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Abstract

Computing linear classi�ers is a very important problem in statistical Pattern Recognition (PR). These

classi�ers have been investigated by the PR community extensively since they are the ones which are both

easy to implement and comprehend. It is well known that when dealing with normally distributed classes,

the optimal discriminant function for two-classes is linear only when the covariance matrices are equal.

Other approaches, such as the Fisher's discriminant, the perceptron algorithm, minimum square distance

classi�ers, etc., have solved this problem by generating a linear classi�er in normal and non-normal

distributions, but these classi�ers are typically suboptimal.

In this paper we shall focus on some special cases of the normal distribution with non-equal covariance

matrices. We present a complete analysis of the case when the classi�er is pairwise linear, and to our

knowledge this is a pioneering work for the use of such classi�ers in any are of statistical PR. We shall

determine the conditions that the mean vectors and covariance matrices have to satisfy in order to obtain

the optimal linear classi�er. However, as opposed to the state of the art, in all the cases discussed here,

the linear classi�er is given by a pair of straight lines, which is a particular case of the general equation

of second degree. One of these cases is when we have two overlapping classes with equal means, which

is a general case of the Minsky's Paradox for the Perceptron. We present a general linear classi�er for

this particular case which can be obtained directly from the parameters of the distribution. Numerous

other analytic results for two dimensional normal random vectors have been derived. Finally, we have

also provided some empirical results in all the cases, and demonstrated that these linear classi�ers achieve

very good performance.

1 Introduction

The aim of statistical Pattern Recognition (PR) is to �nd a discriminant function which can be used to classify

an object, represented by its features, which belongs to a certain class. In most cases, this function is linear

or quadratic. When the classes are normally distributed, it is not always possible to �nd the optimal linear
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classi�er. In all the known results in this �eld, determining a linear function to achieve Bayes classi�cation

for normally distributed class-conditional distributions, has only been reported when the covariance matrices

are equal [1], [2].

As opposed to optimal linear classi�ers, many attempts have been made to yield linear classi�ers, using

Fisher's approach [3], [4], [5], the perceptron algorithm (the basis of the back propagation Neural Network

learning algorithms) [6], [7], [8], [9], Piecewise Recognition Models [10], Random Search Optimization [11],

and Removal Classi�cation Structures [12]. All of these approaches su�er from the lack of optimality, and

thus although they �nd linear discriminant functions, the classi�er is not optimal.

In this paper, we show that there are other cases for normal distributions and non-equal covariance

matrices in which the discriminant function is linear and the classi�er is optimal. One of these cases is

when we have two overlapping classes with equal means, as depicted in Figure 1. But as opposed to all the

previously studied linear classi�ers, the new techniques introduced here yield pairwise linear classi�ers, which

emerge as degenerate cases of the general quadratic classi�er.

Minsky showed that it is not possible to �nd a single linear classi�er for the simple case of Figure 1 in

which the features of one class are the Exclusive-OR of a 2-bit binary vector and the features of the second

class are the negated features. This paradox, also called the Minsky's Paradox [13], demonstrated that a

single perceptron could not correctly classify in this simple scenario.

As opposed to this, we show that it is possible to �nd two optimal linear discriminant functions, given as a

pair of straight lines, which is a particular case of the quadratic discriminant function. These classi�ers have

some advantages over the traditional linear discriminant approaches, such as Fisher's, perceptron learning,

and other ones, because the classi�er that we obtain is both linear and optimal. Finally, we conclude this

introductory section by observing that, to the best of our knowledge, the results of this paper are pioneering.

We are unaware of any work that has been done in statistical PR, which investigates the design and use of

optimal pairwise linear classi�ers.

2 Pattern Classi�cation

2.1 Bayes Decision Theory

The main goal of PR is to �nd the class that an object belongs to given its features1. In statistical models, the

features are represented as random vectors in the domain of the real numbers. A random vector is an ordered

tuple X = [x1; : : : ; xd]
T that is characterized by a probability distribution function, where d represents the

dimension of the problem2. In particular, the probability distribution function for a random vector X which

is normally distributed is

p(X) =
1

2�
d

2 j�j d2 e
� 1

2
(X�M)T��1(X�M); (1)

where M is the mean vector and � is the covariance matrix [14].

1This introductory section is included primarily to lay the foundation for the arguments presented later. It also demonstrates

why quadratic classi�ers can be treated as a starting point in our analysis.
2In this report, we consider only two dimensional normal random vectors, X = [x1; x2]T . The multi-dimensional case is

currently being prepared.
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Figure 1: Two overlapping classes, !1 and !2, with equal means.

In general, the PR recognition problem deals with c classes, !1; : : : ; !c, with the a priori probability of !i,

P (!i). Consider the problem of classifying an object whose features are given by the random vector X . The

aim of Bayesian classi�cation is to decide and choose the class that maximizes the a posteriori probability

[15], [16], given by:

p(!ijX) =
p(X j!i)P (!i)

p(X)
(2)

Suppose we have two classes, !1 and !2, with a priori probability, P (!1) and P (!2). From Equation (2),

we can write the general inequality specifying the Bayesian classi�cation between two classes as follows:

p(X j!1)P (!1)

!2

7

!1

p(X j!2)P (!2) (3)

Equality in (3) represents the discriminant function. Assuming that !1 and !2 are represented by normal

random vectors with covariance matrices �1, �2, and mean vectors M1, M2, respectively, the discriminant

function is given by:

�
1p

2�j�1j1=2
e�

1

2
[(X�M1)

T��1
1

(X�M1)]

�
P (!1) =

�
1p

2�j�2j1=2
e�

1

2
[(X�M2)

T��1
2

(X�M2)]

�
P (!2) (4)

Without loss of generality, we assume that !1 and !2 have the same a priori probability, 0.5. Taking the

logarithm of both sides of (4), we have:

log
j�2j
j�1j � [(X �M1)

T��1
1 (X �M1)] + [(X �M2)

T��1
2 (X �M2)] = 0 (5)

Consider the two cases in (5). When �1 = �2 the discriminant function is linear [17]. For the case

when �1 and �2 are arbitrary, the classi�er results in a general equation of second degree in the form

of a hyperparaboloid, hyperellipsoid, hypersphere, hyperboloid, or a pair of hyperplanes. Indeed, in our

discussion, we are interested in the case when the classi�er is a pair of straight lines for d = 2.

2.2 Diagonalization

Diagonalization is the process of transforming a space by performing linear and whitening transformations

[18]. As our linear classi�er depend primarily on a preprocessing involving whitening, we present below a
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Figure 2: Simultaneous diagonalization: orthonormal and whitening transformations.

brief summary of this strategy.

Suppose we have a normal random vector X � N(MX ;�X). The linear transformation consists of

transforming the random vector X into another vector Y as follows: Y = �TX , where � is a dxd matrix

composed of the d eigenvectors of �: [�1j : : : j�d]. The distribution of Y in the transformed space results in

Y � N(�TMX ;�
T�X�).

The whitening transformation is a non-orthonormal transformation consisting of Z = �� 1

2Y , where � is a

diagonal matrix whose elements are the eigenvalues of �: �1; : : : �d. The distribution of Z in the transformed

space results in Z � N(�� 1

2�TMX ;�
� 1

2�T�X��� 1

2 ) = N(�� 1

2�TMX ; I), since

�� 1

2�T�X��� 1

2 = �� 1

2��� 1

2 = I:

Suppose we have two normal random vectors,X1 � N(M1;�1) and X2 � N(M2;�2). The transformation

of these two random vectors is called simultaneous diagonalization.

The �rst transformation consists of Zi = �
� 1

2

1 �T
1 (Xi � M1); i = 1; 2, where �� 1

2 is the eigenvalue

matrix of �1, and �1 is the eigenvector matrix of �1. We subtract the mean vector of X1 so that the

origin of our system is M1. After this transformation, the resulting random vectors are Z1 � N(0; I) and

Z2 � N(�
� 1

2

1 �T
1 [M2 �M1];�

� 1

2

1 �T
1 �2�1�

� 1

2

1 ).

In the second transformation, we set the axes of the coordinate system to be in the direction of the

eigenvectors of �
� 1

2

1 �T
1 �2�1�

� 1

2

1 = �0
2. The process consists of the transformation Vi = �T

2 Zi; i = 1; 2, where

�2 is the eigenvector matrix of �0
2. After the transformation, the resulting random vectors are V1 � N(0; I)

and V2 � N(�T
2 �

� 1

2

1 �T
1 [M2 �M1];�

T
2 �

0
2�2). After this transformation, the covariance matrix of V2 is �2, a
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diagonal matrix whose diagonal elements are the eigenvalues of �0
2.

One of the implications of the simultaneous diagonalization is that Z1 is in the origin (i.e. its mean

vector is 0) and its covariance matrix is the identity. This means that any orthonormal transformation, such

as Vi = �T
2 Zi, does not change the distribution of Z1. In addition, both covariance matrices are diagonal,

their eigenvectors are parallel to the axes, and the random variables, composing the random vectors, are

uncorrelated.

The simultaneous diagonalization procedure for d = 2 is shown in Figure 2. The original distributions

are depicted in Figure 2(a). Figure 2(b) represents the orthonormal transformation Yi = �T
1 (Xi �M1) with

the axes of the system in the direction of the eigenvectors of �1. The whitening transformation Zi = �
� 1

2

1

is depicted in Figure 2(c); the new value of �1 is the identity matrix drawn as a circle. The orthonormal

transformation Vi = �T
2 Zi is depicted in Figure 2(d). The axes of the system are in the direction of the

eigenvectors of �0
2.

3 Linear Discriminants in Diagonalization

As discussed in Section 2.2, given any arbitrary normal random vectors, X1 and X2, whose covariance

matrices are �1 and �2, we can perform simultaneous diagonalization to obtain normal random vectors, V1

and V2, whose covariance matrices are diagonal, namely I and �, respectively. In what follows, we assume

that the dimension of our problem is d = 2. Also, to be more speci�c, we assume that after simultaneous

diagonalization, the mean vectors and covariance matrices have the form:

M1 =

"
p

q

#
;M2 =

"
r

s

#
;�1 =

"
1 0

0 1

#
; and �2 =

"
a�1 0

0 b�1

#
: (6)

Since we will be, for the present, consistently dealing with two-dimensional vectors we shall assume that the

feature vector has the form X =

"
x

y

#
.

For our discussion, we let X � N(M;�) denote a normal random vector, X , with covariance matrix �

and mean vector M . We will now present a linear transformation that will later prove useful in simplifying

complex expressions. The transformation is stated more formally in Theorem 1.

Theorem 1. Let X1 � N(M1X ;�1) and X2 � N(M2X ;�2) be two normal random vectors with parameters

as in (6). Vectors X1 and X2 can be transformed into Z1 � N(M1Z ;�1) and Z2 � N(M2Z ;�2), where

M1Z =

"
t

u

#
; andM2Z =

"
�t
�u

#
:

Proof. Suppose that we perform the following linear transformation:

Z1 = X1 �
�
M2X +

M1X �M2X

2

�
; and Z2 = X2 �

�
M2X +

M1X �M2X

2

�
As a result of this transformation, �1 and �2 will remain unchanged. The new mean vector of Z1 results

in

M1Z = M1X �
�
M2X +

M1X �M2X

2

�
=

"
p

q

#
�
"
r

s

#
�

"
p

q

#
�
"
r

s

#

2
=

"
p�r
2

q�s
2

#
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In the same way, the new mean vector of Z2 results in

M2Z = M2X �
�
M2X +

M1X �M2X

2

�
=

"
r

s

#
�
"
r

s

#
�

"
p

q

#
�
"
r

s

#

2
=

"
�p�r

2

� q�s
2

#

Therefore, the new random vectors are Z1 � N(M1Z ;�1) and Z2 � N(M2Z ;�2), where

M1Z =

"
p�r
2

q�s
2

#
; and M2Z =

"
�p�r

2

� q�s
2

#
:

Theorem 2. Let X1 � N(M1;�1) and X2 � N(M2;�2) be two random vectors, such that:

M1 =

"
r

s

#
;M2 =

"
�r
�s

#
;�1 =

"
1 0

0 1

#
; and �2 =

"
a�1 0

0 b�1

#
(7)

then the optimal classi�er obtained by Bayes classi�cation is a pair of straight lines if and only if there

exist positive real numbers, a and b, such that:

a(1� b)r2 � 1

4
(ab� a� b+ 1) log ab = (a� 1)bs2 : (8)

Proof. The discriminant function given in Equation (5) is now:

log

�����
"
a�1 0

0 b�1

#������
"
x� r

y � s

#T "
1 0

0 1

#"
x� r

y � s

#
+

"
x+ r

y + s

#T "
a 0

0 b

#"
x+ r

y + s

#
= 0; (9)

After performing rather lengthy matrix operations, Equation (9) results in:

a(x+ r)2 + b(y + s)2 � (x� r)2 � (y � s)2 � log ab = 0: (10)

Expanding the quadratic terms and grouping by x and y, we have:

(a� 1)x2 + (b� 1)y2 + 2(a+ 1)rx + 2(b+ 1)sy + ar2 + bs2 � r2 � s2 � log ab = 0 (11)

Equation (11) is a general equation of second degree, and can represent either a circle, an ellipse, a

parabola, a hyperbola, or a pair of straight lines. Indeed, we are interested in the latter. Equation (11)

represents a pair of straight lines if and only if the following condition is satis�ed [19]:

(a� 1)(b� 1)(ar2 + bs2 � r2 � s2 � log ab)� (a� 1)[(b+ 1)s]2 � (b� 1)[(a+ 1)r]2 = 0 (12)

Equation (12) is equivalent to:

�4abr2 � 4abs2 + 4ar2 + 4bs2 � (ab� a� b+ 1) log ab = 0 (13)

By multiplying both sides of (13) by 1
4 and grouping some terms, we get:

a(1� b)r2 � 1

4
(ab� a� b+ 1) log ab = (a� 1)bs2 : (14)

We have proved that (12) � (13) � (14), all of which are i� assertions. The result follows.
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Equation (14) is the necessary and su�cient condition that real numbers a > 0; b > 0; r; and s, must

satisfy in order to yield the optimal linear classi�er between two classes represented by normal random vectors

with parameters of the form given in (7).

Consider the following: Given positive real numbers a > 0 and b > 0, we would like to �nd real numbers,

r and s, that satisfy (14). When neither a nor b equals unity, we have four possible cases:

Case I : 0 < a < 1; b > 1;

Case II : a > 1; 0 < b < 1;

Case III : 0 < a < 1; 0 < b < 1; and

Case IV : a > 1; b > 1

9>>>>=
>>>>;

(15)

The cases for which it is possible to �nd real numbers, r and s, satisfying Equation (14) are stated and

proved in Theorem 3 below. These constitutes the necessary and su�cient conditions as will be explained

presently.

Theorem 3. Let X1 � N(M1;�1) and X2 � N(M2;�2) be two normal random vectors, such that

M1 =

"
r

s

#
;M2 =

"
�r
�s

#
;�1 =

"
1 0

0 1

#
; and �2 =

"
a�1 0

0 b�1

#
(16)

For any positive real numbers a and b (a 6= 1, b 6= 1), there exist real numbers r and s permitting pairwise

linear classi�cation if and only if a > 1 and 0 < b < 1, OR 0 < a < 1 and b > 1.

Proof. IF: We have to prove that if a and b are as in Cases I and II of (15), there exist real numbers, r and

s, permitting pairwise linear classi�cation.

Consider the non-quadratic term of Equation (14), l = 1
4 (ab� a� b+ 1) log ab.

Case I: 0 < a < 1 and b > 1.

We know that

0 < a < 1) �1 < a� 1 < 0) (a� 1)b < 0 since b > 1, and

b > 1) �b < �1) 1� b < 0) a(1� b) < 0 because a > 0.

Since s2 � 0, (14) can be written as follows:

s2 =
a(1� b)r2 � l

(a� 1)b
� 0: (17)

We are now required to �nd a real number r such that (17) is satis�ed.

Since (a� 1)b < 0, we must �nd r such that the following inequality is satis�ed:

a(1� b)r2 � l � r2 � l

a(1� b)
(18)

Utilizing the fact that r2 � 0, we can argue that we can choose r such that r2 is su�ciently large so as

to satisfy the inequality given in (18).

Case II: a > 1 and 0 < b < 1.

We know that

0 < b < 1) 0 > �b > �1) 1� b > 0) a(1� b) > 0 since a > 1, and
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a > 1) a� 1 > 0) b(a� 1) > 0 because b > 0.

Since s2 � 0, (14) can be written as follows:

s2 =
a(1� b)r2 � l

(a� 1)b
� 0: (19)

We are now required to �nd a real number r such that (19) is satis�ed.

Since (a� 1)b > 0, we must �nd r such that the following inequality is satis�ed:

r2 � l

a(1� b)
: (20)

But we know that r2 is always positive, and so we can choose r such that r2 is su�ciently large so as to

satisfy (20).

Cases I and II prove the su�ciency conditions.

ONLY IF: We are to prove that if the classi�er is pairwise linear, a and b fall in Case either I or II. We

prove this by showing that the negation of the implication is true, or equivalently if a and b do not fall in

Cases I and II (i.e. thy fall in cases III or IV), it is not possible to �nd real numbers r and s permitting

pairwise linear classi�cation.

Case III: 0 < a < 1 and 0 < b < 1.

In this case we know that

0 < a < 1) (a� 1)b < 0 and 0 < b < 1) a(1� b) > 0.

Since r2 � 0 and s2 � 0 then (a� 1)br2 � 0 and a(1� b)s2 � 0.

We shall show that this implies that if l > 0, it is not possible to �nd real numbers r and s.

Suppose that it were possible to �nd real numbers, r; s, and l > 0. This implies that

(ab� a� b+ 1) log ab > 0; and

ab� a� b+ 1 < 0 (21)

since log ab < 0.

By our hypothesis, we know that

0 < a < 1 and 0 < b < 1) 0 < a+ b� ab < 1) ab� a� b+ 1 > 0,

which contradicts (21). Therefore, there are no real numbers r and s that satisfy Equation (14) for

0 < a < 1 and 0 < b < 1.

Case IV: a > 1 and b > 1.

In this case we know that

a > 1) (a� 1)b > 0 and b > 1) a(1� b) < 0.

Since r2 � 0 and s2 � 0, then (a� 1)br2 � 0 and a(1� b)s2 � 0.

We again argue that this implies that if l < 0, it is not possible to �nd real number r and s.

Suppose that we are able to �nd real numbers, r; s, and l < 0. This implies that

(ab� a� b+ 1) log ab < 0; and

8



ab� a� b+ 1 > 0; (22)

since log ab > 0.

By our hypothesis, we know that

a > 1 and b > 1) a+ b� ab > 1) ab� a� b+ 1 < 0,

which contradicts (22). Therefore, there are no real numbers r and s that satisfy Equation (14) for a > 1

and b > 1.

Hence the necessary conditions.

The theorem is thus proved.

In the above theorem, we considered the cases only when both a 6= 1 and b 6= 1. The case when either a

or b, or both, is unity is given below.

Theorem 4. Let X1 � N(M1;�1) and X2 � N(M2;�2) be two normal random vectors with parameters of

the form (16). When either a or b can have the value of unity, the optimal Bayesian classi�er is a pair of

straight lines if and only if:

(i) a = 1, b 6= 1, and r = 0, or

(ii) a 6= 1, b = 1, and s = 0, or

(iii) a = 1 and b = 1.

Proof. The proof of the above cases can be derived by substituting these conditions into the relevant expres-

sions of Theorem 3. In Case (iii), we have the situation in which �1 = �2 = I , which is the only scenario

known to have a linear discriminant function as the classi�er (i.e. a single straight line3) [18].

4 Special Cases of Linear Discriminant

In this section we analyze two special cases of diagonal covariance matrices that lead to the optimal linear

discriminant function. The necessary and su�cient conditions to achieve a linear classi�er are discussed in

both cases. The second, and more speci�c case, is that where the mean vector is the same for the two classes

under consideration.

4.1 Linear Discriminant with Di�erent Means

Consider two normal random vectors of dimension d = 2. Using the diagonalization process discussed in

Section 2.2, any covariance matrices and mean vectors can be converted into the form of (6). Starting with

normal random vectors and these parameters, we are interested in analyzing linear classi�ers for a more

particular case.

Theorem 5. Let X1 and X2 be two normal random vectors with covariance matrices and mean vectors as in

(6). It is possible to transform X1, X2 into Z1 = ATX1, Z2 = ATX2, respectively, where A =

"
a
1

4 0

0 a�
1

4

#
,

and the new covariance matrices and mean vectors have the form:
3Note that a single straight line means that the quadratic polynomial of (11) has a single root, or in the richer context of

this paper, it has two coincident roots.
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M1Z =

"
p0

q0

#
;M2Z =

"
r0

s0

#
;�1Z =

"
a0 0

0 b0

#
; and �2Z =

"
b0 0

0 a0

#
(23)

if and only if b = a�1.

Proof. Consider a matrix A =

"
� 0

0 �

#
where � and � are any real numbers. The covariance matrices in

the transformed space are:

�1Z =

"
� 0

0 �

#T "
1 0

0 1

# "
� 0

0 �

#
=

"
�2 0

0 �2

#
; and

�2Z =

"
� 0

0 �

#T "
a�1 0

0 b�1

#"
� 0

0 �

#
=

"
a�1�2 0

0 b�1�2

#
:

In order to obtain the form of (23), we need that �2 = b�1�2 and a�1�2 = �2. Substituting �2 into the

second expression, we have a�1b�1�2 = �2 ) b = a�1. Therefore, the covariance matrix of X2 must be of

the form �2X =

"
a�1 0

0 a

#
.

By choosing A =

"
a
1

4 0

0 a�
1

4

#
, the covariance matrices in the transformed space are:

�1Z =

"
a
1

4 0

0 a�
1

4

#T "
1 0

0 1

#"
a
1

4 0

0 a�
1

4

#
=

"
a
1

2 0

0 a�
1

2

#
; and

�2Z =

"
a
1

4 0

0 a�
1

4

#T "
a�1 0

0 a

# "
a
1

4 0

0 a�
1

4

#
=

"
a�

1

2 0

0 a
1

2

#
:

The mean vectors in the transformed space are M1Z =

"
a
1

4 p

a�
1

4 q

#
and M2Z =

"
a
1

4 r

a�
1

4 s

#
:

The �only if� part follows by traversing the algebraic steps in a reverse manner.

We now state the conditions necessary to obtain a pair of straight lines when we have the form of (23).

Theorem 6. Let X1 � N(M1;�1) and X2 � N(M2;�2) be two normal random vectors such that

M1 =

"
p

q

#
;M2 =

"
r

s

#
;�1 =

"
a�1 0

0 b�1

#
; and �2 =

"
b�1 0

0 a�1

#
; (24)

The optimal Bayes classi�er is a pair of straight lines if and only if (p � r)2 = (q � s)2, for a, b any

positive real numbers. Moreover, if M1 =

"
r

s

#
and M2 =

"
�r
�s

#
, the condition simpli�es to r2 = s2.

Proof. Multiplying both sides of (5) by �1, the discriminant function can be expressed as follows:

"
x� p

y � q

#T "
a 0

0 b

# "
x� p

y � q

#
�
"
x� r

y � s

#T "
b 0

0 a

#"
x� r

y � s

#
= 0 (25)
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Note that log j�2j
j�1j

= 0, since j�1j = j�2j.
After performing matrix operations, (25) reduces to:

a(x� p)2 + b(y � q)2 � b(x� r)2 � a(y � s)2 = 0 (26)

By expanding the quadratic terms and applying the distributive law we obtain:

ax2 � 2apx+ ap2 + by2 � 2bqy + bq2 � bx2 + 2brx� br2 � ay2 + 2asy � as2 = 0 (27)

Taking common factors x and y from the linear and quadratic terms, we obtain:

(a� b)x2 + (b� a)y2 + 2(�ap+ br)x+ 2(�bq + as)y + (ap2 + bq2 � br2 � as2) = 0 (28)

Equation (28) is a pair of straight lines if and only if the following condition is satis�ed [19]:

(a� b)(b� a)(ap2 + bq2 � br2 � as2)� (a� b)(�bq + as)2 + (a� b)(�ap+ br)2 = 0 (29)

Dividing (29) by (a� b) yields:

(b� a)(ap2 + bq2 � br2 � as2)� (�bq + as)2 + (�ap+ br)2 = 0 (30)

By expanding the quadratic terms and applying the distributive law again, we obtain:

abp2 + b2q2 � b2r2 � abs2 � a2p2 � abq2 + abr2 + a2s2 � b2q2 +2abqs� a2s2 + a2p2 � 2abpr+ b2r2 = 0 (31)

After canceling some terms and dividing by ab, (31) can be simpli�ed to:

(p2 � 2pr + r2)� (q2 � 2qs+ s2) = 0 (32)

We can rewrite (32) in quadratic terms as follows:

(p� r)2 = (q � s)2 (33)

This proves the �rst assertion.

By setting the means to M1 =

"
r

s

#
and M2 =

"
�r
�s

#
, (33) can be rewritten as:

r2 = s2: (34)

The �only if� part of the proof is achieved by following the algebraic steps, in a reverse manner, from (33)

to (25).

Hence the theorem.

Theorem 6 states the necessary and su�cient condition for a pairwise linear classi�er between two normal

random vectors, with means and covariances of the form given in (24).
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4.2 Linear Discriminant with Equal Means

In this section, we discuss a particular instance of the problem discussed in Section 4.1. Let us consider the

generalization of Minsky's paradox, that is, when M1 = M2. We shall now show that it is always possible to

�nd a pair of straight lines when M1 = M2, �1 =

"
a�1 0

0 b�1

#
, and �2 =

"
b�1 0

0 a�1

#
, thus resolving

the paradox in the most general case.

Theorem 7. Let X1 � N(M1;�1) and X2 � N(M2;�2) be two random vectors such that:

M1 = M2 =

"
r

s

#
;�1 =

"
a�1 0

0 b�1

#
; and �2 =

"
b�1 0

0 a�1

#
;

The optimal classi�er obtained by Bayes classi�cation is a pair of straight lines for positive real numbers

a and b, where r and s are any real numbers.

Proof. The proof of this theorem is straightforward using the result of Theorem 6.

We know that for �1 and �2, it is possible to �nd p; q; r; and s, such that (p�s)2 = (q�s)2. Substituting
r for p and s for q, in (33), we have (r � r)2 = (s� s)2. Therefore, for positive real numbers a and b, where

r and s are any real numbers, the optimal classi�er is a pair of straight lines.

Clearly, Theorem 7 states the necessary and su�cient condition for a pairwise linear classi�er between

two normal random vectors with covariance matrices of the form given in (24), where the means are equal.

The power of this will be obvious when the classi�cation results are discussed in a subsequent section.

5 Classi�cation

5.1 The Discriminant Function

In this section we discuss classi�cation with the linear discriminant functions determined in Section 4.2, for

dimension d = 2.

Equations (11) and (28) are the discriminant functions that represent a pair of straight lines for the cases

discussed in Sections 3 and 4.1, respectively. For the purpose of classi�cation, we need to �nd one equation

for each straight line. This is done by inspection or by solving the quadratic equation in terms of y [19].

These second degree polynomial equations have the following roots:

y+ = A1x+ B1; and y� = A2x+B2 (35)

Let us consider now the third case discussed in Section 4.2. The equation for each straight line can be

found as per the following theorem.

Theorem 8. Let X1 � N(M1;�1) and X2 � N(M2;�2) be two random vectors such that

M1 = M2 =

"
r

s

#
;�1 =

"
a�1 0

0 b�1

#
; and �2 =

"
b�1 0

0 a�1

#
:

The equations of the linear discriminant functions, i.e. the optimal classi�ers, are

y+ = �x+ (r + s); and

12



y� = x+ (s� r) :

Proof. Consider Equation (28), which speci�es the discriminant function between !1 and !2 with the distri-

butions as stated in Theorem 6.

Since M1 =M2 =

"
r

s

#
, (28) can be expressed as follows:

(b� a)y2 + 2(a� b)sy + [(a� b)x2 + 2(b� a)rx + (a� b)r2 + (b� a)s2] = 0: (36)

Being a polynomial of second degree in y, the roots of this equations are given by

�2(a� b)s�p4(a� b)2s2 � 4(b� a)[(a� b)x2 + 2(b� a)rx+ (a� b)r2 + (b� a)s2]

2(b� a)
: (37)

After applying the distributive law, and canceling some terms and lengthy manipulations, we can rewrite

(37) as follows:

�2(a� b)s�p4(a� b)2(x� r)2

2(b� a)
: (38)

After solving the square root expression and canceling the terms (a� b) and (b� a), we have a resulting

equation that has two solutions:

y+ = �x+ (r + s) and y� = x+ (s� r): (39)

To conclude this section, we give the discriminant functions for the distributions discussed in Section 4.1.

(a) Suppose also that

M1 =

"
r

s

#
and M2 =

"
�r
�s

#
:

We earlier showed that we obtain a pairwise linear discriminant function when r2 = s2. It can be shown

that the equations of the linear discriminant functions are4:

y+ = �x; y� = x� 2(a+b)r
a�b if s = r; and

y+ = x; y� = �x+ 2(a+b)r
a�b if s = �r: (40)

(b) Consider now the distributions discussed in Section 3, in which

M1 =

"
r

s

#
; M2 =

"
�r
�s

#
; �1 =

"
1 0

0 1

#
; and �2 =

"
a�1 0

0 b�1

#
:

By solving for the roots of (11), a quadratic polynomial of y, we have4:

4This can be veri�ed by using the symbolic computation package Maple V [20], [21].
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y+ = �(a� 1)x+ �(a+ 1)r � �s and

y� = �(1� a)x� �(a+ 1)r � �s;
(41)

where � =

q
1�b

a�1

b�1 and � = b+1
b�1 .

5.2 Pairwise Linear Classi�cation

The general scheme of a linear classi�er is the following [22]: Given a vector, X , the discriminant function

as a linear combination of X is:

g(X) = W TX + w; (42)

where W is the weight vector that gives the direction of the hyperplane and w is the threshold weight that

represents the distance from the origin to the hyperplane. We decide !1, if g(x) > 0, and !2, if g(x) < 0.

The main problem in this scheme is to �nd W and w, given the training feature vectors. One of the most

popular approaches uses the perceptron algorithm that is the basis of the learning algorithm in neural

networks. One of the disadvantages of this approach is that it uses sub-optimal optimization techniques,

such as the gradient descent procedure. This procedure can become �stuck� in a local optimum.

In our case, we have the optimal linear classi�er, represented by a pair of straight lines, as given by the

following equations

g1(X) = A1y +B1x+ C1 and g2(X) = A2y + B2x+ C2 (43)

The weight vectors and the threshold weights are:

W1 =

"
B1

A1

#
; W2 =

"
B2

A2

#
; w1 = C1; and w2 = C2 (44)

We can write the general inequality for classi�cation with a pair of straight lines as follows:

g1(X)g2(X)

!1

7

!2

0 (45)

where g1(X) = W T
1 X + w1 and g2(X) = W T

2 X + w2:

The classi�cation is done using the following scheme:

� g1(X) < 0 and g2(X) < 0 ) X 2 !2

� g1(X) < 0 and g2(X) > 0 ) X 2 !1

� g1(X) > 0 and g2(X) < 0 ) X 2 !1

� g1(X) > 0 and g2(X) > 0 ) X 2 !2

14



Consider the second equation of (39). This can be written as follows:

y � x+ (r � s) = 0 (46)

Dividing Equation (36) by Equation (46) yields:

(b� a)[y + x� (r + s)] = 0 (47)

Note that we do not cancel the term b� a, since we are looking for a classi�er that can be obtained by

replacing the equality symbol in the discriminant function by the symbol 7, and b� a can be positive or

negative. Next we divide (47) by jb� aj and multiply it by sgn(b� a), where sgn(b� a) is 1 if b� a is

positive and -1 otherwise.

The discriminant functions in vectorial form are:

g1(X) = sgn(b� a)

( h
1 1

i " x

y

#
+ (�r � s)

)
; and

g2(X) =
h
�1 �1

i " x

y

#
+ (r � s)

In an analogous manner, the discriminant functions, g1(X) and g2(X), and the classi�cation scheme for

equations in (40) and (41) can be obtained.

6 Simulation Results

In this section we present some examples illustrating the di�erent cases discussed in previous sections. In

all of the examples we have chosen the dimension d = 2 and two classes, !1 and !2. We also discuss the

empirical results obtained after testing the linear classi�er with 100 points for each class generated

randomly using the maximum likelihood approach in estimating the parameters [5], assuming that they are

of the form found in the respective cases.

The two classes, !1 and !2, are represented by two normal random vectors, X1 � N(M1;�1) and

X2 � N(M2;�2), respectively. We used two instances of each of the three cases and generated a set of 100

normal random points, in order to test the accuracy of the classi�ers.

6.1 Pairwise Linear Discriminant in Diagonalization

In the �rst test (referred to as DD-1 and DD-2) we considered the pairwise linear discriminant function in

diagonalization. We used the following covariance matrices and mean vectors (estimated from 100 training

samples) to yield the respective classi�er:

DD-1: M1 �
"

1:0342

1:8686

#
;M2 �

"
�1:0342
�1:8686

#
;�1 �

"
1 0

0 1

#
;�2 �

"
:4599 0

0 2:8232

#

DD-2: M1 �
"
�1:4602
�1:1913

#
;M2 �

"
1:4602

1:1913

#
;�1 �

"
1 0

0 1

#
;�2 �

"
1:8395 0

0 :4278

#
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Figure 3: Example of pairwise linear discriminant in diagonalization for the case described in Theorem 2.

The data set is DD-1.
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Figure 4: Example of pairwise linear discriminant in diagonalization for the case described in Theorem 2.

The data set is DD-2.
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Figure 5: Example of pairwise linear discriminant with di�erent means for the case described in Theorem 6.

The data set is DM-1.

The plot of the points and the linear discriminant function are depicted in Figures 3 and 4. The accuracy of

the classi�er was 99% for !1 and !2 in the �rst test set, DD-1, and 94% for !1 and 93% for !2 in the

second test set, DD-2. The power of the scheme is obvious!

6.2 Pairwise Linear Discriminant with Di�erent Means

In the second test (referred to as DM-1 and DM-2) we considered the pairwise linear discriminant with

di�erent means. The following estimated covariance matrices and mean vectors were obtained by using 100

training samples.

DM-1: M1 �
"
�:9555
:9555

#
;M2 �

"
:9555

�:9555

#
;�1 �

"
1:8077 0

0 :3188

#
;�2 �

"
:3188 0

0 1:8077

#

DM-2: M1 �
"
:8293

:8293

#
;M2 �

"
�:8293
�:8293

#
;�1 �

"
:3615 0

0 2:5503

#
;�2 �

"
2:5503 0

0 :3615

#

Using the above parameters, the pairwise linear classi�er was derived. The plot of the points and the linear

discriminant function are shown in Figures 5 and 6. The accuracy of the classi�er was 91% for !1 and 95%

for !2 in the �rst test set, DM-1, and 88% for !1 and !2 in the second test set, DM-2.

6.3 Pairwise Linear Discriminant with Equal Means

To show the power of the scheme, we also tested our results for the case of the pairwise linear classi�er with

equal means (EM-1 and EM-2) for the generalized Minsky's Paradox. By using 100 training samples
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Figure 6: Example of pairwise linear discriminant with di�erent means for the case described in Theorem 6.

The data set is DM-2.
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Figure 7: Example of pairwise linear discriminant with equal means for the case described in Theorem 7.

The data set is EM-1.
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Figure 8: Example of pairwise linear discriminant with equal means for the case described in Theorem 7.

The data set is EM-2.

generated with equal means but mirrored covariances, we obtained the following estimated covariance

matrices and mean vectors:

EM-1: M1 �
"
�1:9394
4:1875

#
;M2 �

"
�1:9394
4:1875

#
;�1 �

"
4:5193 0

0 :255

#
;�2 �

"
:255 0

0 4:5193

#

EM-2: M1 �
"

5:9841

6:1766

#
;M2 �

"
5:9841

6:1766

#
;�1 �

"
:0904 0

0 12:7515

#
;�2 �

"
12:7515 0

0 :0904

#

The plot of the points and the linear discriminant function from these estimates are given in Figures 7 and

8. The accuracy of the classi�er was 82% for !1 and 85% for !2 in the �rst test set, EM-1, and 96% for !1

and 90% for !2 in the second test set, EM-2.

6.4 Overall Observations

The empirical results of classi�cation are given in Table 1. The �rst column corresponds to the test case.

The second and third columns represent the percentage of correctly classi�ed points belonging to !1 and

!2, respectively. Note the very high accuracy in the �rst two cases, DD-1 and DD-2, which correspond to

the pairwise linear discriminant in diagonalization case. DM-1 and DM-2 are �worse� in accuracy, but it is

still high. These correspond to the pairwise linear discriminant with di�erent means. The sixth and seventh

rows correspond to the case where the means are identical, referred to as EM-1 and EM-2. The accuracy is

very high in this case, despite the fact that the classes overlap and the discriminant functions are pairwise

linear. The power of the results presented are again obvious and the resolution of Minsky's Paradox is clear.
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Example accuracy for !1 accuracy for !2

DD-1 98 % 99 %

DD-2 95 % 94 %

DM-1 91 % 95 %

DM-2 88 % 88 %

EM-1 82 % 85 %

EM-2 96 % 90 %

Table 1: Accuracy in classi�cation of test points generated with the six examples presented above. The

accuracy is given in percentage of points correctly classi�ed.

7 Conclusions

In this paper we have shown the problem of determining pairwise linear classi�ers for the case of normally

distributed classes. We have shown that, contrary to what is known, it is possible to �nd the optimal linear

discriminant function even though the covariance matrices are di�erent. In all the cases discussed here, the

functions obtained are pairs of straight lines, which is a particular case of the second degree general

equation.

By a formal procedure, we have determined the conditions for these particular discriminant functions in

three cases. The �rst case occurs after diagonalization. Having two classes with normal distribution and

any covariance matrices, we can always perform diagonalization and obtain the required covariance

matrices. We have explicitly derived the necessary and su�cient conditions for the covariance matrices and

the mean vectors so as to yield a pair of straight lines for the optimal classi�er.

The second case is when we have particular forms in the two diagonal covariance matrices. In this case, two

terms of the diagonal of one matrix have to be a permutation of two terms of the other matrix and the

remaining terms of both matrices must be identical. For this case we have again derived the necessary and

su�cient conditions for an optimal pairwise linear discriminant function.

In the third case, assuming equal means, we have found that it is always possible to obtain a pair of

straight lines when we have covariance matrices with the same form as found in the second case. This

re-solves Minsky's paradox!

The results derived in the paper have also been experimentally veri�ed. The empirical results obtained

show that the accuracy of the classi�er is very high. This is understandable since the classi�er is optimal.

The degree of this accuracy is even more amazing when we recognize that we are dealing with a linear

discriminant function for classes which are signi�cantly overlapping.
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