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Abstract

Various Prototype Reduction Schemes (PRS) have been reported in the literature. Based on their operating

characteristics, these schemes fall into two fairly distinct categories – those which are of a creative sort, and

those which are essentially selective. The norms for evaluating these methods are typically, the reduction rate

and the classification accuracy. It is generally believed that the former class of methods is superior to the latter.

In this paper, we report the results of executing various creative PRS, and attempt to comparatively quantify

their capabilities. The paper presents a brief taxonomy of the various reported PRS schemes. Our experimental

results for three artificial data sets, and for samples involving real-life data sets, demonstrate that no single

method is uniformly superior to the others for all kinds of applications. This result, though consistent with the

findings of [2], is, in one sense, counter-intuitive, because the various researchers have presented their specific

PRS with the hope that it would be superior to the previously reported methods. But the fact is that while

one method is superior in certain domains, it is inferior to another method when dealing with a data set with

markedly different characteristics. The conclusion of this study is that the question of determining when one

method is superior to another remains open. Indeed, it appears as if the designers of the Pattern Recognition

system will have to choose the appropriate PRS based to the specific characteristics of the data that they are

studying. The paper also suggests answers to various hypotheses that relate to the accuracies and reduction

rates of families of PRS.

Keywords : Machine Learning, Prototype Reduction Schemes (PRS), Learning Vector Quantization (LVQ),

Support Vector Machines (SVM).

1 Introduction

Currently, huge amounts of multimedia information is available on the Internet. Classifying, understanding or

compressing this information is a difficult task. The same problem is also associated with extremely large data
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sets such as those encountered in data mining, text categorization, financial forecasting, retrieval of multimedia

databases, and biometrics. One possible solution to this problem is to reduce the number of sample vectors, while

simultaneously insisting that the decisions based on the reduced data set perform as well, or nearly as well, as the

decisions based on the original data set. This idea has been explored by many researchers, and this has resulted in

the development of many algorithms [1, 2].

It is interesting to note that Bezdek et al [2], who have composed an excellent survey of the field, report that

there are “zillions!” of methods for finding prototypes (see page 1459 of [2]). Our work does not compete with

theirs - it merely supplements their results with an ensemble of experiments performed with a few of the creative

(replacement) schemes for a variety of data sets. Rather than re-embark on a brand new survey of the field, we

briefly “sample” a few representative methods of the “zillions” that have been reported. However, we emphasize

that even this will not be done in an exhaustive and comprehensive manner in this relatively brief paper. Rather,

although we catalogue an ensemble of the various creative PRS, we shall explain in greater detail, only those creative

prototype reduction schemes that we have specifically used in the comparison1.

One of the first of its kind was the Condensed Nearest Neighbor (CNN) rule [3]. This rule, however, includes

“interior” samples which can be eliminated completely without inviting changes in the performance. Results relating

to the CNN are mentioned here so as to serve as a benchmark.

Since the development of the CNN, other methods have been proposed successively, such as the Reduced Nearest

Neighbor (RNN) rule [4], the Prototypes for Nearest Neighbor (PNN)2 classifiers [5], the Selective Nearest Neighbor

(SNN) rule [6], two modifications of the CNN [7], the Edited Nearest Neighbor (ENN) rule [8], and the Parzen

approach to non-parametric data reduction [9]. Besides these methods, the Vector Quantization technique (VQ) [10]

and the Bootstrap technique (BT) [11] have also been reported to be extremely effective approaches to data reduction

problems. Additionally, a formulation of Learning Vector Quantization (LVQ) [12] combined with the stimulated

annealing algorithm [13] has been shown to generate optimal reference models of large data set problems. Recently,

the clustering-based methods using Genetic Algorithms (GA) and Random Search (RS) [15], Proximity-Graph-

based (PG) editing and condensing method [16], and the method of prototype selection based on the properties

of Polyline Functions (PF) [17], have also been investigated, independently. Similarly, the authors of [20] use

neural network principles (as opposed to “pure” pattern recognition principles) to reduce the size of the training set

without significantly decreasing the classification quality. Although the effectiveness of their proposed algorithm is

compared with that of the class sensitive neural network (CSNN) presented by Chen and You in 1993, the authors

of [20] argue that the same approach can also be applied to other kinds of classifiers. The work of [20] has been

verified by testing it on a very large remote-sensing data set.

Apart from the papers that are mentioned in greater detail, we feel that it is appropriate to take a few minutes

to highlight a new PRS introduced in [21]. The authors of [21] propose a new principle by which the template

1In this regard, we thank the anonymous Referees for suggesting this strategy.
2Bezdek and his co-authors, proposed a modification of the PNN in [14]. First of all, instead of using the weighted mean of the PNN

to merge prototypes, they utilized the simple arithmetic mean. Secondly, the process for searching for the candidates to be merged
was modified by partitioning the distance matrix into submatrices “blocked” by common labels. This modification eliminated the
consideration of candidate pairs with different labels.
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size can be considerably reduced. This principle is derived from the fact that if many prototypes of the same class

are found in any area of the feature space, and if this area does not contain any prototypes from any of the other

classes, an unknown pattern would be correctly classified to be of this particular class3. The authors of [21] invoke

this idea to reduce redundant prototypes of any one class, whose samples fall within this specified area of interest.

Observe now that if an unknown pattern belonging to this class is located in this area of interest, then the number

of patterns in this area from the correct class, which are the nearest neighbours to the unknown pattern, need not

declare the unknown pattern’s identity by unanimity. Rather, this could be achieved by just a majority vote, and

consequently, some of the prototypes of this class which fall within the area, can be discarded without any reduction

in accuracy. This concept differentiates the work of [21] from the other PRS.

On the other hand, Support Vector Machines (SVM) [18] have a capability of extracting vectors that support

the boundary between the two classes, and they thus satisfactorily represent the global distribution structure. As

opposed to this, the LVQ has a capability of adjusting the prototypes (code-book vectors) so that the decision

boundaries for every pair of neighboring classes satisfy the approximation of the class distribution. Thus, apart

from the above methods, the SVM can also be used as a means of selecting prototype vectors, which are subsequently

adjusted by means of an LVQ3-type method. Such a novel prototype reduction method obtained by hybridizing

the SVM and the LVQ3 has been recently reported in [19].

As is obvious from the above catalogue of methods, the researcher is left with the sense that the number of

methods is large, and with the question of resolving which methods s/he has to use for any particular application

data set. We endeavor to simplify his/her task by first categorizing the methods using a simple taxonomy, and then

quantifying their relative capabilities by testing them on an ensemble of benchmark data-sets.

The above approaches can be categorized into two groups by considering their operating characteristics. First,

they can be classified as being either creative or selective, based on whether they create new prototypes, or they,

rather, merely select some of the existing data points as the prototypes. From another perspective, the algorithms

can be classified as being either deterministic or non-deterministic depending on whether or not we can control the

number of prototypes generated by the algorithms.

All the reported schemes are required to reduce the samples of the input data set to a small number of repre-

sentatives that can represent the entire set satisfactorily. Thus, their performances should be evaluated in terms

of both the classification accuracy and the reduction rates. In this paper, we conduct an empirical comparison

between the various creative schemes (including the hybrid method) for three artificial and real-life data sets. The

comparisons are made from the point of view of their data reduction rates, the classification accuracy rates and

computational efficiencies.

The paper is organized as follows: In Section 2, we provide a simplified taxonomy of the representative prototype

reduction methods. Section 3 provides an experimental comparison and discussions on the creative prototype

reduction schemes for both artificial data sets and real-life data sets. Finally, the conclusions are given in Section
3This is, of course, the underlying principle of the nearest neighbour method, and also of all the non-parametric methods for density

estimation.
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4.

1.1 Contributions of the Paper

The main contribution of this paper is the formal, objective and systematic study of the various families of creative

PRS. Since each researcher attempts to promote his particular paradigm, the literature contains a catalogue of such

methods, and various experimental results that arguably demonstrate the superiority of one scheme over the other.

The first objective of the paper is to submit a simplified taxonomy of the various PRS available. The primary

contribution of this paper is the assertion that there seems to be no clear scheme that is uniformly superior to all

other PRS. This has been clearly demonstrated in experiments involving both synthetic and real-life data. Instead,

it appears as if each method has its distinct advantages. Furthermore, the question of determining when one method

is superior to another, is, generally speaking, open. We believe that this really depends on the data, its clustering

patterns, the outliers of the class distributions, the number of data points themselves, and of course, the proximity

relationships between the individual classes.

The results4 presented here complement the results of the study of [2]. They also form a basis by which some

accuracy/reduction-rate hypotheses can be verified. Finally, they can also be used as a benchmark against which

future research can be “calibrated”.

2 A Taxonomy of PRS

As mentioned previously, various data reduction methods have been proposed in the literature - two excellent

surveys are found in [1, 2]. The survey of [2] contains a comparison of eleven conventional PRS methods, which are

: A combination of Wilson’s ENN and Hart’s CNN (W+H), a Genetic Algorithms (GA) and Random Selection (RS)

method, a Tabu Search (TS) scheme, a Vector Quantization-based method (LVQ1), a Decision Surface Mapping

(DSM), a scheme which involves LVQ with Training Counters (LVQTC), a Bootstrap (BTS) method , a Vector

Quantization (VQ) method, a Generalized LVQ-Fuzzy (GLVQ-F) scheme, and a Hard C-Means clustering (HCM)

procedure.

Among these, the W+H, RS, GA, and TS can be seen to be selective PRS schemes, and the others fall into

the category of being creative. Additionally, the VQ, GLVQ-F, and HCM are post- supervised approaches in which

the methods first find prototypes without regard to the training data labels, and then assign a class label to each

prototype, while the remaining are pre-supervised ones that use the data and the class labels together to find the

prototypes. Finally, the RS, LVQ1, DSM, BT, VQ, and GLVQ-F are capable of permitting the user to define the

number of prototypes, while the rest of the schemes force the algorithm to decide this number.

With regard to the taxonomy, first of all, the PRS can be categorized into two groups by considering whether
4It should be particularly mentioned that it is not feasible to survey and implement every single instantiation of every reported

method (and all the variants) in this paper. Rather, we have chosen to implement a representative instantiation of each method
examined, and used it as a basis for comparison. However, we should add that, to be fair, this comparison has been made on a level
playing field, by reporting the best results over the permitted parameter space applicable for the method under consideration.
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or not they can create new prototypes, or whether they, rather, merely select some of the existing data points as

the prototypes. The schemes reported by Chang [5] (the PNN)5, Xie et al. [10] (the VQ), Hamamoto et al. [11]

(the BT), Song and Lee [13] (the LVQ) and Kim and Oommen [19] (HYB), create new prototype vectors (and do

not merely select training samples) in such a way that these prototypes represent all the vectors in the original set

in the “best” possible manner. The methods of the Hart [3] (the CNN), Gates [4] (the RNN), Ritter et al. [6] (the

SNN), Tomek [7] (the mCNN), Devijer and Kittler [8] (the ENN), Fukunaga [9] (the PZN), Bezdek [15] (the GA

and RS), Sanchez et al [16] (the PG), and Lipowezky [17] (the PF) are those in which the prototype vectors are

merely selected. It has been proven that the former family is partially superior to the latter [2, 10].

Basically, all reduction algorithms repeat the selecting (or creating) process until the desired reduced prototypes

are obtained. Therefore, the PRS can also be classified into two categories based on their selecting criteria, and

on the conditions when the processes terminate. In some cases, the user can estimate the number of processing

iterations by considering the number of sample (Bootstrap) vectors or the code-book size. In other cases, we cannot

estimate, a priori the maximum number of iterations which should be done. The former is the criterion employed

in the CNN [3], RNN [4], SNN [6], mCNN [7], ENN [8], VQ [10], BT [11] and GA (RS) [15], and the latter is the

criterion used in the PNN [5], PZN [9], LVQ [13], the PG [16] and HYB [19]6.

In any PRS, the number of final prototype vectors is an important factor for determining the compression rate.

So, the PRS can also be classified according to whether or not we can estimate the number of final prototype vectors

in advance. In the approaches of the VQ [10] and BT [11], we can decide the number of prototype vectors based

on the control strategy of the algorithms. On the other hand, in the case of the CNN [3], RNN [4], PNN [5], SNN

[6], mCNN [7], ENN [8], PZN [9], GA (RS) [15], PG [16], PF [17] and HYB [19], the number of prototype vectors

is itself a random variable, and we cannot determine it until the processes are finished. For some applications, this

feature of the PRS is often more significant than achieving a higher classification accuracy.

Based on these three criteria7, a taxonomy of the reported PRS is summarized in Table 1. In this connection,

it is pertinent to mention the following. The classification based on the third criterion (i.e., whether the number of

iterations of PRS is predetermined or data-dependent) is not a clear-cut criterion, and hence the tabulation of the

methods that we propose is debatable (or rather, subjective). For example, the CNN does not have a predetermined

number of iterations, as stated in the original paper. Also, methods which use GA principles can be classified into

either of the two categories depending on the actual instantiations. With regard to the final number of prototypes,

we believe that the LVQ and VQ algorithms are to be placed in different subgroups. This too is arguable. However,

when we mention the instantiations of these two, we specifically consider the LVQ scheme in which the number of
5In this context, it is also fitting to include a modified Chang’s method proposed by Bezdek [14].
6Our earlier paper [19] had presented a Hybrid scheme. In that paper, some comparative results were also given. This present paper

contains a more complete record of the experimental results (including the results for the “Non normal” data set), and also compares
the results with methods which are not compared in [19].

7The first and the second criteria employed for the taxonomy were used earlier in [2]. The third criterion is fairly subjective, as we
shall see presently. However, as we will argue later, the real problem which is to be considered is to find a single criterion involving the
accuracy, the time of computation, the reduced number of prototypes, and the features of the data sets, which will collectively inform
the user of the best PRS to be used. We shall present the complexity of attempting such a strategy in a later section. We are grateful
to the anonymous Referees who suggested these changes.

5



prototypes is not fixed a priori, and the VQ scheme in which the number of prototypes is fixed a priori. Finally, the

question of whether the number of iterations used is predetermined or data-dependent, is really not a characteristic

of the algorithm, but is a matter of choice by the designer. But we have chosen to use it as a criterion, so that the

reader knows that this is a valid option by which the accuracy (time) can be controlled.

Table 1: A simplified taxonomy on the prototype reduction schemes useful for obtaining a smaller prototype set.
Criterion Types The PRS Methods
Creation/ Creative PNN, VQ, BT, LVQ, HYB
Selection Selective CNN, RNN, SNN, mCNN,

ENN, PZN, GA(RS), PG, PF
# of Predetermined CNN, RNN, SNN, mCNN,

Iterations ENN, VQ, BT, GA(RS)
Data Dependent PNN, PZN, LVQ, HYB, PG

# of Controllable VQ, BT
Prototypes Un- CNN, RNN, PNN, SNN, mCNN

controllable ENN, PZN, GA(RS), HYB, PG, PF

3 Prototype Reduction Schemes (PRS)

As mentioned previously, various data reduction methods have been proposed in the literature – a survey of which is

found in [1, 2]. The creative PRS are reviewed here. The reviews are necessarily brief, and must not be reckoned to

be either exhaustive or comprehensive. Rather, although we catalogue an ensemble of the various creative PRS, in

this section, we explain in greater detail, only those creative PRS that we have specifically used in the comparison.

3.1 The Condensed Nearest Neighbor rule (CNN)

The CNN [3] is suggested as a rule which reduces the size of the design set, and is largely based on statistical

considerations. However, the rule does not, in general, lead to a minimal consistent set - a set which contains a

minimum number of samples within it to correctly classify all the remaining samples in the given set. The procedure

can be formalized as follows, where the training set is given by T , and reduced prototypes are found in Tcnn .

1. The first sample is copied from T to Tcnn ;

2. Do the following : Increasing i by unity from 1 to the number of samples in T per epoch:

(a) Classify each pattern xi ∈ T using Tcnn as the prototype set;

(b) If a pattern xi is classified incorrectly then add the pattern to Tcnn , and go to 3.;

3. If i is not equal to the number of samples in T , then go to 2.;

4. Else the process terminates.
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3.2 Prototypes for Nearest Neighbor (PNN) Classifiers

The algorithm of finding Prototypes for Nearest Neighbor classifiers (referred to as PNN, here) [5], can be stated

as follows: Given a training set T , the algorithm starts with every point in T as a prototype. Initially, set A

is empty and set B is equal to T . The algorithm selects an arbitrary point in B and initially assign it to A.

After this, the two closest prototypes p in A and q in B of the same class are merged, successively, into a new

prototype, p∗, if the merging will not degrade the classification of the patterns in T , where p∗ is the weighted

average of p and q. For example, if p and q are associated with weights Wp and Wq , respectively, p∗ is defined

as (Wp · p + Wq · q)/(Wp + Wq), and is assigned a weight, Wp + Wq . Initially, every prototype has an associated

weight of unity. The procedure of PNN is sketched below.

1. Copy T to B ;

2. For all q ∈ B , set the weight Wq = 1;

3. Select a point in B , and move it from B to A;

4. MERGE = 0;

5. While B is not empty do:

(a) Find the closest prototypes p and q from A and B , respectively;

(b) If p’s class is not equal to q’s class then insert q to A and delete it from B ;

(c) Else merge p of weight Wp , and q of weight Wq , to yield p∗, where p∗ = (Wp · p +Wq · q)/(Wp +Wq).

Let the classification error rate of this new set of prototypes be ε;

• If the ε is increased then insert q to A, and delete it from B ;

• Else delete p and q from A and B , insert p∗ with weight Wp + Wq to A, and MERGE++;

6. If MERGE is equal to 0 then output A as the set of trained code-book vectors, and the process terminates;

7. Copy A into B and go to 3.

Bezdek and his co-authors, proposed a modification of the PNN in [14]. First of all, instead of using the weighted

mean of the PNN to merge prototypes, they utilized the simple arithmetic mean. Secondly, the process for searching

for the candidates to be merged was modified by partitioning the distance matrix into submatrices “blocked” by

common labels. This modification eliminated the consideration of candidate pairs with different labels. Based on

the results obtained from experiments conducted on the Iris data set, the authors of [14] asserted that their modified

form of the PNN yielded the best consistent reduced set for designing multiple-prototype classifiers8.
8We believe that the LVQ3-based enhancement that we proposed in [19], can also be utilized to enhance the scheme proposed in

[14]. We also believe that a similar enhancement can be used for the clustering-based, genetic and random search methods proposed in
[15]. This is currently being investigated. The authors are grateful to Professor Jim Bezdek for the instructive discussions we had in
Spain in April 2002.
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3.3 Vector Quantization (VQ) Techniques

The foundational ideas motivating VQ (Vector Quantization) and the SOM (Self Organizing Map) are the classical

concepts that have been applied in the estimation of probability density functions. The concept of VQ or SOM can

be perceived as one of the prototype reduction approaches. Rather than represent the entire data in a compressed

form using only the estimates, VQ opts to represent the data in the actual feature space. The vector quantization

technique for non-parametric data reduction [10] is as follows:

1. For each class i , (i = 1 , · · · ,N ), find the Mi level optimal quantizers using a VQ algorithm [23]. Suppose the

final quantizer reproduction symbols are Ai = {y i
j ; j = 1 , · · · ,Mi}(i = 1 , · · · ,N );

2. Combine all the reproduction alphabets Ai of all classes into one single set A of M vectors, that is, A =
⋃

i Ai

and M =
∑

i Mi. Output A as the set of final prototypes.

3.4 The Boostrap Techniques (BT) for Nearest Neighbor Classifiers

The bootstrap technique, which has been applied for the small training sample size situations, is also used for

reducing the prototypes. This technique can also be effectively utilized to perform data reduction in the design of

the 1-NN classifier. The bootstrapping method [11] is briefly sketched below.

1. For every class, i, select a sample xi from TNi in random;

2. Find the k nearest neighbor samples of the xi as x1
i , x2

i , · · · , x k
i ;

3. Compute a bootstrap sample (prototype) yi = 1
k

∑k
j=1 x j

i ;

4. Repeat the above three steps Mi(Mi ≤ Ni) times, under a condition that no sample is selected more than

once;

5. Combine all the bootstrap samples yi of all classes into one single set of M vectors, and output it as the set

of final prototypes.

It has been believed that as the number of prototypes decreases, the error increases. However, the results of the

experiments in [11] contradict the above hypothesis, and suggest that we may need only a relatively small number

of prototypes.

3.5 The Hybrid Kim Oommen Algorithm

The Hybrid Kim Oommen Algorithm [19] essentially consists of two steps. First, initial prototypes are selected

or created by any of the conventional reduction methods described earlier. After this selection/creation phase, we

invoke a phase in which the optimal positions are learned with an LVQ3-type scheme. The procedure is formalized

below for each class.
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1. For every class, j, select an initial condensed prototype set Yj ,Test by using any one of the reduction methods

described earlier, and the entire training sets, Ti,t ;

2. Using Yj ,Test as the set of condensed prototype vectors for class j, do the following using the Placement sets,

Ti,P , and the Optimizing sets, Ti,O for all the classes:

(a) Perform LVQ3 using the points in the Placement set, Ti,P . The parameters of the LVQ3 are spanned by

considering increasing values of w from 0.0 to 0.5, in steps of ∆w . The sets Yj ,Test (for all j) and YTest

are updated in the process. Select the best value w0 after evaluating the accuracy of the classification

rule on Ti,O , where the NN-classification is achieved by the adjusted YTest ;

(b) Perform LVQ3 using the points in the Placement set, Ti,P . The parameters of the LVQ3 are again

spanned by considering increasing values of ε from 0.0 to 0.5, in steps of ∆ε. The sets Yj ,Test (for all

j) and YTest are updated in the process. Select the best value ε0 after evaluating the accuracy of the

classification rule on Ti,O , where the NN-classification is achieved by the adjusted YTest ;

(c) Repeat the above steps with the current w0 and ε0, till the best values w∗ and ε∗ are obtained;

3. Determine the best prototype set YFinal by invoking LVQ3, η times, with the data in Ti,P , and where the

parameters are w∗ and ε∗. Again, the “pseudo-testing” is achieved using the Optimizing set, Ti,O .

The actual classification accuracy is obtained by testing the classifier using the final values YFinal and the

original testing (validation) data points, Ti,V . The details of the scheme are omitted here – they can be found in

[19], which also reports the results of the scheme for both artificial and real-life data sets.

4 Experiments

The survey of [2] contains a comparison of eleven conventional PRS methods. This comparison has been performed

from the view of error rates, and of the resultant number of prototypes that are obtained. The experiments were

conducted with four experimental data sets which are both artificial and real.

Based on the experimental results obtained, the authors of [2] claims that there seems to be no clear scheme that

is uniformly superior to all the other PRS. Indeed, different methods were found to be superior for different data

sets. However, the experiments showed that the creative methods are generally superior to the selective methods,

but are, typically, computationally more difficult to determine.

In this paper we report the results of more exhaustive experiments, and provide a comparison with the most

pertinent creative PRSs, which are the PNN, the VQ, the BT, and the HYB. Also, to render the comparison

complete, we compare them with a conventional method, the CNN, which is chosen as a representative scheme of

the selective methods.
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4.1 Experimental Data

The creative PRSs were evaluated and compared by performing experiments on a number of design data sets, both

real-life and artificial, as summarized in Table 29.

Table 2: The benchmark data sets for experiments. The vectors of each dataset are divided into two subsets of
equal size, and used for training and validation, alternately. Also, in the interest of clarity, we have distinguished
between the “Artificial” and “Real Life” data sets respectively.

Dataset Dataset # of # of # of
Type Names Patterns Features Classes

Random 400 (200,200) 2 2
Artificial Non normal 1000 (500,500) 8 2

Non linear 1000 (500,500) 2 2
Iris2 100 (50,50) 4 2

Ionosphere 351 (176,175) 34 2
Real-life Sonar 208 (104,104) 60 2

Arrhythmia 452 (226,226) 279 16
Glass 214 (107,107) 9 2
Adult4 8336 (4168,4168) 14 2

The dataset described as “Random (in short, Rand)”, was generated randomly with a uniform distribution, but

with irregular decision boundaries. This is the same data set as was used earlier in [3]. The dataset named as

“Non normal (in short, Non n)”, which has also been used in [9], [10], [11], was generated from a mixture of four

8-dimensional Gaussian distributions as follows:

p1 (x ) =
1
2
N(µ11, I8) +

1
2
N(µ12, I8),

p2 (x ) =
1
2
N(µ21, I8) +

1
2
N(µ22, I8),

where µ11 = [0, 0, · · · , 0], µ12 = [6.58, 0, · · · , 0], µ21 = [3.29, 0, · · · , 0] and µ22 = [9.87, 0, · · · , 0]. Here, I8 is the

8 -dimensional Identity matrix.

The data set named “Non linear (in short, Non l)”, which has a strong non-linearity at its boundary, was

generated artificially from a mixture of four variables as follows:

p1 (x ) = {x1,
1
2
x2

1 + y1},

p2 (x ) = {x2,−1
2
x2

2 + y2},

where x1, x2, y1, y2 are normal random variables whose means and variances are (0, 10), (10, 5), (3, 10) and (20,

5), respectively. The total number of vectors per class is 500.
9As seen from the surveys, numerous studies have been done with different data sets. Each of these data sets have had their own

peculiar characteristics. When we were faced with the problem of determining which data sets were to be used, we opted to choose the
benchmarks found in the well-acclaimed repositories. Also, to make the study more complete, we have included experimental results
for both artificial and real-life data sets, both of which have been specifically ear-marked. But in both these cases, we have used only
the standard data sets in the interest of repeatability.

10



On the other hand, the datasets “Iris2”, “Ionosphere (in short, Ionos)”,“Sonar”, “Arrhythmia (in short, Arrhy)”,

“Glass” and “Adult4”, which are real benchmark data sets, are cited from the UCI Machine Learning Repository10.

Originally, the “Iris” dataset consists of three classes : Setosa, Versicolor, and Virginica. However, since the subset

of Setosa samples is completely separated from the others, it is not difficult to classify it from the other two.

Therefore, we have opted to employ a modified set “Iris2”, which consisted only of the two classes, Versicolor and

Virginica.

The “Sonar” data set contains 208 vectors. Each sample vector, of two classes, has sixty attributes which are

all continuous numerical values. The “Arrhythmia” data set contains 279 attributes, 206 of which are real-valued

and the rest are nominal. In our experiments, the nominal features were replaced by zeros. The aim of the pattern

recognition exercise was to distinguish between the presence or absence of cardiac arrhythmia, and to classify the

feature into one of the 16 groups. In our case, in the interest of uniformity, we merely attempted to classify the

total instances into two category, namely, “normal” and “abnormal”.

The “Glass” data set is a collection of glass fragments of different origin used for forensic investigations. Each

sample vector, of two classes, has nine attributes, which are all continuous numerical values. Out of 214 total

instances, the number of window glass (building windows and vehicle windows) instances is 163, and the number

of non-window glass instances is 51.

The “Adult4” data set was extracted from a census bureau database11. Each sample vector has fourteen

attributes. Some of the attributes, such as the age, hours-per-week, etc., are continuous numerical values. The

others, such as education, race, etc., are nominal symbols. In this case, the total number of sample vectors is 33,330.

Among them, we selected randomly 8,336 samples due to the time considerations, which is approximately 25 % of

the whole set.

In the above data sets, all of the vectors were normalized to be within the range [−1, 1] using their standard

deviations, and the data set for class j was randomly split into two subsets, Tj ,t and Tj ,V , of equal size. One of

them was used for choosing the initial prototypes and training the classifiers, and the other one was used in their

validation (or testing). Later, the role of these sets were interchanged.

4.2 Experimental Parameters

As in the other learning algorithms, the parameters of the PRS also play an important role in determining the

quality of the solution. The issue of determining the parameters for the creative PRS are summarized as follows:

1. Parameters for the PNN

(a) None.

2. Parameters for the VQ
10http://www.ics.uci.edu/mlearn/MLRepository.html
11http://www.census.gov/ftp/pub/DES/www/welcome.html
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(a) The code book size, M , is selected as one of the quantities 2 1 , 2 2 , · · · , 2 p (2p ≤ N , N is the number of

samples), after considering the classification accuracy,

(b) The maximum number of iterations is 50,

(c) The stopping and splitting criteria are both 0.01.

3. Parameters for the BT

(a) The number of the bootstrap samples, M , is decided in the same way as in the case of the VQ’s,

(b) The number of nearest neighbor samples, k, for computing the bootstrap samples is chosen as one of the

quantities 1
4 N , 2

4 N , 3
4 N , after considering the classification accuracy.

4. Parameters for the HYB

(a) The initial code book size is determined by the SVM (in this experiment, we hybridized the SVM and

an LVQ3- type algorithm),

(b) The parameters for the LVQ3 learning, such as the α, the ε, the window length, w , and the iteration

length, η, are specified as described in [19].

4.3 Experimental Results

To evaluate the PRS, first of all, we selected the prototypes from the training data sets using the CNN, the PNN,

the VQ, the BT and the HYB algorithms. Subsequently, the test data sets were classified with the 1-NN classifiers

designed with the selected prototypes. Finally, the experiments were repeated by exchanging the roles of the data

sets. The prototype reduction rates, the classification accuracy rates and the computation time obtained from the

experiments are shown in Tables 3, 4 and 5,respectively. Here, the values reported are the average values obtained

after 10 trials. Observe that the first two lines for each data set are the results for the training and test subsets,

respectively, and the third line (bold-faced) is the average of the above two lines. The values marked with ‘∗’ are
to be ranked as the best two results among the five competing methods.

In Table 3, the index of comparison is the reduction rate, Re(·), computed as

Re(·) = |Dataset | − |Prototypes |
|Dataset | × 100 (%),

where | · | is the cardinality of the corresponding set. As opposed to this, in Table 4, the algorithms are compared

based on their classification accuracy, Acc(·).
From Tables 3 and 4, we see that no specific method yields the best results for all the families of applications

in terms of its reduction rate and classification accuracy. The best method for one data set is not the best for

another data set. However, we can make some interesting observations. For high-dimensional applications such as

the “Sonar” (dimension, d=60) and “Arrhythmia” (d=279) data sets, the PNN performs better than the others

12



Table 3: The prototype reduction rates (%) of the creative PRS on the nine data sets. The results of the CNN are
included as a reference. Also, in the interest of clarity, we have distinguished between the “Artificial” and “Real
Life” data sets respectively. The first three rows represent the “Artificial” data sets, and the last six rows represent
the “Real Life” data sets.

Data CNN PNN VQ BT HYB
82.00 85.00 36.00 84.00 90.00

Rand 85.00 87.50 36.00 84.00 91.00
83.50 *86.25 36.00 84.00 *90.50
87.20 88.80 99.20 96.80 87.80

Non n 86.80 24.00 99.20 96.80 88.60
87.00 56.40 *99.20 *96.80 87.90
80.60 82.60 87.20 93.60 56.20

Non l 79.60 82.00 87.20 93.60 53.20
80.10 82.30 *87.20 *93.60 54.70
70.00 86.00 68.00 92.00 88.00

Iris2 76.00 80.00 68.00 92.00 82.00
73.00 83.00 68.00 *92.00 *85.00
71.02 78.86 97.73 81.82 75.00

Ionos 76.14 81.14 97.73 81.82 73.86
73.58 80.00 *97.73 *81.82 74.43
50.00 67.31 69.23 38.46 49.04

Sonar 49.04 68.27 69.23 38.46 45.19
49.52 *67.79 *69.23 38.46 47.12
85.84 96.46 85.84 43.36 67.26

Arrhy 87.61 96.90 85.84 43.36 64.16
86.73 *96.68 *85.84 43.36 65.71
70.09 72.90 85.19 40.19 74.07

Glass 69.16 71.96 85.19 40.19 68.52
69.63 72.43 *85.19 40.19 *71.30
81.86 84.21 99.62 99.81 89.66

Adult4 81.93 84.07 99.62 99.81 89.23
81.90 84.14 *99.62 *99.81 89.45

in terms of both the Re and Acc criteria. In these cases, the reduction rates are 67.79% and 96.68% respectively,

and the accuracies are 82.69% and 99.12% respectively. The worst reduction rates for these data sets is obtained

by the BT method where the reduction rate is merely 38.46% and 43.36% respectively. On the other hand, for

low-dimensional data sets such as the “Random” (d=2) and “Iris2” (d=4), the HYB performs better than the others

in terms of both criteria. In these cases, the reduction rates for the sets are 90.5% and 85.0% respectively, and the

accuracies are 97.5% and 93.0% respectively. The worst reduction rates for these data sets is obtained by the VQ

method where the reduction rate is merely 36.0% and 68.0% respectively. However, for middle-dimensional data

sets such as the “Non normal” (d=8) and “Ionosphere” (d=34), the VQ performs better than the others in terms

of both criteria.

From Table 5, we see that the VQ is the fastest method. Also, the computation time of the PNN is generally

speaking, larger than that of the others, and is, in particular, much more computationally intensive for the large-

sized data set “Adult4”. In the case of this data-set, it is more than three orders of magnitude slower than the
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Table 4: The classification accuracy rates (%) of the creative PRS on the nine data sets. The results of the CNN
are included as a reference. Also, in the interest of clarity, we have distinguished between the “Artificial” and “Real
Life” data sets respectively. The first three rows represent the “Artificial” data sets, and the last six rows represent
the “Real Life” data sets.

Data CNN PNN VQ BT HYB
97.50 96.00 98.00 88.00 96.50

Rand 95.00 95.50 96.00 85.10 98.50
96.25 95.75 *97.00 86.55 *97.50
92.60 92.40 95.60 95.60 51.40

Non n 91.20 91.60 94.80 94.66 40.26
91.90 92.00 *95.20 *95.13 45.83
88.40 85.60 91.40 77.50 87.80

Non l 86.40 85.80 89.40 76.92 86.26
*87.40 85.70 *90.40 77.21 87.03
94.00 94.00 94.00 90.20 94.00

Iris2 84.00 94.00 98.00 81.20 92.00
89.00 *94.00 *96.00 85.70 93.00
85.23 85.71 84.66 79.38 87.95

Ionos 78.41 79.43 86.93 76.76 81.70
81.82 82.57 *85.80 78.07 *84.83
78.85 82.69 79.81 77.31 78.85

Sonar 80.77 82.69 78.85 73.08 82.21
79.81 *82.69 79.33 75.20 *80.53
95.58 98.67 99.56 99.03 98.85

Arrhy 97.35 99.56 97.35 98.14 98.89
96.47 *99.12 98.46 98.59 *98.87
61.68 2.62 74.07 42.59 66.67

Glass 66.36 60.75 64.81 48.43 71.30
64.02 61.69 *69.44 45.51 *68.99
91.39 88.84 81.09 93.43 93.15

Adult4 91.77 89.97 80.28 93.80 92.54
91.58 89.41 80.69 *93.62 *92.85

VQ, and almost one order of magnitude slower than the HYB method. Such a comparative statement seems to be

universally true. However, in [5], it has been suggested that the computation time could be significantly reduced by

employing an algorithm similar to the minimal spanning tree, and using a method of associating with every sample

point t i in the data set, two distances wi and bi . The table shows that the time of all PRS increases as the number

of samples and the dimensions are increased. For low-dimensional applications, the VQ and BT perform better

than the others in terms of their speed. On the other hand, for high-dimensional data sets like the “Arrhythmia”,

the HYB performs better than the others.

As mentioned in Section 2, in the VQ and BT methods, the number of prototypes can be controlled by the

algorithms themselves.

Our present results also confirm one of the existing “conflicting” hypotheses concerning the relation between

the accuracy and the reduction rate. One school of thought generally believes that as the number of prototypes

increases, the error, (1 − Acc), increases. The other school of thought holds to the view that this is not the case.
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Table 5: The computation time (in seconds) of the creative PRS on the nine data sets. The results of the CNN are
included as a reference. Also, in the interest of clarity, we have distinguished between the “Artificial” and “Real
Life” data sets respectively. The first three rows represent the “Artificial” data sets, and the last six rows represent
the “Real Life” data sets.

Data CNN PNN VQ BT HYB
0.01 0.71 0.02 0.05 8.51

Random 0.01 0.68 0.03 0.05 4.69
0.01 0.70 0.03 0.05 6.60
0.14 23.23 0.06 0.32 4.91

Non n 0.14 59.71 0.06 0.32 24.33
0.14 41.47 0.06 0.32 14.62
0.12 10.53 0.23 0.47 2.05

Non l 0.11 10.13 0.23 0.46 2.81
0.12 10.33 0.23 0.47 2.43
0.01 0.02 0.04 0.01 0.18

Iris2 0.01 0.02 0.05 0.01 0.14
0.01 0.02 0.05 0.01 0.16
0.16 2.52 0.19 0.18 0.30

Ionos 0.09 2.34 0.19 0.18 0.22
0.13 2.43 0.19 0.18 0.26
0.18 1.26 0.84 0.21 1.77

Sonar 0.18 1.38 0.73 0.21 1.90
0.18 1.32 0.79 0.21 1.84
0.90 33.05 5.37 20.81 3.95

Arrhy 0.77 35.58 5.39 20.79 3.04
0.84 34.32 5.38 20.08 3.50
0.06 0.62 0.13 0.05 1.17

Glass 0.06 2.91 0.11 0.05 0.91
0.06 1.77 0.12 0.05 1.04
240.96 16954.75 1.38 52.13 4050.80

Adult4 234.41 16772.52 1.24 51.70 6856.48
237.69 16863.64 1.31 51.92 5453.64

Our results confirm the latter.

It is also known that for high-dimensional data, a non-parametric procedure needs a large number of samples,

in order to reliably estimate the Bayes error. However, the authors of [9] and [11], reported that in the case of the

BT algorithm, only a relatively small number of prototypes are needed to get a higher Acc. As opposed to this

proposition, the authors of [10] commented that in the case of the VQ, the Acc increases as the number of prototypes

is increased. Our results demonstrate that none of these statements are universally true ! A comparison of the

classification accuracy, Acc, with the number of prototypes, Re, in the VQ and BT methods for the “Arrhythmia”

and “Non normal” data sets shows that the latter index remains almost the same, or falls marginally, as the number

of prototypes is increased. Meanwhile, the value of Acc for other data sets such as for the “Random” and “Sonar”

increases as the number of prototype vectors is increased. As asserted earlier, from these results, we conclude

that the relation between Re and Acc completely depends on the problem domain, and not on the method itself.

Hopefully, these results resolve these apparent contradictions.
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We have also included in Table 6 and Table 7 the results obtained for comparing the classification accuracy

and the computation time (in seconds) to the number of prototype vectors in the VQ and BT methods, where the

two lines for each data set are the results for the VQ and the BT method, respectively. Tables 6 and 7 show a

comparison between the classification accuracies (%) and a comparison between the computation time (in seconds)

in the VQ and BT methods.

Table 6: A comparison the classification accuracy (%) to the number of prototype vectors in the VQ and BT
methods. For each data set, the classification accuracy of the first row is of the VQ and that of the second is of the
BT. Again, we have distinguished between the “Artificial” and “Real Life” data sets respectively. The first three
rows represent the “Artificial” data sets, and the last six rows represent the “Real Life” data sets.

Data # of Prototype Vectors
Set Methods 21 22 23 24 25 26 27 28

Rand VQ 84.00 84.50 86.75 94.75 96.25 96.00 97.00 -
BT 79.88 80.75 81.75 85.00 86.55 86.45 86.40 -

Non n VQ 95.00 95.20 94.50 90.90 89.30 91.20 90.30 91.90
BT 94.08 94.65 94.14 95.02 94.95 94.98 95.00 95.00

Non l VQ 57.4 75.80 81.60 85.20 89.20 90.40 88.70 87.70
BT 57.44 68.36 67.38 75.25 77.21 75.24 74.18 73.59

Iris2 VQ 80.00 93.00 87.00 96.00 92.00 - - -
BT 74.60 85.00 83.00 81.00 82.00 - - -

Ionos VQ 74.15 85.80 83.52 80.11 79.26 80.97 78.98 -
BT 64.18 68.86 72.59 76.14 78.07 77.47 76.42 -

Sonar VQ 69.71 67.31 69.23 77.40 79.33 76.44 - -
BT 58.27 64.18 63.85 71.44 70.53 72.16 - -

Arrhy VQ 96.68 97.13 98.45 98.45 98.46 98.45 97.35 -
BT 95.05 96.49 96.97 97.48 97.37 97.70 97.86 -

Glass VQ 63.43 62.50 67.13 69.44 66.21 68.06 - -
BT 43.94 39.26 42.60 41.67 44.91 45.51 - -

Adult4 VQ 82.15 66.53 76.26 80.69 80.34 79.81 75.43 71.18
BT 91.74 91.71 93.62 91.51 92.31 92.12 89.91 87.80

4.4 Ranking the Various PRS

Although we have repeatedly mentioned that it is hard to quantitatively compare the various PRS, to render this

comparative study more complete, we have attempted to do exactly this. To achieve this goal, we have graded

every PRS tested in terms of their quality indices, where the latter is either the reduction rate, the accuracy or

the time required to yield the corresponding reduced sets. We have then merely given “grades” for the best two

algorithms for any specified quality index, and added the ranks of all the algorithms for all the data sets12.

The tables listing the ranking are given in Tables 8 and 9. Table 8 ranks the algorithms in terms of their

prototype reduction rates (%), the classification accuracy (%), and the computation time (in seconds), but the data

sets are divided in terms of their size. As opposed to this, Table 9 ranks the algorithms according to the same
12We agree that is a very simplistic model of comparison, but that seems to be the best a researcher can do with data which is so

varied, and algorithms which have vastly different parameters. A more scientific model for comparison will be discussed in the next
section, and is an avenue for future work
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Table 7: A comparison the computation time (in seconds) to the number of prototype vectors in the VQ and BT
methods. For each data set, the computation time of the first row is of the VQ and that of the second is of the BT.
Again, we have distinguished between the “Artificial” and “Real Life” data sets respectively. The first three rows
represent the “Artificial” data sets, and the last six rows represent the “Real Life” data sets.

Data # of Prototype Vectors
Set Methods 21 22 23 24 25 26 27 28

Rand VQ 0.06 0.03 0.04 0.07 0.10 0.17 0.26 -
BT 0.03 0.02 0.02 0.03 0.04 0.06 0.10 -

Non n VQ 0.16 0.07 0.09 0.10 0.22 0.36 0.62 1.14
BT 0.18 0.12 0.19 0.31 0.58 1.09 2.11 4.14

Non l VQ 0.14 0.12 0.13 0.14 0.20 1.72 0.33 0.50
BT 0.04 0.07 0.12 0.24 0.47 0.91 1.80 3.59

Iris2 VQ 0.05 0.02 0.02 0.03 0.03 - - -
BT 0.01 0.01 0.02 0.01 0.02 - - -

Ionos VQ 0.37 0.20 0.26 0.37 0.50 0.74 0.61 -
BT 0.20 0.23 0.30 0.37 0.58 0.96 1.76 -

Sonar VQ 0.25 0.71 1.34 1.92 2.64 3.54 - -
BT 0.21 0.25 0.26 0.32 0.45 0.69 - -

Arrhy VQ 1.58 5.00 9.16 14.72 18.53 24.94 34.62 -
BT 1.70 2.06 2.73 4.03 6.92 11.89 23.06 -

Glass VQ 0.09 0.10 0.13 0.12 0.15 0.18 - -
BT 0.01 0.01 0.01 0.02 0.03 0.05 - -

Adult4 VQ 0.48 0.61 0.90 1.31 1.98 3.24 5.72 9.22
BT 12.28 25.99 51.84 103.54 210.36 420.98 838.67 1681.04

criteria, but the real-life data sets are sub-divided in terms of the dimensionality. To aid in the comparison, the

ranking of the artificial data sets is included in both the tables.

From both the data sets, it appears as the VQ algorithm is superior to the others for artificial data, and for

small data sets. The PNN seems to be the “winner” when the data sets are large or of a high dimensionality.

We conclude this subsection but noting that this comparison must be taken for what it is - namely, one done

based on a fairly simplistic model. A proposed strategy for a more scientific comparison follows.

4.5 Comparison using Meta-Classification techniques

The reader will observe that although the comparison between the various algorithms is experimentally verifiable, in

the final analysis, no statement asserting the conclusive superiority of one method over another, can be made. This

is true not only for the results we have submitted, but also for the work that other researchers have published. To

our knowledge, the only work which goes beyond merely examining the methods in terms of their classification13,

but also objectively examines the data sets, is the work due to Sohn [22]. We feel that it is pertinent to spend some

time explaining these results, as this is probably the next avenue in which our present research would develop.

In [22] Sohn attempted to classify the data sets in terms of various features (which we shall call meta-features),

and then to specify the superiority of the various algorithms based on these meta-features. Her aim was to quantify
13We are grateful to the anonymous referee who informed us about the work of Sohn [22].
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Table 8: A ranking of the creative PRSs in terms of their prototype reduction rates (%), the classification accuracy
(%), and the computation time (in seconds) for the nine data sets. Here, the Artificial Set consists of “Random”,
“Non n” and “Non l”. The “Real-life” Sets (Small) and “Real-life” Sets (Large) are, respectively, “Iris2”, “Ionos”,
“Glass”, “Adult4”, and “Sonar”, “Arrhy”. Also, the values of (·) of each PRS are the ranking indices obtained from
the competition as explained in the text.

Dataset Reduction Classification Computation
Type Rates (%) Accuracy (%) Time (in sec.)

Artificial Set VQ(3), BT(3), VQ(5), HYB(2), VQ(6), BT(3)
HYB(2), PNN(1) BT(1)

Real-life Set VQ(6), BT(3), VQ(6),HYB(3), BT(8), VQ(3),
(Small) PNN(2), HYB(1) PNN(3) PNN(1)

Real-life Set PNN(2), VQ(2), PNN(2), BT(2), VQ(3), HYB(2),
(Large) BT(2) HYB(2) BT(1)

Table 9: A ranking of the creative PRSs in terms of their prototype reduction rates (%), the classification accuracy
(%), and the computation time (in seconds) for the nine data sets. Here, the “Artificial Sets” consists of “Random”,
“Non n” and “Non l”. The “Real-life” Sets (Low-dimension) and “Real-life” Sets (High-dimension) are, respectively,
“Iris2”, “Ionos”, “Glass”, “Adult4”, and “Sonar”, “Arrhy”. Also, the values of (·) of each PRS are the ranking
indices obtained from the competition as explained in the text.

Dataset Reduction Classification Computation
Type Rates (%) Accuracy (%) Time (in sec.)

Artificial Set VQ(3), BT(3), VQ(5), HYB(2), VQ(6), BT(3)
HYB(2), PNN(1) BT(1)

Real-life Set VQ(5), BT(5), VQ(6),HYB(4), BT(8), VQ(3),
(Low-dimension) PNN(1), HYB(1) BT(2), PNN(1) PNN(1)
Real-life Set PNN(3), VQ(3) PNN(4), HYB(2) BT(7), VQ(4),

(High-dimension) PNN(1)

the performance of each algorithm based on the meta-data characteristics of the data to be classified. She argued

that any data set had some inherent characteristics (such as the correlation, the skew, the kurtosis etc.), and the

intention was to be able to determine which algorithm was to be used if the data being processed had specific

meta-data features.

The reader will observe that what Sohn did was to essentially transform the “Find Best Algorithm” problem into

a pattern classification problem, where the latter was achieved on the basis of the meta-data features. To achieve

this she related the performance of each algorithm to the characteristics of the data to be classified by developing

a statistical meta-model by using 18 data sets and 11 classifiers.

In the statistical meta-model, a log transformation on the classification error was invoked to ensure the fitted

rate was within 0 to 1 as follows :

Yij = ln{εij/(1− εij)} = β0j + β1j xi1 + · · ·+ βmij
ximi

+ εij , (1)

where εij is the classification error obtained from data set i, (i = 1, · · · , nj), and where j is the “index” of the
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classification algorithm (j = 1, · · · , 11). In the above, {xmi} are the characteristic meta-features of data set i, and

nj is the number of data sets with all m data characteristics to which each classification algorithm j is applied.

Finally, εij is a noise variable assumed to obey N(0, var(εij)).

This model was fitted with the 12 data characteristics including the geometric mean ratio of the pooled standard

deviations to standard deviations of the individual populations, the mean absolute correlation coefficient between

two features, the first canonical correlation between a linear combination of class variables and a linear combination

of the features, the proportion of total variation explained by the first canonical discriminant, the mean skewness

of the features, the mean kurtosis of the features, the average entropy of the discrete features, the entropy of the

classes, the joint entropy of a class variable and the lth attribute, and the mutual information between the class

and the feature. Other parameters which were involved in the comparison were the number of features, the number

of training samples, and the number of binary feature variables.

The novel characteristic of the paper was that the author was able to determine the best method that could be

used in a classification problem by merely studying the meta-features of the classes.

As mentioned earlier, there are indeed, “zillion” of PRS. No single researcher has been successful in determining

which PRS method will be superior for any given data set. Rather, the general conclusion has always been that

there is no such “best” algorithm, and that the final decision of the PRS scheme to be used depends actually on

the user’s preferences and the criteria for evaluating them. This is also the conclusion of our study. Indeed, it is

clear that a comparison of reduction rates alone does not make sense. The reduction rate should be used together

with the accuracy and the computational time, and not as a separate evaluation criterion.

There is now doubt in our minds that the only way to proceed with a more systematic comparison of the PRS is

to resort to a meta-classification strategy as done in [22]. However, the problems that are encountered in designing

such a meta-classification strategy are numerous. First of all, unlike the traditional classification problem, the goal

of a PRS is not merely to yield the best classification. Rather, the intention is that we are willing to forfeit some

accuracy so as to retain the prominent prototypes. A second goal in a PRS is to find the most suitable prototypes

in a time-efficient manner. The third goal of a PRS is to see how the prototypes can be obtained without processing

all of the data involved. The reader will quickly observe that the paper (indeed, the very problem) considered by

[22] does not concern itself with any of these issues. Thus, as can be observed, Sohn’s meta-features [22] have

nothing to do with computation time, which subset of the features are used, etc. This renders the two problems

vastly different, and shows that the problem of designing a meta-classification scheme to lead to a suitable PRS, is

a rich avenue for future research.

Any researcher who attempts to tackle this problem will first of all have to arrive at a suitable criterion function

which involves the data characteristics, the computation time, the size of the reduced prototype set, and probably

the 12 meta-features used by Sohn. Additionally, we believe that the criterion function must also consider how the

data is partitioned so as to lead to subsets whose meta-features are evaluated. All of these are open problems which

we are currently investigating.
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5 Conclusions

In this paper, we report the results of conducting a comparative study on the various creative Prototype Reduction

Schemes (PRS) such as the PNN, VQ, BT and HYB. These PRS have been tested for three artificial data sets and

six real-life benchmark data sets, and compared them with each other from the perspectives of their data reduction

rates, their classification accuracy, and their computational efficiencies.

Our experimental results demonstrate that no method can be crowned as the “best” for all kinds of applications.

However, in the interest of completeness, we have graded the various algorithms using a rather simplistic ranking

scheme. Although no significant differences between the creative PRS is obvious when both the reduction rate

and the classification accuracy are considered, the PNN performs better than the others for high-dimensional

applications. On the other hand, for low- and middle-dimensional applications, the HYB and the VQ perform

better than the other methods. With respect to the computation time, the VQ and BT perform better than the

others in low-dimensional applications. Meanwhile, for high-dimensional data sets, the HYB method is faster than

the others.

The experimental results also illustrate that the relationship between the reduction rate and the classification

accuracy depends on the problem domain. As the number of prototype vectors is increased, the accuracies increase

or decrease a little depending on the characteristics of the specific dataset.

We have also discussed a potential avenue for future research. This is based on the work of Sohn [22], and is

one that would utilize meta-features to determine the best PRS scheme to be used for any given data set.
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