of these algorithms to the

CPRP algorithm in benchmark ten-action environments.

Based on these experimental results and considering the number of iterations required to attain the same

accuracy of convergence in ten-action benchmark environments, we can rank the six Pursuit algorithms as

follows:

Best Algorithm: pseudo-Discretized Generalized Pursuit Algorithm (pDGPA)

2nd-best Algorithm: Discretized Pursuit Reward-Inaction (DPRI)

3nd-best Algorithm: Generalized Pursuit Algorithm (GPA)

4rd-best Algorithm: Discretized Pursuit Reward-Penalty (DPRP)

5rd-best Algorithm: Continuous Pursuit Reward-Inaction (CPRI)

6th-best Algorithm: Continuous Pursuit Reward-Penalty (CPRP)
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V. CONCLUSION

In this paper, we introduced a generalization of the learning method of the Pursuit algorithms that

‘pursues’ the set of actions that have higher estimates than the current chosen action. We have argued that

this minimizes the probability of pursuing a wrong action.  We presented two new generalized Pursuit

algorithms that follow this learning approach, namely, the Generalized Pursuit Algorithm (GPA) and the

pseudo-discretized Generalized Pursuit Algorithm (pDGPA), and also presented a quantitative comparison

between these algorithms and the existing Pursuit algorithms. In the same environments, while the GPA

algorithm proved to be the fastest continuous Pursuit algorithm, the pDGPA proved to be the fastest

converging discretized Pursuit estimator algorithm. It is the fastest Pursuit estimator algorithm.
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