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Executive Overview of the Invention

Overview of the Scope of the Invention in Bioinformatics

Prior to the current invention, bioinformatic pattern recognition techniques have analyzed the similarity/dissimilarity and relationship between molecules and bioinformatic patterns (including RNA
sequences and other patterns used in genomic research) using the string representations of the molecules. These previous techniques have inherent significant limitations primarily due to the one-dimensional representation of the underlying three-dimensional objects being analyzed. 

The first major enhancement that this invention would permit is the comparison of molecules and bioinformatic patterns by taking into consideration their common non-contiguous subsequences. Furthermore, this invention would permit these common subsequences to be noisy or inexact. Such a scheme cannot be found in the catalogue of modern day bioinformatic tools.

The next step in pattern recognition, namely analyzing the similarity/dissimilarity and relationship between molecules using "trees" rather than "strings" provides a multidimensional aspect to the comparison, thereby enhancing the recognition and flexibility of the technique, and without the information loss associated with representing three dimensional structures as strings.

The present invention solves the fundamental problem  of analyzing the tree structures and determining similarity/dissimilarity properties based on common inexact subsequence trees.  Due to its mathematical complexity, this noisy subsequence tree pattern recognition problem has been unsolved until now,  essentially because of the inadequacy of the current-day mathematical tools. 

The present invention solves the "noisy subsequence tree" pattern recognition problem, permitting molecular pattern recognition analysis to proceed with greatly improved accuracy and flexibility.

The invention has also powerful potential applications in performing the taxonomy of molecules and bioinformatic patterns (represented as strings or trees) using inexact noisy subsequence-related measures. This too cannot be achieved using modern day bioinformatic tools.

Overview of the Technical Problem Solved by the Invention
In this invention we consider the fundamental problem of recognizing ordered labeled trees by processing their noisy subsequence-trees which are "patched-up" noisy portions of their fragments. We assume that we are given H, a finite dictionary of ordered labeled trees. X* is an unknown element of H, and U is any arbitrary subsequence-tree of X*. We consider the problem of estimating X* by processing Y, which is a noisy version of U. The solution which we present is, to our knowledge, the first and only reported solution to the problem. 

The invention implicitly captures the properties of the corrupting mechanism which noisily garbles U into Y. The process which incorporates this has been implemented and used to test our pattern recognition system yielding a remarkable accuracy. Experimental results which involve manually constructed trees of sizes between 25 and 35 nodes and which contain an average of 21.8 errors per tree demonstrate that the scheme has about 92.8% accuracy. Similar experiments for randomly generated trees yielded an accuracy of 86.4%.

I. Technical Overview

This invention solves the following problem : Suppose we have a finite dictionary of labeled ordered trees, H. Let X* be any tree from H. U is an arbitrary Subsequence-Tree (SuT) of X* obtained by randomly deleting nodes from it. The resultant tree (called a subsequence-tree or SuT of X*) is further subjected to substitution, insertion and deletion errors yielding the Noisy Subsequence-Tree (NSuT), Y. Our aim is to identify the original tree, X*, by processing Y. 

To clarify the situation, consider Figure I in which X* are U are the following trees. 
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Figure I : 
An example of a tree X*, U, one of its Subsequence Trees, and Y which is a noisy version of U. The problem we study involves recognizing X* from Y.

X* is a tree that has 30 nodes, and U (with 12 nodes) is one of its SuTs obtained by randomly deleting nodes from X*. U, is now noisily garbled and further subjected to additional substitution, insertion and deletion errors on the nodes to produce the NSuT, Y, also given in Figure I. Our aim is to recognize X* by processing Y.

In this case, between X* and Y, there is an overall number of 17 substitution, deletion and insertion errors.   Although this is a fairly grossly mutated subsequence tree we would like to add that the invention being described has been able to perform Pattern Recognition in this case, and indeed, in scenarios in which the signal-to-noise ratio is much smaller.

It is pertinent to point out that the solution which we have presented can serve as a single unifying solution to a host of sequence and tree processing problems. If X* is indeed a tree, the solution presented can be used to recognize noisy trees, noisy subtrees and, in general, noisy subsequence trees. The rationale for this is quite simply because noisy trees and noisy subtrees are but special cases of noisy subsequence trees. Furthermore, by observing that strings are but special cases of trees, the same solution can be used to solve the pattern recognition of noisy strings, noisy substrings and noisy subsequences. The potential of the invention is thus enormous, and its applications are clearly described in the patent application.

II. Related Work

II.1 Tree Editing and the Salient Contributions of this Invention

Unlike the string-editing problem, only few results have been published concerning the tree-editing problem. In 1977 Selkow [Se77, SK83] presented a tree editing algorithm in which insertions and deletions were only restricted to the leaves. Tai [Ta79] in 1979 presented another algorithm in which insertions and deletions could take place at any node within the tree except the root. The algorithm of Lu [Lu79], on the other hand, did not solve this problem for trees of more than two levels. The best known algorithm for solving the general tree-editing problem is the one due to Zhang and Shasha [ZS89]. Also, to the best of our knowledge, in all the papers published till the mid-90's, the literature primarily contains only one numeric inter-tree dissimilarity measure - their pairwise “distance” measured by the minimum cost edit sequence. 

The literature on the comparison of trees is otherwise scanty : Zhang [SZ90] has suggested how tree comparison can be done for ordered and unordered labeled trees using tree alignment as opposed to the edit distance utilized elsewhere [ZS89]. The question of comparing trees with variable length don't care edit operations was also recently solved by Zhang et. al. [ZSW92]. Otherwise, the results concerning unordered trees are primarily complexity results [ZSS92] - editing unordered trees with bounded degrees is shown to be NP-hard in [ZSS92] and even MAX SNP-hard in [ZJ94].

The most recent results concerning tree comparisons are probably  the ones due to Oommen, Zhang and Lee [OZL96]. In [OZL96] the authors defined and formulated an abstract measure of comparison, (T1, T2), between two trees T1 and T2 presented in terms of a set of elementary inter-symbol measures (.,.) and two abstract operators. By appropriately choosing the concrete values for these two operators and for (.,.), the measure was used to define various numeric quantities between T1 and T2 including (i) the edit distance between two trees, (ii) the size of their largest common sub-tree, (iii) Prob(T2|T1), the probability of receiving T2 given that T1 was transmitted across a channel causing independent substitution and deletion errors, and, (iv) the a posteriori probability of T1 being the transmitted tree given that T2 is the received tree containing independent substitution, insertion and deletion errors.   

Unlike the generalized tree editing problem, the problem of comparing a tree with one of its possible subtrees or SuTs has almost not been studied in the literature at all. The primary contribution of the invention is the application of a new inter-tree dissimilarity measure for the NSuT recognition problem. Since Y is a noisy version of a subsequence tree of X*, (and not a noisy version of X* itself), it is meaningless to compare Y with all the trees in the dictionary themselves even though they were the potential  sources of Y. The fundamental drawback in such a comparison strategy is the fact that significant information was deleted from X* even before Y was generated, and so Y  should rather be compared with every possible subsequence tree of every tree in the dictionary. Clearly, this is intractable, since the number of SuTs of a tree is exponentially large and so an alternative way of comparing Y with every X in H has to be devised. This is achieved by taking into consideration the information about the noise characteristics of the channel which garbles U. Indeed, these characteristics are translated into parameters in inter-tree dissimilarity measure, whence an algorithm can be designed to perform the classification. This is the fundamental contribution of this invention.

Besides these, our results suggests a new perspective for generalized computation models. In [Oo87] we had devised an algorithm for the recognition of noisy subsequence from strings. The reader will soon observe that the results of this invention are not mere extensions of the  string editing problem. This is because, unlike in the case of strings, the topological structure of the underlying graph prohibits the two-dimensional generalizations of the corresponding computations. Indeed, inter-tree computations require the simultaneous maintenance of meta-tree considerations represented as the parent and sibling properties of the respective trees, which are completely ignored in the case of linear structures such as strings. This further justifies the intuition that not all "string properties" generalize naturally to their corresponding "tree properties", as will be clarified later. 

II.2 Some Potential Applications of the Results

Apart from its "pioneering" significance, the problem studied has also applications in a variety of fields. First of all, the significance of the results in structural/syntactic pattern recognition cannot be overstated. Typically, when the pattern to be recognized is inherently a "two-dimensional" structure, it cannot be adequately represented using a one-dimensional (string or circular string) approximation. By representing the pattern as a tree and by utilizing tree comparison algorithms one can, generally speaking, achieve excellent recognition strategies. Indeed, such schemes have been utilized in PR in areas such as clustering [Lu79, Lu84] and waveform correlation [CL85]. However, when the pattern to be recognized is occluded and only noisy information of a fragment of the pattern is available, the problem encountered can be perceived as one of recognizing a tree by processing the information in one of its noisy subtrees or subsequence trees. We thus believe that the results presented here will have potential applications in all the areas of pattern recognition where either the modeling or the knowledge representation involves trees. Application domains therefore are numerous, and include those which involve classification trees, modeling using tree structures, scene analysis and the processing of search trees. 

The other major application of these principles would be in the processing of ribonucleic acid (RNA) secondary structures and their tree representations [KM91, LON89, LNM89, SZ90, Sh88, Ta79, TSSS87, ZJ94, ZSS92, Zh90, ZS89]. A molecule of  RNA is made up of a long sequence of subunits (the ribonucleotides (RN)) which are linked together. Each ribonucleotide contains one of the four possible bases, abbreviated by A, C, G, and U. This base sequence is called the primary structure of the RNA molecule. Under natural conditions, an RN sequence twists and bends and the bases form bonds with one another to yield complicated patterns. The latter bonding pattern  is called its secondary structure. Research in this field has shown that similar structures have similar functionality and the use of sequence comparison by itself is inadequate for determining the structural homology [SZ90]. Thus, the problem reduces to comparing RNA secondary structures.

If one examines a typical secondary structure (see [SZ90]) it becomes apparent that such a structure may be represented as a tree. This representation was proposed by Shapiro and Zhang [SZ90, Sh88] using node values such as M, H, I, B, R and N (for Multiple loop, Hairpin loop, Internal loop, Bulge loop, helical stem Region, and exterNal single-stranded region respectively). Since this representation only considers the topology of the loops and stem regions, a more dissected representation would have to also consider the sizes of the loops and the helical stems.

The comparison of RNA secondary structure trees can help identify conserved structural motifs in an RNA folding process [LON89, LNM89] and construct taxonomy trees [SZ90]. In all such molecular biological domains the algorithm proposed here can be used to recognize (classify) RNA secondary structure trees by merely processing noisy (garbled) versions of their subsequence trees.  

We conclude this sub-section by observing that studies in compiler construction have also used tree-comparison algorithms in automatic error recovery and correction of programming languages [Ta79]. Indeed, with no loss of generality we believe that this invention can be used in any problem domain involving the comparison of tree-patterns with other tree-patterns representing a noisy sub-pattern which has been "occluded" at multiple junctures.

Numerous other potential applications of the invention in geographical information systems, map recognition, recognition of electronic circuitry etc. are included in the patent application.

III. Experimental Results 

The technique developed in the previous sections was rigorously tested to verify its capability in the pattern recognition of NSuTs. The experiments conducted were for two different data sets which were artificially generated using "relatively long" character sequences using benchmark results involving keyboard character errors. We believe that these results are sufficient to demonstrate the power of the strategy to recognize noisy subsequence trees.

The results we have obtained for simulated trees are remarkable. As mentioned earlier, to our knowledge, these are the first reported results that demonstrate that a tree can indeed be recognized by processing the information resident in one of its noisy random subsequence trees. The details of the experimental set-ups and the results obtained follow.

III.1 Tree Representation

In the implementation of the algorithm we have opted to represent the tree structures of the patterns studied as parenthesized lists in a post-order fashion. Thus, a tree with root 'a' and children B, C and D is represented as a parenthesized list L = (B C D 'a') where B, C and D can themselves be trees in which cases the embedded lists of B, C and D are inserted in L. A specific example of a tree (taken from our dictionary) and its parenthesized list representation is given in Figure VI below.

III.2 Experiment Setup for Data Set A

In our first experimental set-up the dictionary, H, consisted of 25 manually constructed trees which varied in sizes from 25 to 35 nodes. An example of a tree in H is given in Figure VI above. To generate a NSuT for the testing process, a tree X* (unknown to the classification algorithm) was chosen. Nodes from X* were first randomly deleted producing a subsequence tree, U. In our experimental set-up the probability of deleting a node was set to be 60%. Thus although the average size of each tree in the dictionary was 29.88, the average size of the resulting subsequence trees was only 11.95.

The garbling effect of the noise was then simulated as follows. A given subsequence tree U, was subjected to additional substitution, insertion and deletion errors, where the various errors deformed the trees as described in Section II.1. This was effectively achieved by passing the string representation through a channel causing substitution, insertion and deletion errors analogous to the one used to generate the noisy subsequences in [Oo87] and which has recently been formalized in [OK98]. However, as opposed to merely mutating the string representations as in [OK98] the reader should observe that we are manipulating the underlying list representation of the tree. This involves ensuring the maintenance of the parent/sibling consistency properties of a tree - which are far from trivial.
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Figure VI: A tree from the finite dictionary H. Its associated list representation is as follows: ((((t)z)(((j)s)(t)(u)(v)x)a)((f)(((u)(v)a)(b)((p)c)g)c)(((i)(((q)(r)g)j)k)s)((x)(y)(z)e)d)

In our specific scenario, the alphabet involved was the English alphabet, and the conditional probability of inserting any character a (A given that an insertion occurred was assigned the value 1/26. Similarly, the probability of a character being deleted was set to be 1/20. The table of probabilities for substitution (the confusion matrix) was based on the proximity of the character keys on a standard QWERTY keyboard and is given in Table I. The channel essentially mutated the nodes (characters, in this case) in the list ignoring the parenthesis, and whenever an insertion or a deletion was introduced special case scenarios were considered so as to insert the additional required parenthesis or remove the superfluous parenthesis respectively. Furthermore, we also ensured that the maintenance of the parenthesis was done in such a way that the underlying expression of parenthesis was well-matched. 

*****
Insert Table I Here 

(The QWERTY Confusion Matrix) 
*****

In our experiments ten NSuTs were generated for each tree in H yielding a test set of 250 NSuTs. The average number of tree deforming operations done per tree was 3.84. Table II gives a list of 5 of the NSuTs generated, their associated subsequence trees and the trees in the dictionary which they originated from. A larger subset of the trees used for these experiments and their noisy subsequence trees (both represented as parenthesized lists) are included in Table III. Table IV gives the average number of errors involved in the mutation of a subsequence tree, U. Indeed, after considering the noise effect of deleting nodes from X* to yield U, the overall average number of errors associated with each noisy subsequence tree is 21.76.

*****
Insert Table II Here 

(Subset of Trees used) 
*****

*****
Insert Table III Here 

(A subset of trees and NSuTs used in Set-up A) 
*****

Type of errors
Number of

errors
Average error per tree

Insertion
493
1.972

Deletion
313
1.252

Substitution
153
0.612

Total average error
3.836

Table IV : The noise statistics associated with the set of noisy subsequence trees used in testing.

Every element, Y, in the set of noisy subsequence trees, was compared against the trees in H using the techniques described earlier. The results that were obtained were remarkable. Out of the 250 noisy subsequence trees tested, 232 were correctly recognized, which implies an accuracy of 92.80%. We believe that this is quite overwhelming considering the fact that we are dealing with 2-dimensional objects with an unusually high (about 73%) error rate at the node and structural level.

III.3 Experiment Setup for Data Set B

In the second experimental set-up, the dictionary, H, consisted of 100 trees which were generated randomly. Unlike in the above set (in which the tree-structure and the node values were manually assigned), in this case the tree structure for an element in H was obtained by randomly generating a parenthesized expression using the following stochastic context-free grammar G, where,


G = <N, A, G, P>, where,


N = {T, S, $} is the set of non-terminals,


A is the set of terminals - the English alphabet,


G is the stochastic grammar with associated probabilities, P, given below :



T ( (S$)

with probability 1,



S ( (SS)

with probability p1,



S ( (S$)

with probability 1-p1,



S ( ($)

with probability p2,



S ( 


with probability 1-p2, where  is the null symbol,



$ ( a


with probability 1, where a (A is a letter of the  underlying alphabet.

Note that whereas a smaller value of p1 yields a more tree-like representation, a larger value of p1 yields a more string-like representation. In our experiments the values of p1 and p2 were set to be 0.3 and 0.6 respectively. The sizes of the trees varied from 27 to 35 nodes. 

Once the tree structure was generated, the actual substitution of '$' with the terminal symbols was achieved by using the benchmark textual data set used in recognizing noisy subsequences [Oo87]. These textual strings consisted of a hundred strings taken from the classical book on pattern recognition by Duda and Hart [DH73]. Each string was the first line of a section or sub-section of the book, starting from Section 1.1 and ending with Section 6.4.3. Further, to mimic a UNIX/TEX file, all the Greek symbols were typed in as English strings. Subsequently, to make the problem more difficult, the spaces between words were eliminated, thus discarding the contextual information obtainable by using the blanks as delimiters. Finally, these strings were randomly truncated so that the length of the words in the dictionary was uniformly distributed in the interval [40, 80]. Thus, the first line of [DH73, Sec. 3.4.1], which reads 

"In this section we calculate the a posteriori density p(/X) and the desired probability"

yielded the following string :


"inthissectionwecalculatetheaposterioridensitypthetaxandthedesiredpro".


We now consider how the above strings are transformed into parenthesized list representations for trees. The  trees generated using the grammar, and the strings considered were both traversed from left to right, and each '$' symbol in the parenthesized list was replaced by the next character in the string. Thus, for example, the parenthesized expression for the tree for the above string was :


((((((((((($)$)$)(($)$)$)$)$)$)((((($)($)$)$)$)((($)($)(($)$)$)$)$)$)$)$)$)


The '$"s in the string are now replaced by terminal symbols to yield the following list :


((((((((((((i)n)t)h)((i)s)s)e)c)t)((((((i)o)((n)w)e)c)a)((((l)c)((u)l)(((a)t)e)t)h)e)a)p)o)s)

The actual underlying tree for this string is given in Figure VII. 


To generate a NSuT for the testing process, as in the above experimental set-up, a tree X* (unknown to the classification algorithm) was chosen. Nodes from X* were first randomly deleted producing a subsequence tree, U. In the present case the probability of deleting a node was set to be 60%. Thus although the average size of each tree in the dictionary was 31.45, the average size of the resulting subsequence trees was only 13.42.
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String Represented  : inthissectionwecalculatetheapos


Tree Represented : 
((((((((((((i)n)t)h)((i)s)s)e)c)t)((((((i)o)((n)w)e)c)a)((((l)c)((u)l)(((a)t)e)t)h)e)a)p)o)s)


Figure VII : The tree representation of a list obtained from a string

The garbling effect of the noise was then simulated as in the earlier set-up. Thus the subsequence tree U, was subjected to additional substitution, insertion and deletion errors by passing the string representation through a channel causing substitution, insertion and deletion errors as described earlier while simultaneously maintaining the underlying list representation of the tree. Here too the alphabet being the English alphabet, the probabilities of insertion, deletion and the various confusion substitutions were as described earlier and were based on the QWERTY keyboard.  

In our experiments five NSuTs were generated for each tree in H yielding a test set of 500 NSuTs. The average number of tree deforming operations done per tree was 3.77. Table V gives the average number of errors involved in the mutation of a subsequence tree, U. Indeed, after considering the noise effect of deleting nodes from X* to yield U, the overall average number of errors associated with each noisy subsequence tree is 21.8. The list representation of a subset of the hundred patterns used in the dictionary and their NSuTs is given in Table VI. 

Type of errors
Number of

errors
Average error per tree

Insertion
978
1.956

Deletion
601
1.202

Substitution
306
0.612

Total average error
3.770

Table V : The noise statistics associated with the set of noisy subsequence trees used in testing.

*****
Insert Table VI Here 

(A subset of lists in H and their NSuTs) 
*****

Again, each noisy subsequence tree, Y, was compared against the trees in H using the inter-tree dissimilarity measure which we devised. The results that were obtained are very impressive. Out of the 500 noisy subsequence trees tested, 432 were correctly recognized, which implies an accuracy of 86.4%. The power of the scheme is obvious considering the fact we are dealing with 2-dimensional objects with an unusually high (about 69.32%) error rate.

Original tree
Subsequence tree
Noisy subsequence tree
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Table II : Examples of the original trees, the associated subsequence trees and their noisy versions.

Original tree:
((((t)z)(((j)s)(t)(u)(v)x)a)((f)(((u)(v)a)(b)((p)c)g)c)(((i)(((q)(r)g)j)k)s)((x)(y)(z)e)d)

Noisy tree:
((y)(v)((((t)p)g)c)(i)((q)(r)j)(x)d)




Original tree:
((((x)(((e)j)(((p)c)(v)k)a)s)((g)t)(u)p)((j)((((b)f)(g)c)(a)(((s)((l)(n)k)(u)z)d)v)(e)q)r)

Noisy tree:
(((x)((e)j)((p)c)(g)p)(f)(g)(a)(s)(l)(u)(e)r)




Original tree:
(((i)((m)(s)e)f)((p)(a)c)(((k)(q)o)((f)b)d)((z)((i)(b)x)t)((f)((e)(h)v)r)(((n)k)((y)u)g)j)

Noisy tree:
((k)((k)t)(((n)v)(y)g)j)




Original tree:
(((((t)(s)(b)c)((x)(p)(q)f)((b)(e)(d)j)r)((((h)m)(l)(e)k)((u)(w)((f)x)d)((v)(y)(z)u)q)e)p)

Noisy tree:
((((((t)y)(b)c)(((t)x)(q)r)(j)m)e)((e)(s)(x)((((c)(s)(r)(y)c)e)(z)u)q)p)




Original tree:
(((((n)d)e)j)((((w)t)b)(((v)(f)s)((j)(d)(r)p)c)f)((((p)l)r)(((x)(k)h)(z)y)((a)(m)(s)u)k)o)

Noisy tree:
((d)(w)(((j)(s)p)c)(y)(m)o)




Original tree:
(((((r)(m)(h)t)((l)(n)c)e)s)((f)((w)(((x)p)(d)q)v)(g)b)(((o)r)((a)i)j)((((s)z)((b)p)u)c)k)

Noisy tree:
(((x)(m)(h)e)(q)((r)j)k)




Original tree:
((((w)(a)b)((d)(x)r)((n)(l)t)j)(((e)(z)m)((g)(m)q)((u)(o)b)o)(((r)(p)v)((f)(j)s)((y)k)h)c)

Noisy tree:
((((w)d)(x)r)(n)(e)(z)((k)m)(b)c)




Original tree:
(((s)(v)(t)(u)(a)b)((d)(b)(e)(r)n)((l)(k)(s)h)(((t)(p)(q)(j)p)(a)i)(((c)(t)(o)(h)(j)e)r)g)

Noisy tree:
((s)(u)((d)(d)(r)n)((k)(s)h)(p)(h)g)




Original tree:
(((((a)(w)m)((v)(l)y)k)(((j)(n)f)((u)(g)t)c)u)((((b)(m)p)((d)(i)h)m)(((s)(c)y)((p)q)s)f)s)

Noisy tree:
((((v)k)((x)n)u)(b)(m)(d)(q)a)




Original tree:
((c)((((d)((l)(f)t)(o)a)((v)((k)e)k)s)((u)(s)(t)q)((m)n)(((i)(r)(h)l)(c)(w)((j)y)p)b)(l)i)

Noisy tree:
((d)(l)(k)(y)(s)(l)(c)(w)(j)(l)i)




Original tree:
(((((j)(o)a)(n)((w)f)k)(s)d)((((e)u)((h)(l)b)m)v)((g)(j)(((z)(p)(x)t)c)i)t)

Noisy tree:
((((f)m)d)((b)m)(j)((u)(z)(x)t)t)




Original tree:
(((m)((d)(y)(q)j)t)((((i)o)e)s)(((x)p)((f)u)(v)n)(c)((((w)b)((e)z)r)((g)k)p)a)

Noisy tree:
((m)((y)(c)j)((o)s)((b)(p)r)((g)k)a)




Original tree:
((((g)((d)((m)o)n)(u)p)(i)(((x)b)(t)f)(s)(((l)(a)e)c)k)((d)((((w)(y)z)(n)r)p)m)w)

Noisy tree:
((((o)p)g)(((((e)z)h)c)f)((((y)l)(a)g)c)((y)p)w)




Original tree:
(((s)(((t)(k)x)(e)((v)(y)r)i)(m)a)(((w)((j)(u)k)(g)p)(d)(o)r)(((c)(l)((i)(z)q)n)t)b)

Noisy tree:
(((t)x)(s)((v)r)(u)(n)b)




Original tree:
(((t)((((e)(j)(d)c)w)(y)((g)((t)(v)(b)n)u)h)((s)((f)((g)(n)(a)x)(h)i)r)((p)(a)(m)o)b)z)

Noisy tree:
((y)(y)(g)(g)(a)(h)((p)(a)(m)o)z)




Original tree:
((((k)(d)q)((j)s)(h)p)(((t)r)(i)o)(((g)(b)c)((w)(x)n)k)((a)((v)d)e)(((p)m)((s)n)((k)(r)f)y)l)

Noisy tree:
((x)(((s)p)(t)(i)(((g)c)((w)n)k)(a)((m)((r)y)y)i)l)




Original tree:
(((n)(((y)((w)i)(p)e)(u)((z)d)(o)(((i)((z)(l)c)f)(k)r)h)(l)v)((((j)(r)k)c)(a)((b)(t)((s)g)d)p)m)

Noisy tree:
((n)((o)(p)e)(d)(((s)z)(o)c)(((j)(r)k)c)(a)(b)m)




Original tree:
(((((o)(g)b)(u)((y)r)(s)(q)v)(p)(x)(((j)c)(f)(h)(y)t)(m)l)((a)(((k)(w)x)(r)(e)o)(z)((l)((i)v)n)d)x)

Noisy tree:
(((((g)(y)y)(p)(x)(((h)d)(y)t)(m)l)((g)((e)y)o)z)x)

Table III : 
A subset of the trees used for Data Set A and their noisy subsequence trees. The trees and subsequence trees are represented as parenthesized lists.

Original tree:
(((s)((i)n)c)(e)(t)(h)(e)((a)d)(((v)(e)n)t)((o)(f)(t)(h)e)(((d)(i)g)i)(t)((a)l)((c)o)((((m)p)((u)t)e)r)t)

Noisy tree:
((n)(a)((f)t)(t)(i)(t)(a)(o)((t)r)t)




Original tree:
(((t)(o)(i)(l)(((l)(u)s)t)r)((a)(t)(e)((s)o)((m)(e)o)(((f)t)h)e)(((t)((h)e)(t)y)(p)((e)s)o)f)

Noisy tree:
(((o)(i)(u)r)((a)(t)((e)o)(f)e)(g)(p)f)




Original tree:
((((t)(h)(e)((p)r)e)c)(((e)d)((i)n)((g)(e)(x)(a)m)p)((l)(e)c)(((o)n)t)(((a)i)(n)s)(((m)(a)n)y)o)

Noisy tree:
(((((e)((p)r)e)v)d)(e)(e)(x)(a)((((q)k)n)t)((i)(b)s)(((a)n)y)o)




Original tree:
(((((t)h)e)r)((e)a)(r)((e)m)(a)(n)(y)((p)(r)(o)(b)(l)e)((m)(s)((i)n)(p)(a)(t)(t)((e)r)(n)((r)e)((c)o)g)n)

Noisy tree:
(((t)e)(((k)y)r)(((n)o)a)(b)((m)(s)(a)(t)(r)g)n)




Original tree:
((((t)(h)((e)o)(r)(i)((g)(i)(n)(a)t)i)((o)(n)o)(f)(p)(a)(r)(t)(i)((o)f)((t)h)((i)s)(b)(o)(o)((k)(i)(s)p)r)i)

Noisy tree:
(((r)((a)(o)p)(n)(f)(r)((b)t)(((p)q)h)(i)(b)(o)(o)(l)r)i)




Original tree:
((((t)h)(e)(p)((u)b)l)(i)((s)h)(((e)d)l)(((i)t)e)((r)((a)t)u)((r)((e)(o)n)((p)a)t)t)

Noisy tree:
(((n)(e)(p)((e)l)(t)((a)u)r)((a)t)t)




Original tree:
(((((b)((a)y)e)s)((d)(e)(c)(i)(s)(i)o)(((n)t)h)e)((((o)r)y)(i)((s)a)(((f)u)n)(((d)a)m)e)n)

Noisy tree:
(((e)((w)(i)o)e)(((s)a)(j)(d)e)n)




Original tree:
((w)(e)(s)(h)(((a)l)(l)n)(o)(w)((f)o)(r)(m)(a)(l)(((i)z)e)((t)(h)e)(i)(d)(e)((a)s)((j)u)(s)t)

Noisy tree:
((s)(h)(l)(w)((g)r)(m)(a)(l)(i)(e)(e)(u)t)




Original tree:
(((l)(e)((t)u)(s)((s)p)(e)(c)((i)a)l)(((i)(z)e)(t)(h)(e)((s)(e)(r)e)s)(((u)(l)(t)(s)((b)(y)c)(o)(n)(s)i)d)e)

Noisy tree:
(((e)(t)(s)l)(i)((y)s)(e)((l)(b)(e)d)e)




Original tree:
((((i)n)c)(l)(((a)s)s)((i)(f)(i)c)(a)(t)((i)o)(n)(p)(r)(o)((b)(l)(e)((m)(s)e)((a)((c)h)s)t)a)

Noisy tree:
(((i)c)(l)((k)c)(n)(r)(o)((l)(e)(w)((s)(h)s)t)a)




Original tree:
((((((t)(h)(e)(r)((e)a)r)(e)((m)a)(n)(y)(d)(i)f)((((f)(e)r)e)n)(t)(w)(a)((y)(s)t)(o)(r)(e)(p)(r)e)s)e)

Noisy tree:
((((((a)r)(y)c)((f)(e)r)((t)(w)v)s)(a)(y)(s)(o)(r)(e)(r)s)e)




Original tree:
((((((w)(h)i)((l)e)((t)h)(e)t)w)((o)c)(a)(t)(a)(g)((o)(r)y)(c)(a)(s)(e)(i)((s)h)((u)s)((((t)a)s)p)e)c)

Noisy tree:
(((((h)i)z)(t)w)(o)(t)(c)(s)((i)g)(h)(s)c)




Original tree:
((b)(y)(t)(h)(i)(n)(k)(i)((n)g)(((o)((f)a)c)l)((a)(s)(s)i)(f)((i)e)(r)(a)((s)(a)d)((e)v)(i)(c)e)

Noisy tree:
((b)(n)(c)(a)(f)(a)(s)((e)v)(i)e)




Original tree:
((((t)(h)(e)(s)(t)(r)(u)((c)((t)u)r)(((e)o)(f)(a)(b)((a)y)e)(s)(c)(l)((a)s)((s)i)((f)i)((e)r)i)s)d)

Noisy tree:
(((h)((s)(r)((r)(t)u)(o)w)(a)(l)(i)(f)s)d)




Original tree:
((((w)(e)b)(e)(g)(i)(n)((w)i)(t)(h)(t)(h)(e)(((u)n)i)(((v)a)r)(i)(((a)t)e)(n)((o)r)((m)a)(l)(d)(e)n)s)

Noisy tree:
(((w)n)(h)((a)r)(e)(n)(o)(a)(l)s)




Original tree:
((((t)((h)e)(g)(e)(n)(e)(r)(((((a)l)m)u)l)t)((i)(v)(a)((r)i)(a)((t)(e)n)((o)(r)(m)a)l)d)e)

Noisy tree:
(((n)(g)(n)(r)(((a)l)l)t)(i)(v)(a)(r)((t)(e)n)((o)(r)(m)a)e)




Original tree:
((((t)h)(e)(s)(i)(m)((p)((l)e)s)(((t)c)a)((s)(e)o)((c)c)((u)(r)(e)(s)(w)(((h)e)n)t)h)e)

Noisy tree:
((((((t)a)h)((p)(l)e)f)(s)(h)h)e)

Table VI : 
A subset of the trees used for Data Set B and their noisy subsequence trees. The trees and subsequence trees are represented as parenthesized lists. The original unparenthesized strings are the same as those used in [Oo87] and were obtained from [DH73]. 
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