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Abstract

Adaptive coding techniques have been increasingly used in lossless data compression.
They are suitable for a wide range of applications, in which on-line compression is
required, including communications, internet, e-mail, and e-commerce. In this paper,
we present an adaptive Fano coding method applicable to binary and multi-symbol code
alphabets. We introduce the corresponding partitioning procedure that deals with con-
secutive partitionings, and that possesses, what we have called, the nearly-equal-probabil-
ity property, i.e. that satisfy the principles of Fano coding. To determine the optimal
partitioning, we propose a brute-force algorithm that searches the entire space of all pos-
sible partitionings. We show that this algorithm operates in polynomial-time complexity
on the size of the input alphabet, where the degree of the polynomial is given by the size
of the output alphabet. As opposed to this, we also propose a greedy algorithm that
quickly finds a sub-optimal, but accurate, consecutive partitioning. The empirical results
on real-life benchmark data files demonstrate that our scheme compresses and decom-
presses faster than adaptive Huffman coding, while consuming less memory resources.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Data encoding involves processing an input sequence, & = x[1]---x[M],
where each input symbol, x[i], is drawn from a source alphabet, ¥ = {s;,
..., 5, } Whose probabilities are 2 = [p,, ..., p,,] with 2 < m < co. The encoding
process is rendered by transforming % into an output sequence, % =
y[1] - - y[R], where each output symbol, y[i], is drawn from a code alphabet,
o/ ={ay,...,a,}. The main problem in lossless data compression is to find
an encoding scheme that minimizes the size of %, in such a way that ' is com-
pletely recovered by the decompression process.

Encoding methods can be implemented either statically or adaptively. The
most well-known static coding techniques are Huffman’s algorithm [1], Fano’s
method [2], and arithmetic coding [3,4]. The static Huffman coding can be
implemented as a recursive algorithm that proceeds by generating the so-called
Huffman tree [3]. It recursively merges symbols (nodes) into a new conceptual
symbol which constitutes an internal node of the tree. In this way, Huffman’s
algorithm generates a “‘coding” tree in a bottom-up fashion. After the tree is
generated, the code words can be obtained by labeling the branches of the tree
using the symbols from the code alphabet in such a way that the encoder and
decoder use the same labeling scheme.

The static Fano’s method proceeds by generating a coding tree as well, but
in a top-down fashion. At each step, the list of symbols is partitioned into two
(or more, if the output alphabet is non-binary) new sublists, generating two or
more new nodes in the corresponding coding tree. Although Fano’s method,
typically, generates a sub-optimal encoding scheme, the loss in compression
with respect to Huffman coding is minimal [2]. As in Huffman coding, the code
words can be obtained in a similar fashion, i.e. by arbitrarily assigning code
alphabet symbols to the branches of the tree.

On the other hand, adaptive coding is important since the data is encoded
by performing a single pass assuming that 2 = [p,, ..., p,] are unknown, as op-
posed to the static algorithms which require two passes—the first to learn the
probabilities, and the second to accomplish the encoding. Conversely, adaptive
coding is the best choice in many applications that require on-line compression
such as in communication networks, LANSs, internet applications, e-mail, ftp,
and e-commerce.

Adaptive coding techniques include Huffman coding [1], which was indepen-
dently proposed by Faller in 1973 [5] and Gallager in 1978 [6], and augmented
later by Knuth [7] and Vitter [8], and arithmetic coding [3,4]. Other adaptive
coding methods include interval coding and recency rank encoding [3.9].
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Adaptive coding approaches that use higher-order statistical models, and other
structural models, include dictionary techniques (LZ and its enhancements) [10—
12], prediction with partial matching (PPM) and its enhancements [13,14], block
sorting compression [15,16], and grammar based compression (GBC) [17].

One of the major drawbacks of the adaptive Huffman coding scheme is that
it requires the maintenance of an on-line Huffman #ree which has to be updated
each time a symbol is encoded. These memory requirements do not seem to be
a serious problem for state-of-the-art computers, where a few kilobytes is insig-
nificant. The real problem arises when we are dealing with Huffman coding
involving higher-order modeling, since a kth-order model requires the mainte-
nance of the statistical information about the different contexts. Thus, when k
is large, the number of contexts grows, and so does the size of the data struc-
ture required for encoding/decoding.

As opposed to Huffman coding, Fano’s method requires only the probabil-
ities (or frequency counters) for the contexts that have already appeared, and
only these need to be maintained at any given time. This is even more advan-
tageous in other structural/statistical models as well, such as the LZW algo-
rithm [18,19], which uses large tables to maintain the dictionary of matched
phrases, PPM, utilizing a considerable amount of space (typically, in the order
of magnitude of dozens of megabytes) to store the statistical information of the
source symbols for the different contexts [20,21]. Viewed from this perspective,
the use of any adaptive approach for Fano coding is quite advantageous since
it typically requires a fraction of the memory required to maintain the corre-
sponding Huffman tree, even though their space complexities are the same.
This is the focus of this paper.

Although Fano’s method, typically, generates a sub-optimal encoding
scheme,’ the loss” in the compression ratio with respect to Huffman’s algorithm
is relatively small. However, as pointed out in [23], if the method is modified to
also consider list rearrangement strategies, nearly-optimal compression can be
achieved.

In this paper, we present a greedy adaptive version of Fano’s method for bin-
ary and multi-symbol code alphabets, which apart from being important in its
own right from an academic point of view, is specially suitable for applications
in which memory constraints are tight. This paper details the encoding and
decoding algorithms which invoke the partitioning procedure. We introduce
the corresponding greedy partitioning procedure that deals with consecutive

! This is due to the fact that determining the optimal partitioning in Fano’s method is NP-hard
[22].

2 Note that this “loss” refers to how much a system would have compressed, if using Huffman
coding. However, in both Huffman and Fano coding the compression is lossless, i.e. the original
data is completely recovered from the compressed data.
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partitioning possessing, what we have called, the nearly-equal-probability
property. In this case, unlike the binary case, since the number of partitions
is combinatorially large, the greedy algorithm is linear, but sub-optimal. The
paper also contains formal proofs of our claims. The application of these tech-
niques to real-life image data is currently under investigation.

2. Adaptive Fano coding

As discussed earlier, Fano’s method is a well-known method which has been
studied in its static form only [2,3]. Indeed, to the best of our knowledge, the
adaptive version of this method has not been proposed yet. Since adaptive cod-
ing is quite important in many applications, we propose the adaptive version of
Fano coding. We propose algorithms for encoding and decoding, and for
partitioning for binary and multi-symbol code alphabets. In this section, we
present the encoding and decoding procedures, and in subsequent sections,
we discuss two different approaches for partitioning, one that follows a ““brute-
force” approach, and the other that uses a “greedy” procedure that leads to a
sub-optimal scheme.

2.1. A brute-force method for adaptive Fano coding

An adaptive approach for the Fano coding could be done by a scheme anal-
ogous to the original static Fano coding algorithm at each encoding step. For
each symbol that appears in the input, we can apply the Fano coding method,
and thus, obtain the code word for each source symbol. The code word that
corresponds to the input symbol is then sent to the output, and the probabil-
ities or frequency counters for the input symbols are updated so that they are
used for the next encoding step. The decoder is designed in such a way that it
resembles the encoding algorithm by generating all the code words (or a Fano
tree) using Fano’s method, and choosing the symbol for which the input bits
match the corresponding code word. This brute-force approach can be shown
to losslessly compress and decompress sequences drawn from universal
sources, since Fano’s method possesses the property of generating prefix codes.

There is no doubt that this method, although correct, is really of a brute-
force nature. First of all, it requires the resolution of the entire code word
set at every encoding/decoding step. In that sense, it resembles a search prob-
lem which visits the entire search space to compute a solution. In this case, this
event of “visiting” the search space is indeed, one of creating the entire code-
word set. What we intend to achieve in this paper is to devise a scheme that
avoids the reconstruction of the entire code word set at each encoding/decod-
ing step. To do this, we propose a greedy approach that does not require the
maintenance of a coding/decoding free. We simultaneously require that the
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proposed scheme generates only the code word that corresponds to the symbol
being encoded/decoded.

2.2. The greedy encoding algorithm

Consider the source alphabet & = {s|,...,s,}, where 2 < m <oo, with
probabilities of occurrence 2 = [p,,...,p,], the code alphabet &/ = {ay,...,
a,}, and the input sequence 2 = x[1] - --x[M]. First of all, we assume that we
start with arbitrary (unknown) probabilities for the source symbols. In order
to hasten the encoding process, and for ease of explanation, the estimates of
the probabilities of occurrence are considered as frequency counters,” and ini-
tialized to unity.

The implementation of the encoding procedure for the greedy adaptive ver-
sion for Fano coding is shown in Algorithm Greedy_Adaptive_Fano_Encoding.
At each time step, a list that contains the frequency counters for the source
alphabet symbols, 2(k) = {p,(k),...,p,(k)}, is maintained. The starting list,
2(1), is initialized as if all the source symbols are equally likely. Whenever
x[k]1is encoded, the partitioning procedure is invoked, which returns the corre-
sponding output code alphabet symbol. The design of an efficient partitioning
procedure for r > 2 is a fairly involved task, which will be discussed later, in
detail, in Sections 3 and 4. Note that in the implementation, the list of symbols,
S (k), can be omitted. This is due to the fact that each symbol can be mapped
to an integer in the range [0,...,m]. We also note that the partitioning proce-
dures for encoding and decoding are slightly different. However, in order to
make the presentation simpler, we merely present a single partitioning algo-
rithm in which we highlight the statements that should be enabled/disabled
in either encoding or decoding.

Algorithm 1. Greedy_Adaptive_Fano_Encoding

Input: The source alphabet, . The input sequence, Z.
Output: The output sequence, #.
Method:
S (1) — &; Allocate m cells for 2(1)
for i < 1 to m do // Initialize the frequency counters
pl) <1
endfor
j1
for k — 1 to M do // For every symbol of the source sequence
t 15 b m; plk) — 377, pi(k)

3 We alternatively use the term “probabilities of occurrence” to also refer to these frequencies.
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while 5 > ¢ do
yj] < Partition(¥(k), 2 (k), </, x[k],t, b, p(k))
j—j+1

endwhile

Let i be the index of s{k) = x[k].

Increment py(k).

endfor
end Algorithm Greedy_Adaptive_Fano_Encoding

2.3. The greedy decoding algorithm

The decoding procedure is similar to the encoder. Instead of probabilities,
we again maintain a frequency counter for each symbol, which records the
number times that this symbol has appeared so far in the input sequence.
The decoding procedure is detailed in Algorithm Greedy Adaptive
Fano_Decoding. A partitioning procedure, which is similar to that invoked
by the encoder, is now utilized to render the two processes synchronized.

Note that, as discussed earlier, no extra information other than the encoded
sequence is provided to the encoder. This is, in fact, an important advantage
over the static methods which require that some extra information (such as
the symbol probabilities, the decoding tree, etc.) be stored in the overhead of
the encoded sequence. The analogous statement is true for the decoder.

Algorithm 2. Greedy_Adaptive Fano_Decoding

Input: The encoded sequence, %. The source alphabet, ..
Output: The source sequence, 4.
Method:
F(1) — &; Allocate m cells for (1)
for i — 1 to m do
pil) —1
endfor
ke—1t—1b—mp(l) — > p(l)
for j— 1 to R do
Partition((k), 2(k), o, y[j], t, b, p(k))
if = b then
x[k] — sik)
Increment p,(k)
k—k+1lt—1;,b—m; plk) — Z;":lpi(k)
endif
endfor
end Algorithm Greedy Adaptive Fano_Decoding
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We now observe some important properties which are crucial when imple-
menting the encoding and decoding algorithms. First, the encoder and the
decoder must use the same labelling scheme. Second, they both have to start
with the same initial probabilities. Third, they must use the same probability
updating procedure. Finally, the encoder uses 2 (k) to encode x[k], which, obvi-
ously, is known by the decoder too.

To speed up the compression and decompression phases, in the actual
implementation, we maintain a list that contains only the symbols that have
occurred so far. To achieve this, when a new symbol occurs, a flag, which
corresponds to the code for a not yet transmitted (NYT) symbol, is sent to
the output, followed by the ASCII code word corresponding to the new sym-
bol. When the decoder encounters the flag for an NYT symbol, it just reads
the next eight bits, and reconstructs the new symbol. We do not claim to pio-
neer this approach; it has previously been utilized in adaptive Huffman coding
[24].

2.4. Tree-based adaptive Fano coding

Apart from the above-described method, it is conceivable that a tree-based
adaptive version of Fano coding can also be devised. This could be done by
maintaining a Fano coding tree, which is used to generate the code word for
the current input symbol. After the probabilities (or rather, the estimated fre-
quencies) of the input symbols change, the Fano tree may also change, and
hence it has to be updated. The decoder must thus maintain the Fano tree
for decoding, replicate the probability updating procedure, and also follow tree
updating rules carried out by the encoder. Although this method seems to be
more efficient than our greedy approach, we prefer to rather use a /ist with
the symbols and their associated probabilities, for various reasons. First, the
Fano tree needs additional memory, and we propose to demonstrate that
our algorithm is applicable to scenarios in which memory requirements are
tight. Second, unlike Huffman’s coding, the static Fano coding does not neces-
sarily generate a tree, because the code words can be obtained without gener-
ating a tree. Third, using a list provides a much more flexible implementation
that allows using different updating probability procedures without changing
the encoding and decoding rules. To be more specific, the adaptive Huffman
coding approaches proposed by Knuth and Vitter [7,8] work only when fre-
quency counters are maintained, and at each encoding step, the frequency of
the symbol that has occurred is increased by unity. Other probability updating
approaches might require specific tree updating procedures. While this is a lim-
itation for the latter, our adaptive Fano coding approach can be implemented
with any probability updating procedure that uses a list of symbols and their
probabilities. In this regard, we are currently investigating the use of stochastic
learning techniques in adaptive data compression.
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3. Nearly-equal-probability partitioning

It is well known that binary codes are of practical importance, mainly be-
cause they are the ones used by most digital devices. However, r-ary codes,
such as ternary codes [25], have been studied extensively, because of their cryp-
tographic and error-correcting capabilities. In this paper, we focus mainly on
the adaptive Fano coding that uses r-ary code alphabets, and discuss the binary
code alphabet afterwards, as a particular case. Designing a partitioning proce-
dure for a code alphabet .o/ = {a;,...,a,}, where r > 2, is far from trivial. First
of all, we observe that Huffman’s algorithm requires that the number of source
alphabet symbols is m = r + i(r — 1) for some positive integer k. Fano’s meth-
od also requires that this constraint be satisfied. However, this constraint
should be satisfied not only for the source alphabet, but also for all the sublists
obtained after partitioning.

To clarify issues, we consider the source alphabet & = {si,...,s,}, the
probabilities of occurrence 2 = [p,,...,p,], and the code alphabet .o/ =
{ay,...,a,}. We also consider Algorithm Greedy_Adaptive Fano_Encoding
which requires that % and 2 be partitioned into r sublists {4, ..., %,}, such
that |.%;| = k(r — 1) + 1 for some positive integer x. The output symbol, y[/], is
to be a; where x[k] € ;. This partitioning scheme is also required by Algorithm
Greedy_Adaptive_Fano_Decoding. The partitioning procedure that takes care
of these constraints is designed below.

In order to design a suitable partitioning procedure, we assume that the
components of each partitioning are consecutive in the original partitioned list.
We have opted to derive consecutive partitionings in order to reduce the re-
quired amount of computation. Non-consecutive partitionings constitute a
more general case that can even (slightly) improve compression. However,
for an alphabet of size m, 2" possible partitionings (or subsets) have to be
generated. The definition of consecutive partitioning is formally given
below.

Definition 1. Consider the source alphabet & = {sj,...,s,}, where
m=r+xk(r—1) for some integer k >0, and the code alphabet
o/ ={ay,...,a}. Suppose that & is partitioned into {1, %>,...,%»}. The
partitioning is said to be consecutive if and only if ) = {s1,...,s:,}, %2 =
{Siy+15--sSinfyee ey Lr =841, -,8m}, where 1 g H<bh<---<i_;<m,
and || = x;(r — 1) 4+ 1 for integers x; > 0, j=1,...

When considering consecutive partitionings, there are ((,,1 5 p0551ble par-

titionings, where m is the size of the source alphabet and r is the size of the code
alphabet. This is stated in the following theorem, whose proof is given in
Appendix B.
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Theorem 1. Let & = {sy,...,s,} be the source alphabet and of = {ay,...,a,}
be the code alphabet, where m = r + k(r — 1) for some integer k = 0, and r = 2.
The number of possible consecutive partitionings is given by

(7__{“—1):(7—1“—1)' "

r—1 (T:;)!(r—l)!.

After determining the number of all possible consecutive partitionings, we are
only interested in the ones that satisfy the principles of Fano coding, i.e. we
would like to ensure that the sums of the probabilities of the sublists resulting
from the partitioning are as nearly equal as possible. As in the binary-alphabet
case, we define this property for a multi-symbol code alphabet, <7 = {a, ...,
a,}, where r > 2. This property is formally stated in the following definition.

Definition 2. Let {¥},%>,...,%,} be a set obtained by a consecutive
partitioning on .. Let ¢; be the sum of probabilities of .#;, and ¢ be the
sum of probabilities of . {F1,%>,...,F,} has the nearly-equal-probability
property, if and only if

d{L, Sy, L)) = Zr:

j=1

o

(2)

q; — -
is minimal, where o is a real number such that o > 1, and d(-) denotes the dis-
tance function.

We now introduce an example that clarify these issues.

Example 1. Consider the source alphabet & = {a,b,c,d, e, f,g} whose prob-
abilities of occurrence are 2 = [.28,.22,.2,.1,.1,.05,.05], and the code alpha-
bet o7 = {0,1,2}. 7-3,3_

Using (1), we see that there are (3 - ; | ) = 6 possible consecutive
partitionings. The six partitionings, the sums of their corresponding probabil-
ities, and the distance as calculated from (2) for o =1, are listed in the
following table:

{7, S, I3} 4= e i =1,2,3 d({S1, 92, 93})
{{a}, {b}, {c,d,e,f,g}} 28, .22, .5 0.33
{{a}, {b,c,d}, {e,f,g}} 28, .52, .2 0.37
{{a}, {b c d ef} {g}} .28, .67, .05 0.67
{{a,b,c}, {d}, {e,f,g}} 1,1, .2 0.73
{{a,b,c} {d ef} {g}} 7, .25, .05 0.73
{{a,b,c,d e}, {1}, {g}} .9, .05, .05 1.13
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Observe that there is one optimal consecutive partitioning (i.e. the one that
satisfies the nearly-equal-probability property stated in Definition 2), and is the
one found in the first row of the table, namely, {{a}, {b}, {c.d,e,f,g}}, whose
distance is Z?:l g, — 1]~ 0.33. The optimal algorithm would attempt to
compute this partitioning, and this can be achieved by a brute-force polyno-
mial-time algorithm presented momentarily. We shall later show that by a lin-
ear searching scheme, a sub-optimal, but accurate, partitioning can be
obtained.

We now introduce a “brute-force” algorithm that searches the space of al/
possible consecutive partitionings, and computes those that satisfy the
nearly-equal-probability property, i.c. the ones whose distance is minimal.
The formal procedure is shown below in Algorithm All_Consecutive_Partition-
ings. Let P; be the cumulative probability of {si,...,s;}, which is calculated as
P, = Z_’izl p;- Using these cumulative probabilities, we avoid recalculating
q;, = Zs[ei(/jpl. at each step of the algorithm. The way by which this algorithm
generates all possible consecutive partitionings of % is based on the proof of
Theorem 1. It proceeds by enumerating all the r — 1 valid partitioning indices,
i1,..-,i—1. This is achieved by the recursive procedure Permute( ), which main-
tains a list of all valid partitioning indices, and for each permutation, it com-
putes the corresponding distance as in (2). Note that the list L, initially
empty, contains r — 1 elements which are indexed from 0 to r — 2. The parti-
tioning procedure is written in such a way that it can be invoked by both
encoding and decoding modules. Thus, the statements marked with *!, >
and ** must be disabled if invoked from the decoder, and the one marked with
*3 must be enabled so that the indices are identified using the code alphabet
symbol y[/].

This algorithm enumerates all possible consecutive partitionings. This is sta-
ted in the theorem given below, whose proof is given in Appendix B.

Algorithm 3. All_Consecutive_Partitionings

Input: The source alphabet, %, and probabilities, 2. The code alphabet, .o7.
The sum of probabilities of 2, q.

Output: The new range, [¢, b]. The output symbol, y[j] (for the encoder only).
The sum of probabilities of the new 2, p.

Method:
procedure Partition(, 2, .o/: list; s: symbol; var ¢, b: integer; var p: real);
m,«—b—1t+1

P,_1+—0; Kk« %; dmin — MAX_VALUE
for i — ¢t to b do
P;i— Py +p;

endfor
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{ila~ . -airfl}min — Permute([]a Pa O, K, r’p)
{i],. . -7ir—1}min+ — {t} U {ila- . ~9ir—1}min U {b}
#! i — index of s in . // Disable for decoding

*2[t, b] < [iy, iy+1], such that i, > i and i, <i // Disable for
decoding
*3 /] Enable for decoding: j — index of s in .o7; 1 — i b — iy
p—Py— P
#* return a,, // Disable for decoding

endprocedure

procedure Permute(L, P: list; start, k, r: integer; p: real)
last < size of L
Append start to L
for i < start to x do
L[last] i
if last <r — 2 then
Permute(L, i, k, )
else
d«—0;i;+—0
for j— 1 to r do
lj1
if j <r then
e LT (r— )+
else
fj—m
endif
d—d+|P, —P
endfor
if d <d.;, then
Amin < d; i1, - s i—1}tmin < it -0 b—1)
endif
endif
endfor
return {ij,...,i 1} min
endprocedure
end Algorithm All _Consecutive_Partitionings

Lji—1 r ‘

Theorem 2. Let & = {sy,...,s,} be the source alphabet whose probabilities of
occurrence are # = [p,,...,p,|, and let of ={ay,...,a.} be the code alphabet,
where m=r+ k(r — 1) for some integer i = 0. Algorithm All_Consecutive_
Partitionings enumerates all possible consecutive partitionings.
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Although Algorithm All_Consecutive_Partitionings enumerates and searches
the entire space of all possible consecutive partitionings, its worst-case time
complexity is bounded by a polynomial whose degree is given by the number
of code alphabet symbols. This fact is stated and proved in the following the-
orem, whose proof is given in Appendix B.

Theorem 3. Let & = {sy,...,sn} be the source alphabet whose probabilities of
occurrence are = [py,...,p,|, and let o/ ={ay,...,a,} be the code alphabet,
where m = r + k(r — 1) for some integer k = 0. The worst-case time complexity
of Algorithm All_Consecutive Partitionings is

() Om" ™Y if r <m, and
(if)y O(m) if r = m.

In order to implement the greedy adaptive Fano coding for multi-symbol
code alphabets, the optimal consecutive partitioning has to be performed in
each sublist in which the source symbol being encoded, x[k], is contained.
The number of partitioning steps for a single symbol is given by the length
of the code word sent to the output. In the worst case, this number can take
values up to m — 1. Hence the worst-case time complexity of encoding a source
symbol is O(m"). Therefore, this procedure is quite inefficient for large code
alphabets (even for r = 3 or 4). To overcome this situation, we propose a gree-
dy but accurate, linear-time algorithm that finds a sub-optimal partitioning.

4. A greedy sub-optimal nearly-equal-probability partitioning
4.1. The multi-symbol case

Since the brute-force algorithm that we presented in Section 3 is quite
inefficient, we now present a non-exhaustive, greedy algorithm that finds a
sub-optimal consecutive partitioning®. The implementation of this procedure
is depicted in Algorithm Greedy_r-ary_Adaptive_Fano_Partitioning. Using this
partitioning procedure, a source symbol can be encoded in O(m) time. The
source alphabet, the probabilities of occurrence and the code alphabet are as
usual, and x[k] is the symbol being encoded at time k. The current range,
[t, b], contains the boundaries of & (or eventually the sublist) in which x[k]
is contained. After the partitioning procedure is performed, these boundaries
represent the sub-sublist in which x[k] is contained. The variable p stands for

4 Although, it is quite non-traditional to submit such a procedure that is common for both the
encoder and the decoder, where certain statements are inhibited for one type of invocation, we have
found this quite useful in the main application of our scheme: on-line coding.
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the sum of probabilities of those symbols between z and b. After performing the
partitioning procedure, p contains the sum of probabilities of the resulting sub-
sublist.

Algorithm Greedy_r-ary_Adaptive_Fano_Partitioning proceeds by partition-
ing the list into two sublists. The variable pimp, keeps track of the cumulative
probability. The while loop is executed until piemp is greater than or equal to 2.
If these two sublists do not satisfy the nearly-equal-probability property, the
first » — 1 elements of the second list have to be moved to the first sublist. In
fact, if £ — pimp o+ Deml ), Premp1 (the last r — 1 components added to premp)

2
have to be moved to the first sublist.

Algorithm 4. Greedy_r-ary_Adaptive_Fano_Partitioning

Input: The source alphabet, &, and probabilities, 2. The code alphabet, .<7.
The current source or code alphabet symbol, s. The current range,
(¢, b].
The sum of probabilities of 2, p.
Output: The new range, [z, b]. The output symbol, y[/] (for the encoder only).
The sum of probabilities of the new 2, p.
Method:
procedure Partition(.%, 2, .o/: list; s: symbol; var ¢, b: integer; var p: real);
i — t; found — false; piemp < 0; r — ||
while not (found) do
#1if 5;= s then found — true endif // Disable for decoding
ptemp (_ptemp +Pn i—i+1
while p.,,, <% do
Ptempl 0
forj— 1tor—1do
Ptempl <~ Ptempl +psie—itl
*2if 5, = s then found — true endif // Disable for decoding
endfor
Ptemp <~ Ptemp + Ptempl
endwhile
%3 /| Enable for decoding: if a|_,+1 = s then found — true endif
if 2 — piop + 252 < 0 then
i—i—r+ 1, Ptemp < Ptemp — Ptempl
endif
if found then
b—i—1;p  Ptemp
else 71— p—p— Pemp
if =1 then
found — true
else r«r—1; pemp — 0 endif
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endif
endwhile
**  return a|.s|—r+1 I/ Disable for decoding
endprocedure
end Algorithm Greedy_r-ary_Adaptive Fano_Partitioning

If the symbol being encoded is found in the first sublist, the iteration stops,
and a code alphabet symbol is returned. If it is not found, unity is subtracted
from r, and the second sublist is partitioned in the same fashion. The labeling
strategy used here consists of assigning a; to the first sublist, a, to the second
sublist, and so on. The partitioning procedure given in Algorithm Greedy
r-ary_Adaptive_Fano_Partitioning is designed to be invoked by the encoding
algorithm. The corresponding procedure for the decoding process uses similar
rules, without returning any code alphabet symbol. As in the brute-force par-
titioning procedure, the algorithm is also written as a general procedure appli-
cable to both the encoding and decoding processes. Thus, the statements
marked with *!, *> and ** must be disabled if invoked from the decoder,
and the one marked with ** must be enabled so that the search stops when
the encoded symbol s is found.

To conclude this section, we note that the theoretical framework that we
propose in this paper can be extended in numerous ways. For example, the
time complexity of our partitioning scheme can be substantially improved by
using the so-called Fenwick’s data structure [4], which is used to efficiently
maintain and access the cumulative frequency counters. In terms of space
requirements, this implies the use of a single word per symbol to store the sta-
tistical information about the source. However, our empirical results for the
binary-alphabet case show the superiority of our scheme when compared to
adaptive Huffman coding.

4.2. The binary case

4.2.1. The algorithms for the binary case

Since the binary alphabet is a special case of the multi-symbol alphabet, it is
clear that the partitioning procedure discussed in the previous section applies
also to the binary code alphabet. However, since some of the “loops” disap-
pear in this special case, and the conditions become trivial, we believe that it
can be advantageous to include the algorithm for the binary case for the fol-
lowing reasons:

e The partitioning algorithm for binary alphabets is much simpler and easier
to understand.
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e These algorithms are the ones that have been implemented to yield the
empirical results shown later in the paper. Including them here permits other
researchers to validate our results.’

The encoding and decoding algorithms are included in Appendix A.

4.2.2. Complexity analysis for the binary case

We shall first analyze the time complexity for the encoding algorithm. The
first for loop is executed m times. Inside the second for loop, which is executed
M times, there is a while loop. This loop contains the invocation of the parti-
tioning procedure which takes |%| steps. Hence, if x[k]is in %, the total num-
ber of steps to encode x[k] is not greater than m, because in the worst case, it
would take up to || more steps to find x[k]. If x[k]is not in &, it is searched
in %1, which takes up to m steps (in the worst case, when x[k]is the last element
of #). Therefore, given the source alphabet & = {s1,...,s,} and the input se-
quence Z = x[1] - - - x[M], in the worst case, the number of steps that Algorithm
Greedy_Adaptive_Fano_Encoding takes to generate the output is O(mM) steps.

The time complexity of Algorithm Greedy Adaptive_Fano_Decoding is de-
rived as in the encoding algorithm. The first for loop, which initializes the prob-
abilities, takes m steps. The main for loop, which takes R steps, invokes the
partitioning procedure, where R is the number of bits in the output sequence,
% . Since the partitioning procedure invoked by the decoder resembles that of
the encoder, to decode each source symbol, x[k], the partitioning takes M steps,
where M is the number of symbols in the original sequence. Therefore, given
the source alphabet & = {si,...,s,}, Algorithm Greedy_ Adaptive Fano_
Decoding decodes an encoded sequence % = y[1]-- - y[R] in O(mM) steps.

The space complexity of Algorithms Greedy_Adaptive Fano_Encoding and
Greedy_Adaptive_Fano_Decoding is relatively small, since they require the
maintenance of only a list of symbols, and their associated probabilities or fre-
quencies. Each symbol and probability require constant space. Thus, the space
complexity of these algorithms is O(m).

4.2.3. Implementation considerations

From the theoretical analysis given above, we observe that both the adap-
tive Huffman coding and the greedy adaptive Fano coding require O(m) space.
But the maintenance and overhead for the former is significantly more expen-
sive than for the Fano data structure—since the latter is maintained essentially
as a list. Thus, while the Huffman tree requires O(m) space, it still needs to
maintain 2m — 1 nodes. Each node, contains a symbol, a frequency counter,

> The source code can be made available upon request.
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a pointer to its parent, pointers to its left and right children, and pointers to the
next and previous nodes in the list. This is significantly more than what is re-
quired by the corresponding data structure used in the greedy adaptive Fano
coding. For example, consider the case in which the source alphabet is the AS-
CII alphabet. The tree contains up to 511 nodes. Typically, each node requires
the following amount of space: one byte for the symbol, four bytes for the fre-
quency counter, and two bytes for each pointer.® Thus, the adaptive Huffman
coding data structure requires 7665 bytes, as opposed to the 1280 bytes re-
quired by the greedy adaptive Fano coding data structure, where each element
in the array contains the symbol and its frequency counter. This implies
that the adaptive Fano coding requires about one-sixth of the memory used
by the adaptive Huffman coding. This advantage increases significantly if
higher-order models or dictionary-based structures are used.

5. Correctness of the greedy adaptive Fano Coding

In this section, we present the analysis for the correctness of the greedy
adaptive Fano coding for multi-symbol code alphabets using the sub-optimal,
linear-time partitioning procedure presented in Section 4. We shall show that
given any source sequence, the output generated by encoding using the parti-
tioning procedure given in Algorithm Greedy_r-ary_Adaptive_Fano_Partition-
ing has enough information to reproduce the original sequence by performing
the reverse process, decoding, using the same partitioning procedure. We also
show that this model for multi-symbol code alphabets achieves on-line com-
pression. The two theorems, whose proofs are in Appendix B, are given below.

Theorem 4. Consider the source alphabet & = {si,...,sn}, and the code
alphabet of = {ay,...,a,}. Suppose that the input sequence Z = x[1]---x[M] is
encoded by invoking the partitioning procedure of Algorithm Greedy_r-ary_Adap-
tive_Fano_Partitioning yielding an output sequence % =y[l]---y[R]. If ¥ is
decoded by invoking the same partitioning procedure into 2 = x*[1]---x*[T],
then % = X (i.e. T= M, and x*[i] = x[i], Vi, i=1,..., M.

Theorem 5. Under the conditions of Theorem 4, Algorithm Greedy_r-ary_Adap-
tive_Fano_Partitioning achieves on-line compression and decompression.

% We assume that the tree is stored in an array, and hence two bytes are required for each pointer.
However, if the pointer field contain a reference to a memory address, each pointer would require
four bytes.
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Though the contribution of this paper is essentially theoretical, in the next
section, we show that it has significant applications. Other practical implica-
tions of this in an image processing application (where the alphabet is typically
of size 256) are currently being studied.

6. Empirical results

In order to test the compression power and the compression/decompression
speed of our schemes, we have implemented the binary-alphabet version of the
greedy adaptive Fano coding, as given in Appendix A, using the C program-
ming language. The source code for the encoder and the decoder have been
compiled using Forte C, version 6.2, and then tested on a Sun machine, model
sundu, which runs a SunOS 5.8 operating system. To compare the greedy adap-
tive version of Fano’s method with the adaptive Huffman coding, we ran both
prototypes on files of the well-known standard benchmarks, the Calgary cor-
pus’ and the Canterbury corpus [26]. To be fair in the comparison, we have
used the compact utility from Unix,® which is an implementation of the adap-
tive Huffman coding as in [6]. Note that we do not compare these methods with
any other higher-order model, such as LZ, PPM or block-sorting, since the lat-
ter constitute statistical/structural models which must use a “back-end”’ source
coding method such as Huffman or Fano coding. We thus compare the Huff-
man and Fano coding methods using a zeroth-order model.

The empirical results obtained from these runs are cataloged in Tables 1 and
2 respectively. The labels ‘AH’ and ‘AF’ refer to the results of the Unix compact
utility and the greedy adaptive Fano coding approach respectively. The name
and the original size of the files are given in the first and second columns
respectively. The columns labelled ‘Comp. (%)’ correspond to the percentage

of compression, calculated as (1 — W) -100 for AH and AF respec-
ginal_size

tively. The columns labelled ‘Encoding time’ and ‘Decoding time’ contain the
time (in seconds) used to compress the original file and decompress the com-
pressed file respectively, while the column labelled ‘Gain’ represents the time
taken by AH divided by that of AF.

Observe that the greedy adaptive Fano’s method compresses marginally less
efficiently than the adaptive Huffman coding. Huffman coding compressed just
0.14% more than Fano’s method on the files of the Calgary corpus. This differ-
ence is slightly less, 0.13%, on the files of the Canterbury corpus. This difference
in favor of Huffman coding is present in all the files except in “paperl”, in
which Fano’s method compressed 0.02% more than Huffman coding. This

7 Electronically available at ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus/.
8 The highest hurdle we encountered in compiling these results was that of testing the algorithms
objectively against standard benchmark (as opposed to our own) implementations.
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Table 1
An empirical comparison of the greedy adaptive version of Fano’s method and the adaptive
Huffman coding which were tested on files of the Calgary corpus

File name Original size Comp. (%) Encoding time Decoding time

AH AF AH AF Gain AH AF Gain
bib 111,261 3446 3437 02674 0.1472 1.82 0.2134 0.1365 1.56
book1 768,771 4296 42.87 1.3082 0.7171 1.82 0.9939 0.6434 1.54
book2 610,856 39.67 39.51 1.1019 0.6328 1.74 0.8373 0.5715 1.47
geo 102,400 28.80 28.52 0.2841 0.2020 1.41 0.2330 0.1906 1.22
news 377,109 34.60 3449 0.7518 0.4426 1.70 0.5810 0.4063 1.43
objl 21,504 24.19 23.16 0.1132 0.0604 1.87 0.1014 0.0556 1.82
obj2 246,814 21.19 21.10 0.6228 0.4711 1.32 0.4853 0.4372 1.11
paperl 53,161 37.00 37.02 0.1567 0.0772 2.03 0.1326 0.0672 1.97
proge 39,611 34.19 3389 0.1367 0.0665 2.06 0.1159 0.0618 1.88
progl 71,646 39.82  39.38 0.1863 0.0923 2.02 0.1543 0.0841 1.83
progp 49,379 38.51 38.07 0.1482 0.0743 1.99 0.1262 0.0688 1.83
trans 93,695 30.20 30.16 0.2440 0.1390 1.76  0.1980 0.1249 1.59

Total/avg. 2,546,207 36.82 36.68 5.3213 3.1225 1.70 4.1723 2.8479 147

Table 2
Empirical results obtained after running the adaptive Huffman coding and the greedy adaptive
Fano’s method on files of the Canterbury corpus

File name Original size Comp. (%) Encoding time Decoding time

AH AF AH AF Gain AH AF Gain
alice29.txt 148,481 4296 4273 03045 0.1529 1.99 0.2439 0.1393 1.75
asyoulik.txt 125,179 39.32 3920 0.2752 0.1496 1.84 0.2244 0.1349 1.66
cp.html 24,603 33.61 33.60 0.1064 0.0496 2.15 0.0959 0.0469 2.04
fields.c 11,550 35.87 3552 0.0812 0.0336 2.42 0.0959 0.0469 2.04
grammar.lsp 3721 39.56 38.73 0.0637 0.0238 2.68 0.0758 0.0318 2.38
kennedy.xls 1,029,744 55.03 54.80 1.5049 1.0479 1.44 1.1670 0.9866 1.18
lcet10.txt 419,235 41.78 41.77 0.7546 0.4195 1.80 0.5831 0.3819 1.53
plrabn12.txt 471,162 4347 4336 0.8205 0.4432 1.85 0.6348 0.4021 1.58
ptt5 513,216 79.21 79.18 0.4348 0.1741 2.50 0.3537 0.1740 2.03
xargs.1 4277 36.24  36.12 0.0635 0.0250 2.54 0.0658 0.0237 2.78

Total/avg. 2,751,168 53.85 53.72 4.4093 2.5192 1.75 3.5403 23681 1.49

behavior, which seems illogical since Huffman coding achieves optimal com-
pression if the probabilities were exact, is because both methods use different
probability updating procedures.

Although their worst-case time complexities are the same, when it concerns
real-life compression times, we observe that in all cases, Fano’s method is faster
than Huffman coding—the latter requires 70% and 75% more time than the
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former to compress all the files of the Calgary corpus and the Canterbury cor-
pus respectively. This is reasonable since the adaptive Fano coding does not
need to navigate and maintain a tree. In the case of the decompression phase,
Fano’s method is faster than Huffman coding, where the latter takes almost
50% more time than the former to decompress all the files. The gain in the
decompression phase is smaller due to the fact that Huffman coding decodes
in a top down fashion, avoiding the double pass required in the encoding
process.

7. Conclusions

In this paper, we have presented a “greedy” adaptive version of Fano’s
method for multi-symbol code alphabets. We have developed the encoding,
decoding and partitioning procedures for the multi-symbol source alphabet
and the multi-symbol code alphabet.

We then studied the problem of obtaining consecutive partitionings that sat-
isfy the principles of Fano coding. To find the optimal partitioning, we have
proposed a brute-force algorithm that searches the entire space of all possible
partitionings. We have shown that this algorithm operates in the worst case, in
O(m" ') time. As opposed to this, we also proposed a greedy algorithm that
yields a sub-optimal but accurate consecutive partitioning. The corresponding
results for the correctness, and the on-line compression achieved by using this
procedure have been stated and formally proven.

The empirical results on files of the standard benchmarks show that our ap-
proach compresses marginally less than adaptive Huffman coding, but that is
markedly faster in both compression and decompression. We are currently
investigating the application of these techniques in image processing
applications.

The problem of devising a non-brute-force algorithm that finds the optimal
consecutive partitioning remains open. Another open problem that deserves
investigation is that of devising a theoretical upper bound on the length of
the code achieved by our greedy partitioning scheme and its relationship to
the ideal partitioning scheme.
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Appendix A. Encoding and decoding algorithms: Binary case
Algorithm 5. Greedy_ Adaptive Fano_Binary Encoding

Input: The source alphabet and the initial probabilities, . and £ respec-
tively. The input sequence, Z.
Output: The output sequence, #.
Method:
procedure Partition(; 2, of: list; s: symbol; var z, b: integer; var p: real);
i — t; found — false; piemp — 0
while p,.,,, <5 do
if s5; = s then found < true endif
Ptemp < Ptemp +tpsie—itl
endwhile
if £ — premp + 551 < 0 then
i—i—1; Ptemp < Ptemp — Di
endif
if found then
b«—i—1; p < Piemp; return 0
else
[+ i, p < P — Diemps return 1
endif
endprocedure
(1) — F; (1) — 2
for i — 1 to m do // Initialize the frequency counters
pi—1
endfor
Jj—1
for k — 1 to M do // For every symbol of the source sequence
O
while b > ¢ do
y|j] < Partition(S(k), 2 (k), </, x[k],t,b,p)
endwhile
Increment the weight of x[k].
Swap x[k] and the top-most symbol in ¥ (k) whose weight is less than
that of x[k]. (Do the same updating for 2(k))
endfor
end Algorithm Greedy_Adaptive_Fano_Binary_Encoding
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Algorithm 6. Greedy_ Adaptive Fano_Binary_ Decoding

Input: The encoded sequence, %. The source alphabet and the initial prob-
abilities, ¥ and £ respectively.
Output: The source sequence, Z.
Method:
procedure Partition(.%, 2, .o/ list; a: symbol; var ¢, b: integer; var p: real);
Ptemp 0,i1t
while p,.,,, <5 do
ptemp <_ptemp +Pn i—i+1
endwhile
if £ — Piemp + 751 < 0 then
i—i—1; Ptemp < Ptemp — Pi
endif
if a =0 then
be—i- l;p  Ptemp
else
t—i; p < P — Ptemp
endif
endprocedure
()= 2(1) — 2
for i — 1 to m do
pi—1
endfor
k—1lit—1;b—mp—3"p
for j«— 1 to R do
Partition((k), 2(k), o, y[j], ¢, b, p)
if = b then
x[k] — s/(k)
Increment the weight of x[k]
Swap x[k] and the top-most symbol in (k) whose counter is less
than that of x[k]. (Do the same updating for 2(k))
k—k+1lt—1b—mp—>"p
endif
endfor
end Algorithm Greedy_ Adaptive_Fano_Binary_Decoding

Appendix B. Proofs

Proof of Theorem 1. Using the definition of consecutive partitionings (Def-
inition 1), & is partitioned into
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FLr=A{s1,.. ., 5 L2 ={Si1y - Sty eo s L =80 41y Sm s
where 1 < iy <ip <--- <i,_y <i,, and |¥;| = k;(r — 1) + 1, for integers x; > 0,
j=1,...,r.
We now observe the following:

(1) Since ¥ has k;(r — 1) + 1 symbols for some integer x; > 0,and s; and s,
are the first and the last elements of % respectively, it implies that
ii=x1(r— 1)+ 1, where x; =0,...,x.

(i1) Again, ¢, has also iy(r — 1) + 1 symbols, for some integer x, > 0. Thus
si,+1 and s;, are the first and the last elements of .%’,. This implies that
i =1(r — 1)+ 2, where k, =0,...,k, and k, > K.

Continuing in the same fashion, we have

(r—1) Since &, ; has also x, 1(r— 1)+ 1 symbols, for some integer
K,—1 = 0, and s; ,4; and s;_; are the first and last elements of &, ,
respectively, we have =Kk ((r—1)+(r-1), where
K,_1=0,....,k, and K,_; = K,_».

Let i; be a valid partitioning index. Also, let the jth sublist resulting from the
partitioning be ;= {s;_,1,...,5;}.
From the arguments above, we observe that

K;=K;(r—1)+j, wherex;=0,...,x, and j=1,...,r— 1.
We also know that 1 < i; <i, <--- <i._; <m, which implies that
I<ikir—D+l<mr—D+2<-- <k (r—1)+(r—-1)
<m. 3)
Subtracting unity from all the terms of the inequality, we have
0<Kir—)<mir-H+1<--- <k r—-1)+@F-2)
<m-—1. 4)
Since all the quantities involved in the inequalities are integers, (4) can also be
written as follows:
0<Kir—=)<iir-1)< < 1(r—=1)<m—r. (5)
Dividing all the terms of (5) by r — 1, and using the fact that m =r + x(r — 1)
(which implies that x = =), we have
0<Ki <K< <Koy <K (6)

Therefore, the number of possible consecutive partitionings is given by the
number of ways of choosing a set of r — 1 integers, {xi, x»,...,k._1}, from a
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set of k + 1 values, {0,1,..., k}, where repetitions are allowed. This number is
given by [27]

(") )

Since k = 2=, Eq. (7) can be written as follows:

r—1°
(T‘{+r—1) |

B (’f:f)!(r—n!'

r—1

Hence the theorem. O

Proof of Theorem 2. The theorem follows by a direct consequence of enumer-
ating the possible partitions as detailed in the proof of Theorem 1. It is not
included here to avoid repetition. [J

Proof of Theorem 3. From the first r — 1 for loops, we see that the jth for loop
is executed from x;_; up to x. This implies that rx; < ry <+ <K,y

Since the first » — 1 for loops are executed up to «, and 1 < Kk, < -+ < K,_1,
the total number of times the last for loop is executed is given by the number of

ways of selecting a set of integers, {x, K»,...,k,_1}, from a set of x+1
elements, {0,1,...,x}, where k; <, <---<K,._;, where repetitions are
allowed.

Using the result of Theorem 1, this corresponds to the number of (r — 1)-
combinations from a set of x + 1 elements, where repetitions are allowed. This
number is given by

K+r—1 (k+r—1)
r—1 kl(r—1)!
Since the last for loop involves r steps, the total number of steps required by
Algorithm All _Consecutive_Partitionings is given by
(k+r—1!  (k+r—1)(x+r—2)--- (k4 1)x!

-1 K —1)! ©)
_AO +A1K+"'+A,,2KV_Z+A,.,1KV_1 10
N (r—1)! ’ (10)

where Ag=r(r — 1), A,_1=r, A;j=f{r) for i=1,...,r — 2, and f{(*) is some
well-defined function of r, but which does not contain m.
Eq. (10) can also be written as follows:
Al Ar72

r—2 1 -1
R A S T (n

r+



L. Rueda, B.J. Oommen | Information Sciences 176 (2006) 1656—1683 1679

Since m = r + x(r — 1), we have k = = Substituting x for 2= in (11), we have:

i A, m—r+ + A, (m—r)r—z
r=2!r-1 (r—=2)'"\r—1
1 m—r\1
+(r—2)! (r— 1) ’ (12)

After expanding all the terms, (% )i, fori=1,...,r — 1, the highest exponent
of m is of order r — 1, which results from expanding (2= )’71. Then, (12) can be
written as follows:

Bo+Bim+ -+ B,_om™ > +B,_ym" ", (13)

where B; = g(r), for i=0,...,r — 1, and g{") is a well-defined function of r but
not of m, and in particular, B, | = W Indeed, for a fixed value of r,
B,_, is a constant, and hence (13) reduces to O(m’~'). This proves Result (i).

We now consider the case when m =r (or equivalently when x =0).

Substituting x for 0 and m for r in (8), we have:

(%) 2n-0tm

m—1

and (ii) is satisfied.
Hence the theorem. [

Proof of Theorem 4. We prove the result by invoking a double induction. We
perform an induction on the number of encoding steps, assuming that x[k] is
encoded at step k, and for each encoding step, we perform an induction on
the number of partitioning steps /.

At the kth encoding step, both the encoder and the decoder can be perceived
to be composed of two phases:

(i) Task of Encoder: Encode x[k] using & (k) and 2(k).Task of Decoder:
Decode the relevant sequence into x*[k] using % (k) and 2(k).
This part is proved by induction on the number of partitioning steps ‘.
(ii) Task of both Encoder and Decoder: Update ¥ (k) and 2 (k) to yield
S (k+ 1) and 2(k + 1). The steps involved in both the encoder and deco-
der are identical.

The inductive proof based on the number of encoding/decoding steps
follows.

Basis step: Both the encoder and the decoder start with the same lists of
symbols and probabilities, (1) and 2(1), where p;=1, for i=1,...,m. We
have to prove that x”[1]= x[1].
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We achieve this part of the proof using an induction on the number of
partitioning steps 7. We prove that, for every j > 1, the encoder and the
decoder obtain the same values of p, ¢, and b.

Basis step for x[ 1]: We first prove that the encoder and the decoder obtain
the same values of p, ¢, and b, for j=1.

By initialization, both the encoder and the decoder start with the same
values of p, ¢, and b. In the encoder, the main while loop continues until the
input symbol, s, is found. This happens when the source symbol x[k] matches
s;. The code alphabet symbol ||, is sent to the output, which is received by
the decoder. The main while loop in the partitioning procedure invoked by the
decoder is executed, which ends when a||_,,; matches s. This thus implies that
when the search ends, p, ¢, and b have the same values for both the encoder and
the decoder.

This proves the basis step because both achieve identical values of p, r and b,
implying that they both have identical sublists for the next step, and thus by
working in synchronization both achieve encoding and decoding losslessly.

Inductive hypothesis for x[ 1]: We assume that the result holds for j = n. This
implies that after the nth partitioning step, the encoder and the decoder obtain
the same values of p, ¢, and b.

Inductive step for x[1]: We now have to prove that the result holds of
j=n-+1. From the inductive hypothesis, it is clear that at the (n+ 1)th
partitioning step, in both the encoder and the decoder, p, ¢ and b have the same
initial values. As in the basis step, the main while loop in the partitioning
procedure, when invoked from the encoder, stops when x[k] matches s;. At this
point, a|/|_.41 is sent to the output, which is received by the decoder. On the
other hand, the main while loop at the decoder ends when a,;|_,; matches s,
thus, terminating the loop. Consequently, in the encoder and the decoder, p, ¢,
and b have the same values.

Again, since both the encoder and the decoder have identical values of p, ¢
and b, this implies that they both have identical sublists for the next step, and
achieve encoding and decoding losslessly. The induction thus follows for x[1].
In terms of clarification, we see that the encoder and the decoder find the same
values of p, t, and b for every partitioning step j, where j > 1. In the encoder,
the partitioning stops when b < ¢ in the encoder. This will happens when there
is only one element in %(1), x[1], determined by ¢ = b. In the decoder, when
t = b, which from the induction on the number of partitioning steps occurs at
the same ‘/’ for both the encoder and the decoder, s,(1) is recovered. Since ¢ has
the same value for the encoder and the decoder, s,(1) = x"[1]= x[1]. This
completes the basis step for the induction on the number of encoding steps k.

On the other hand, both the encoder and the decoder increment the weight
of x[1] and update (1) and (1) by swapping x[1] with the top-most symbol
in (1) whose weight is less than that of x[1], resulting in the same lists, .%(2)
and 2(2), for both the encoder and the decoder.
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We now continue the outer level of the induction—namely the processing of
x[v].

Inductive hypothesis for x[ v]: We now assume that lossless compression is
achieved for a particular number of encoding steps, k = v, where v > 1. This
means that the encoder encodes x[v] using & (v) and 2(v), and the decoder
successfully obtains x”[v] = x[v]. They also update ¥(v) and 2(v) using
identical rules, obtaining the same symbol and probability lists, & (v + 1) and
P +1).

Inductive step: We now have to prove that lossless compression is achieved
fork=v+1.

From the inductive hypothesis, we see that:

(a) The encoder and the decoder obtain the same lists % (v+ 1) and
Pv+1).
(b) x™[1]=x[1],...,x"[v] = x[v].

We have to prove that x™[v + 1]= x[v + 1]. We prove this by an induction
on the number of partitioning steps ‘/’ for this symbol.

Basis step for x[v+ 1]: In this case, we will see that the encoder and the
decoder obtain the same values of p, ¢, and b, for j = 1.

From the inductive hypothesis of the induction on the number of encoding
steps, k = v, we see that the encoder and the decoder start with the same values
for p, t, and b. These are > p;, 1, and m respectively.

The main while loop of the partitioning procedure invoked by the encoder
ends when the source symbol x[k] matches s;, sending a| |, to the output.
The decoder receives @)1, and initiates the while loop, which is executed
until a|/|_.; matches s. At this point, both the encoder and the decoder, assign
the same values to p and b, namely pimp and i— 1 respectively, while ¢
preserves its previous value.

Since both the encoder and the decoder achieve identical values for p, ¢ and
b, they maintain identical sublists for the next steps, and thus achieve lossless
compression and decompression. The basis step thus follows.

Inductive hypothesis for x[ v + 1]: We assume that the result holds for j = n,
where j is the number of partitionings, and n > 1. This implies that p, b, and ¢
have the same values at the nth partitioning step invoked by the encoder and
the decoder.

Inductive step: We now have to prove that the encoder and the decoder have
the same values of p, ¢ and b, for j=n+ 1.

At the (n + 1)th partitioning step, in both the encoder and the decoder, p, ¢
and b have the same initial values—those values resulting from the nth
partitioning step, as enforced by the inductive hypothesis. The main while loop
of the partitioning procedure invoked from the encoder stops when the x[k]
matches s;, and @,y is sent to the output. The latter is received by the
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decoder, which invokes the (n + 1)th partitioning step. At this point, the main
while loop is executed, which ends when a|_.; matches s. Consequently,
both the encoder and decoder assign piemp and i — 1 to p and b respectively,
while the value of ¢ is maintained from the previous search step.

This completes the induction on the number of partitioning steps ‘j° for
x[v + 1] because, for every j = 1, the encoder and the decoder obtain the same
values of p, t and b. They, thus, maintain identical sublists and consequently
achieve lossless compression.

The partitioning is performed in the encoder until b < ¢. This will happen in
the decoder when ¢ = b, and s/(v + 1) is recovered. Since ¢ has the same value in
both the encoder and the decoder, the symbol recovered is s,(v+1)=
X v+ 1]=x[v+1].

This completes the induction on the number of encoding steps, i.e. the
number of symbols encoded and decoded. This result holds for all v > 1, and
the theorem is proved. [

Proof of Theorem 5. From the inductive proof of Theorem 4 on the number of
encoding steps, we see that for all k, k =1,..., M, x[k]is encoded into an r-ary
sequence Y[j]... y[j + ], where ¢, is the length of the code word of x[k]. This
r-ary sequence is simultaneously decoded into x[k]. Moreover, each code alpha-
bet symbol, y[j], sent to the output is immediately processed by the decoder in a
prefix manner. Consequently, encoding by using Algorithm Greedy_ Adap-
tive_Fano_Encoding and decoding by using Algorithm Greedy Adaptive_
Fano_Decoding achieve on-line compression. [
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