
Benchmarking Attribute Cardinality Maps for

Database Systems Using the TPC-D Speci�cations�

B. John Oommeny and Murali Thiyagarajahz

School of Computer Science

Carleton University

Ottawa, Canada K1S 5B6

foommen, muralig@scs.carleton.ca

Key Words: Query Optimization, Query Result Size Estimation

Abstract

Benchmarking is an important phase in developing any new software technique be-
cause it helps to validate the underlying theory in the speci�c problem domain. But
benchmarking of new software strategies is a very complex problem, because it is dif-
�cult (if not impossible) to test, validate and verify the results of the various schemes
in completely di�erent settings. This is even more true in the case of database sys-
tems because the benchmarking also depends on the types of queries presented to the
databases used in the benchmarking experiments. Query optimization strategies in re-
lational database systems rely on approximately estimating the query result sizes to
minimize the response time for user-queries. Among the many query result size esti-
mation techniques, the histogram-based techniques are by far the most commonly used
ones in modern-day database systems. These techniques estimate the query result sizes
by approximating the underlying data distributions, and, thus, are prone to estimation
errors. In two recent works [16, 17] we proposed (and thoroughly analyzed) two new
forms of histogram-like techniques called the Rectangular and Trapezoidal Attribute
Cardinality Maps (ACM) respectively, that give much smaller estimation errors than
the traditional equi-width and equi-depth histograms currently being used by many

commercial database systems.

�TPC-D benchmark speci�cations have been proposed by the Transaction Processing Performance Coun-

cil as a decision support benchmark. It comprises of a set of highly complex business oriented queries that

are run on a scalable simulated real-world business database. Patent applications have been �led to protect

the rights for the results presented here.
ySenior Member, IEEE. Partially supported by the Natural Sciences and Engineering Research Council

of Canada.
zSupported by the Natural Sciences and Engineering Research Council of Canada. Currently employed

with The ORACLE Corporation.
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This paper reports how the benchmarking of the Rectangular-ACM (R-ACM) and
the Trapezoidal-ACM (T-ACM) for query optimization can be achieved. By conduct-
ing an extensive set of experiments using the acclaimed TPC-D benchmark queries and
database [25], we demonstrate that these new ACM schemes are much more accurate
than the traditional histograms for query result size estimation. Apart from demonstrat-
ing the power of the ACMs, this paper also shows how the TPC-D benchmarking can
be achieved using a large synthetic database with many di�erent patterns of synthetic
queries, which are representative of a real-world business environment.

1 Introduction

Benchmarking is an important step in the developmental cycle of any new software strategy

as it validates the functional properties of the new software in a typical real-world environ-

ment. It also enables the user to compare the performance of various similar methods

against a single standard. But benchmarking is often a challenging and a very complex

problem, because it is diÆcult (if not impossible) to test, validate and verify the results

of the various schemes in completely di�erent settings. This is even more true in the case

of database systems because the benchmarking also depends on the types of queries pre-

sented to the databases used in the benchmarking experiments. In this paper, we study

the benchmarking of two new query optimization strategies that we recently proposed in

[16, 17].

1.1 Query Optimization in Database Systems

Modern-day database management systems (DBMS) provide competitive advantage to busi-

nesses by allowing quick determination of answers to business questions. Intensifying com-

petition in the business marketplace continues to increase the sizes of databases as well as

sophistication of queries against them. This has resulted in a greater focus (both academ-

ically and in the industrial world) to develop systems with superior DBMS functionalities

that would, in turn, minimize the response time for business and other queries.

The problem of minimizing query response time is known as Query Optimization, which

has been one of the most active research topics in the database and information system

�elds for the last two decades. Query optimization for relational database systems is a

combinatorial optimization problem, which requires estimation of query result sizes to select

the most eÆcient access plan for a query, based on the estimated costs of various query

plans. As queries become more complex (such as found in modern-day business systems),

the number of alternative query evaluation plans (QEPs) which have to be considered

explodes exponentially. For example, for a join of 10 relations, the number of di�erent

QEPs is greater than 176 billion!. A typical inquiry that a bank oÆcer runs many times a

day, for example, to retrieve the current market value of a customer's mutual fund/stock

portfolio, usually transparently carries out a join of many relations (i.e: behind the scene).

Query result sizes are usually estimated using a variety of statistics that are maintained
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in the database catalogue for relations in the database. Since these statistics approximate

the distribution of data values in the attributes of the relations, they represent an inaccurate

picture of the actual contents of the database. It has been shown in [7] that errors in query

result size estimates may increase exponentially with the number of joins. This result, in

light of the complexity of present-day queries, shows the the critical importance of accurate

result size estimation.

Several techniques have been proposed in the literature to estimate query result sizes,

including histograms, sampling, and parametric techniques [3, 5, 10, 11, 13, 18, 21]. Of

these, histograms are the most commonly used form of statistics, which are also used in

commercial database systems1 such as Microsoft SQL Server, Sybase, Ingres, Oracle and

DB2.

We recently [16, 17] proposed two new catalogue based non-parametric statistical models

called the Rectangular Attribute Cardinality Map (R-ACM) and Trapezoidal Attribute Car-

dinality Map (T-ACM), that can be used to obtain more accurate estimation results than

the currently known estimation techniques. Since they are based on the philosophies of

numerical integration, query result size estimations based on these models have been shown

to be much more accurate than the traditional equi-width and equi-depth histograms. For

a detailed mathematical treatment of these techniques, including their analytic properties,

the reader is referred to [16, 17]. The goal of this paper is to demonstrate the power of the

R-ACM and the T-ACM for query result size estimation by extensive experiments using

the TPC-D benchmark queries and databases [25], and to justify the claim of our analyt-

ical results that the R-ACM and the T-ACM are superior to the current state-of-the-art

techniques that are being used in the commercial database systems.

1.2 Aim of the Paper

The objective of the TPC-D benchmarking is to provide to industry users relevant objective

performance data about any new system. The TPC-D benchmarking system is unique

and di�erent from other prototype validation environments because it has two distinct

components, which are modeled based on their real-world counter-parts. First of all, it

provides the "testing platform" with a simulated real-world database which is both scalable

and yet easily modeled. Secondly, it provides the platform with an easy and convenient

query generator, from which simulated real-world queries of "arbitrary" complexity can be

generated and tested against the database. Thus, the platform works with a set of real-world

like business queries designed to run on a carefully selected complex business database.

Due to its closeness to the real-world model, and its industry-wide acceptance as a

standard database system benchmark, TPC-D becomes an ideal test-bed to validate our

analytical results of the R-ACM and the T-ACM. In addition, unlike the stand-alone el-

ementary relational operations that were used in [22, 23], the queries used in the TPC-D

1It should be noted that all the commercial systems utilize the equi-width or the equi-depth histogram

methods in one form or the other. A Table listing the various commercial databases systems and the methods

used is included in a later section.
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benchmarking are highly complex. The queries are also designed in such a way so that they

examine a large percentage of available data, but are implemented with suÆcient degree of

ease. These query patterns, which are catalogued in Table 4, consist of a wide range of re-

lational operations and represent the type of queries that are usually posed by DBMS users

in a business environment. This enables us to rigorously test the ACMs with various types

of queries and con�rm their superiority over the traditional histogram based estimation

techniques. More over, the DBGEN program supplied by the TPC-D allows us to generate

scalable databases reective of a true business enterprise. This again permits us to con-

duct a set of robust experiments so that an industry acceptable fair comparison of our new

structures (or for that matter, any new strategy) can be presented against the traditional

histograms currently in use. Since the TPC-D queries and databases can be accurately

generated according to the TPC-D speci�cation document [25], the results presented in this

paper can be easily duplicated and veri�ed by interested researchers.

1.3 Benchmarking Versus Prototype Validation and Testing

Any new system or strategy that is proposed has to be validated and thoroughly tested

before it can be e�ectively used in the industry. This, of course, involves three distinct

phases: the validation of the prototype, the testing of the prototype, and more importantly,

the benchmarking of the strategy against industry-acclaimed benchmark standards. Al-

though these issues are signi�cant for any software solution, this is particularly important

when a new database solution (for example, a query processor) is in question. This, indeed,

is because it not only involves the database itself. It also involves the queries that are put

against the database. Consequently, although it is possible to test a new strategy against a

"real-world" database, the question of testing against families of query patterns is far from

trivial, since the query patterns are usually obtained from the users themselves.

In this regard, we would like to mention that the prototype validation and testing phases

of the two schemes which we proposed (the R-ACM and the T-ACM) were earlier studied for

the real-world databases, namely the U.S. CENSUS and NBA player statistics databases.

However, the issue of testing the schemes against families of query patterns for a scalable

database remained open. This is exactly the contribution of this paper.

To achieve this fundamental goal of this paper, we were posed with two issues. First

of all we have to develop a database which was scalable and which represented a real-life

scenario. Secondly, and more importantly, we were to be able to generate "real-life" queries

without actually relying on a human interface. It is here that the TPC-D benchmarking

platform has provided us with invaluable support.

As mentioned earlier, our previous experimental works related to the R-ACM and the

T-ACM involved prototype validation and testing using two real-world databases, namely,

the U.S. CENSUS database and the NBA player statistics database [22, 23]. Even though

these databases were representative of the real-world data distributions, the scope of their

use was rather limited to the speci�c attribute value domains (or data environments) under

consideration. More over, the query types used for these speci�c databases were relatively
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primitive and included only one of the elementary relational operations (such as equi-join,

equi-select and range-select), at a time, in a given query. Consequently, the query types

used in these previous experiments conducted in [22, 23] cannot be argued to represent any

typical real-world user queries, and thus, we do not feel that it is fair for us to extrapolate

our results of [22, 23] to the real-world query types.

In contrast to the above, the TPC-D benchmarking experiments presented in this paper

consist of two distinct components. First of all, the databases used for the experiments

are scalable simulated real-world data that are typically found in a business enterprise.

Secondly, the query types used are representative of a large collection of business oriented

queries with broad industry-wide relevance. The query types, as can be seen from Table

4, are usually complex and involve multiple relational operations. Hence we expect the ex-

perimental results with these TPC-D benchmark database/query types to closely represent

the behavior of the ACMs in a real-world database environment. More detailed discussion

on the TPC-D queries and databases are found in Section 4.

Since this paper involves the benchmarking of the R-ACM and the T-ACM, we briey

describe them in Section 3.

2 Previous Work in Data Representation

In the interest of brevity, it is impractical to give a good review of the �eld here. Such a

detailed and comprehensive review is found in [24]. However, to present our results in the

right perspective a brief survey is given. Rather than speak of our work in a competitive

spirit, we shall compare it from the viewpoint of how it �ts against the texture and lattice

of the currently reported methods.

From a broad perspective, it is pertinent to mention that all histogram techniques essen-

tially approximate the density function of the attribute that is being mapped. Thus, from

a synthesis point of view, any eÆcient function approximation strategy can be considered

as a starting point for a reasonably good histogram method.

The mathematical foundation for the Attribute Cardinality Maps (ACM) which we

introduce is the previous work due to Oommen and his student Nguyen, in which they pro-

posed a general strategy for obtainingMoment-Preserving Piecewise Linear Approximations

of functions [14]. This technique approximates a function by preserving a �nite number of

geometric moments which, in turn, are related to its transform domain parameters. If this

method is applied directly to yield a time/spatial domain approximation, it ensures that

the approximated function is close to the actual function in both the time (space) domain

and the transform domain in a well de�ned way. This solution, which reportedly is the only

solution guaranteeing this dual property, in both the time and frequency domains has been

used in image processing and pattern recognition. In the ACM's reported here, it is applied

to query optimization. Indeed, the R-ACM can be viewed as a speci�c perspective of this

method since it preserves (or minimizes the variation from) the �rst geometric moment of

the actual histogram. It thus ensures that the variation of actual histograms (within any
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speci�c bucket) is minimized by an accurate approximation in both the time and transform

domains.

Equi-width histograms for single-attributes were considered by Christodoulakis [2] and

Kooi [10]. Since these histograms traditionally have the same width, they produce highly

erroneous estimates if the attribute values are not uniformly distributed. The problem of

building equi-depth histograms on a single attribute was �rst proposed by Piatetsky-Shapiro

and Connell [18]. This was later extended as multi-dimensional equi-depth histograms to

represent multiple attribute values by Muralikrishna and Dewitt [13].

Ioannidis and Christodoulakis took a di�erent approach by grouping attribute values

based on their frequencies [7, 8]. In these serial histograms, the frequencies of attribute

values associated with each bucket are either all greater or all less than the frequencies

of the attribute values associated with any other bucket. They also considered optimal

serial histograms that minimize the worst case error propagation in the size of join results

[7, 8]. The serial histograms provide optimal results for equality join estimations, but less

than optimal results for range queries. Faloutsos et. al. [5] proposed using a multi-fractal

assumption for real-data distribution as opposed to the uniformity assumptions made within

current histograms.

2.1 Comparative Open Work

Apart from the references mentioned above, a few signi�cant references (which also objec-

tively survey the �eld) and which present relatively new contributions deserve prominent

mention. The �rst in this list is the paper due to Poosala et. al. [20], which speci�cally

addresses the issue of designing histograms suitable for range predicates. In particular,

the histogram design using the equi-sum, V-optimal, and spline-based methods are dis-

cussed. Of these, V-optimal-based histogram methods are of particular interest, because

they group contiguous sets of frequencies into buckets so as to minimize the variance of

the overall frequency approximation. Philosophically speaking, this resembles the principle

of the R-ACM described presently, which attempts to minimize the variation around the

mean in any given bucket, and consequently has the property of minimizing the variance

inside the bucket. While, in the R-ACM, this is done along the attribute values, all the

tuples within a bucket have almost identical frequency values. Thus, the R-ACM can be

perceived to be analogous to clustering the attribute values by their frequencies, and yet

maintaining the sequential nature of the attribute values. The similarities and di�erences

between the actual histograms generated by these two families of methods are still being

investigated. The paper [20] catalogues di�erent families of V-optimal histograms based on

the sort parameters and the source parameters, and contains a complete taxonomy of all

resulting histograms.

Poosala and Ionnadis continued this work in 1997 [19], where the assumption of in-

dependence of the individual attributes within a relation was relaxed. While this work

was directed towards certain speci�c histograms (and in particular, some of the histograms

mentioned above), we believe that the exact same techniques can be used to develop multi-
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dimensional ACMs. Indeed, we believe that the Hilbert numbering concept and the single

value decomposition speci�ed in [19] can be applied to the new histograms that we have

introduced, for higher dimensions. This is also currently being investigated.

Jagadish et. al. have studied the problem of yielding optimal histograms which guar-

antee certain quality speci�cations [9]. These speci�cations can be either space-bounded

or error-bounded. A formal scheme to design space-bounded V-optimal histograms (and a

corresponding approximation algorithm for the same) have also been presented in [9]. Iden-

tical developments for the error bounded V-optimal histograms have also been included.

As a matter of comparison with our work, we believe that these identical philosophies can

be used to obtain space bounded and error bounded histograms for the R-ACM and the

T-ACM. Because the R-ACM aims to minimize the variation around the �rst moment of the

moment-based approximation, it is our conjecture that it is, in principle, an error bounded

quality approximation. The space bounded approximation for the R-ACM is probably the

approximation obtained by controlling and optimizing the value of \�". All these issues

lead to numerous open problems.

A completely new strategy for approximating density functions in database query op-

timization involves wavelet-based approximations. Such approximations have been used in

signal processing, image processing, and, in general, in function approximation for almost

two decades [1, 6, 12]. The application of these techniques to databases naturally leads

to the approximation of the density function using the m-most signi�cant wavelet coeÆ-

cients. Informally speaking, due to the results in [14], we believe that these wavelet-based

histograms are closely related to the R-ACM and the T-ACM because, the latter also opti-

mize the linear approximations by maintaining the most signi�cant moment coeÆcients, as

opposed to wavelet coeÆcients. The issue of comparing our ACM technologies with such

approximations is still open, and warrants investigation.

From the above discussion, it is clear that a lot of work has yet to be done to compare the

ACMs with other histogram methods reported in the academic and commercial literature.

A benchmarking exercise which compares the various schemes in terms of accuracy and

query-evaluation plan eÆciency, has to be undertaken before a conclusive ranking of the

schemes can be speci�c. Such a tedious study for the TPC-family of benchmarks is currently

underway. However, we believe the results presented here are extremely valuable, because

they demonstrate how the ACMs compare with the two histogram methods that are used

in all the commercial database products.

3 Attribute Cardinality Maps2

The Attribute Cardinality Maps (ACM) are histogram-like techniques for query optimiza-

tion [16, 17, 24]. Since they are based on the philosophies of numerical integration, query

2This section is included here in the interest of completeness and for the sake of ease of readability. The

details of the mathematical analysis of the properties of both the R-ACM and T-ACM structures, and the

details of the schemes for implementing them can be found in [16, 17, 24].
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Figure 1: An Example Rectangular Attribute Cardinality Map

result size estimations based on these models have been analytically shown to be much more

accurate than the traditional equi-width and equi-depth histograms. There are two types

of ACMs, namely, the Rectangular ACM (R-ACM) and the Trapezoidal ACM (T-ACM).

Since this paper is about the benchmarking of the R-ACM and the T-ACM, we briey

describe these structures below. Observe that since this paper is not intended to be of a

theoretical avor, we shall merely allude to the theoretical properties of the ACMs.

3.2 Rectangular Attribute Cardinality Map

The Rectangular Attribute Cardinality Map (R-ACM) of a given attribute, in its simplest

form, is a one-dimensional integer array that stores the count of the tuples of a relation

corresponding to that attribute, and for some subdivisions for the range of values assumed by

that attribute. The R-ACM is, in fact, a modi�ed form of the histogram. But unlike the two

major forms of histograms, namely, the equi-width histogram, where all the sector widths

are equal, and the equi-depth histogram, where the number of tuples in each histogram

bucket is equal, the R-ACM has a variable sector width, and has varying number of tuples

in each sector. The sector widths or subdivisions of the R-ACM are generated according to

a rule that aims at minimizing the estimation error within each subdivision.

De�nition 1 A One dimensional Rectangular ACM: Let V = fvi : 1 � i � jVjg, where

vi < vj when i < j, be the set of values of an attribute X in relation R. Let the value set V be
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subdivided into s number of sector widths according to the range partitioning rule described

below. Then the Rectangular Attribute Cardinality Map of attribute X is an integer array

in which the jth index maps the number of tuples in the jth value range of the set V for all

j, 1 < j � s.

Rule 1 Range Partitioning Rule: Given a desired tolerance value � for the R-ACM, the

sector widths, lj; 1 � j � s, of the R-ACM should be chosen such that for any attribute value

Xi, its frequency xi does not di�er from the running mean of the frequency of the sector

by more than the tolerance value � , where the running mean is the mean of the frequency

values examined so far in the current sector.

For example, consider the frequency set f8; 6; 9; 7; 19; 21; 40g corresponding to the at-

tribute values fX0; X1; X2;X3;X4;X5;X6g of an attributeX. Using a tolerance value � = 2,

the attribute value range will be partitioned into the three sectors, f8; 6; 9; 7g; f19; 21g; f40g

with sector widths of 4, 2, and 1 respectively. The formal algorithm for generating the R-

ACM can be found in [16].

Since the ACM only stores the count of the tuples and not the actual data, it does

not incur the usually high I/O cost of having to access the base relations from secondary

storages. Secondly, unlike the histogram-based or other parametric and probabilistic count-

ing estimation methods in use currently [11], ACM does not use sampling techniques to

approximate the data distribution. Each cell of the ACM maintains the actual number of

tuples that fall between the boundary values of that cell, and thus, although this leads to

an approximation of the density function, there is no approximation of the number of tuples

in the data distribution.

The one-dimensional R-ACM as de�ned above can be easily extended to a multi-

dimensional one to map an entire multi-attribute relation. The multi-dimensional ACM,

which can be used to store the multi-dimensional attributes that commonly occur in geo-

graphical, image, and design databases, is currently being investigated.

3.2.1 Properties of the R-ACM

In order to provide the right perspective for our experimental results, we give below a brief

catalogue of the major properties of the R-ACM.

(1) The R-ACM is neither an equi-width nor an equi-depth histogram. This is due to the

partitioning strategy based on the tolerance.

(2) The frequency distribution of any attribute value within an R-ACM sector obeys a

Binomial distribution with mean � = n
l
and variance V =

n(l�1)

l2
, where n is the

number of tuples within the sector and l is the sector width.
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(3) For a one-dimensional R-ACM, the maximum likelihood estimate of the number of

tuples for a given value Xi of attribute X is given by,

x̂ML =
n

l

where n is the number of tuples in the sector containing the value Xi and l is the

width of that sector.

(4) For a one-dimensional R-ACM, the maximum likelihood estimate of the number of

tuples for a given value Xi of attribute X falls within the range of,

(n+ 1)

l
� 1 � x̂ML �

(n+ 1)

l
;

where n is the number of tuples in the sector containing the value Xi and l is the

width of that sector.

(5) The error in self-join estimation from the R-ACM is given by,

� = V ar(ACM) +

sX
j=1

8<
:

ljX
k=1

x
2
k �

n
2
j + njlj � nj

lj

9=
;

which is O(V ar(ACM)), where self-join is the operation of joining the relation with

itself and the V ar(ACM) is the variance of the entire R-ACM.

(6) The variance of the entire R-ACM is given by,

V ar(ACM) = N �

sX
j=1

nj

lj
;

where N is the total number of tuples mapped by the R-ACM, nj is the number of

tuples in the jth sector, lj is the j
th sector width, and s is the number of sectors in

the R-ACM.

(7) If the attribute value Xi falls in the j
th sector of an R-ACM, then the number of

occurrences of Xi is,

nj

lj
�

�����
�
ln

�
l

i� 1

�
� 1

����� � xi �
nj

lj
+

�����
�
ln

�
l

i� 1

�
� 1

�����
where nj and lj are the number of tuples and the sector width of the jth sector and i

is the location of the attribute value within the sector.

For example, consider an R-ACM sector of width 10 containing 124 tuples. Using a

tolerance value � = 3, we see that the attribute value X3 falls in the following range:

10:57 � x3 � 14:23:
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The power of the R-ACM is obvious when we observe that the corresponding range for

the equi-width and the equi-depth histograms are,

0 � x3 � 124:

(8) The average-case error in estimating the frequency of an attribute value is always

bounded by 2� .

The proofs of the above assertions can be found in [16, 24]. Also found in [16, 24] are

various expressions for the join estimation error, average-case and worst-case errors for both

equality-select and range-select operations using the R-ACM. The issue of how � is chosen is

an interesting problem in its own right, and it involves the issue of optimizing the R-ACM.

This is discussed in depth in [24], and is currently being compiled for publication.

3.3 Trapezoidal Attribute Cardinality Map

A trapezoidal ACM is a modi�ed form of the equi-width histogram where each histogram

partition is a trapezoid instead of a rectangle. In fact, the trapezoidal ACM is obtained by

replacing each of the rectangular sectors of the equi-width histogram by a trapezoid. The

beginning and ending frequency values of each trapezoid sector is chosen so that the area

of the resulting trapezoid will be equal to the area of the "rectangle" of the histogram it is

replacing.

De�nition 2 A One dimensional Trapezoidal ACM: Let V = fvi : 1 � i � jVjg, where

vi < vj when i < j, be the set of values of an attribute X in relation R. Let the value

set V be subdivided into s equi-width sectors, each having sector width, l. We approximate

each equi-width sector by a trapezoid in which the j
th trapezoid is obtained by connecting

the starting value, aj, to the terminal value, bj, where the quantities aj and bj satisfy:

(a) The starting value a1 is a user-de�ned parameter.

(b) For all j > 1, the starting value of the jth trapezoid, aj, is the terminal value of the

(j � 1)st trapezoid, bj�1.

(c) The area of the jth trapezoid exactly equals the area of the jth equi-width sector from

which the exact computation of the quantity, bj, is possible.

Then the Trapezoidal Attribute Cardinality Map of attribute X with initial attribute value

X1 and width l is the set f(ai; bi)j1 � i � sg.

Our motivation for proposing the trapezoidal ACM for query result size estimation

originates from considering the various techniques used in numerical integration. Finding

the result size of a selection query on a range-predicate can be considered as a discrete case

of �nding the area under a curve. Thus any numerical integration technique used to �nd
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Figure 2: An Example Trapezoidal Attribute Cardinality Map

the area under a curve will �t our purpose well. Though more accurate and sophisticated

methods such as Simpson's Rule exist, since the trapezoidal method is relatively easy to

use in a DBMS setting and is much superior to the traditional equi-width and equi-depth

histograms currently in use, we have opted to use the trapezoidal method. In addition to

providing more accurate result estimation on selection queries on range predicates, it also

gives better results on equality-match predicates. The formal algorithm for generating the

T-ACM can be found in [17].

3.3.1 Properties of the T-ACM

In order to provide the right perspective for our experimental results, we give below a brief

catalogue of the major properties of the T-ACM.

(1) The T-ACM is based on the trapezoidal method of numerical integration. Thus it is

more accurate than the right-end or left-end histogram estimation techniques.

(2) The probability, pi, of the i
th attribute value in the jth T-ACM sector is given by

pi =
aj
nj

+
2(nj�aj l)

nj l(l�1)
:i, where aj is the frequency of the �rst attribute value in the jth

sector, nj is the number of tuples in the jth sector and l is the sector-width.

(3) The frequency distribution of any attribute value, Xi, within an T-ACM sector obeys

a Binomial distribution with mean � = njpi and variance V = njpi(1� pi) where nj
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is the number of tuples within the jth sector, l is the sector width, and pi is given as

in (2) above.

(4) The error in self-join estimation from the T-ACM is given by,

� =

sX
j=1

 
lX

k=1

x
2
k �

aj(l + 1)(ajl � 2nj)

3(l � 1)
�

2n2j (2l � 1)

3l(l � 1)

!

where self-join is the operation of joining the relation with itself, s is the number of

sectors in the T-ACM, xk is the number of occurrence of the kth attribute value in

the sector, and aj ; nj; and l are stated as above in (2).

(5) The worst-case error, �, in estimating the result size of an equi-select operation,

�X=Xi
(R), using a trapezoidal ACM is given by,

� =

(
aj +

2(nj�aj l)

l(l�1)
i if i <

l(l�1)(nj�2aj)

4(nj�aj l)
;

nj � aj �
2(nj�aj l)

l(l�1)
i if i �

l(l�1)(nj�2aj)

4(nj�aj l)
;

where i is the location of the attribute value Xi within the sector and aj; nj and l are

stated as above in (2).

(6) Assuming that the T-ACM sector has been obtained by processing a histogram bucket

of size l with nj tuples, the average error in estimating the frequency of an arbitrary

attribute value Xi, obtained by averaging over all attribute values in this sector of

the T-ACM is exactly zero.

(7) The upper bound of the average-case error, �, in estimating the frequency of an arbi-

trary attribute value Xi in a T-ACM is,

� = aj +
2(nj � ajl)

l(l � 1)
:i�

nj

l
:

The proofs of the above assertions are found in [17].

3.2.2 Generating T-ACMs for the Experiments
3

Since the T-ACM is based on the trapezoidal rule of numerical integration, we expect it to

be more accurate than the corresponding equi-width histogram of the same sector width.

We shall now describe a process by which we can obtain a T-ACM that is much more

accurate than the T-ACM generated by the algorithm given in [17].

3As mentioned earlier, in the interest of not being repetitive, we include here only the algorithm. This is

done so that other interested researchers can independently duplicate our results.
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Let us assume that TA is the T-ACM derived from the equi-width histogram, HA. Also

assume that the frequencies of the starting attribute value of every second histogram sector

are available. Observe that this can be computed in O(s) time (as opposed to O(L)), where

s is the number of sectors. Then we can generate a T-ACM which has a sector width that

is half of the sector width of HA and is much more superior than the initial T-ACM, TA.

The strategy to achieve this is given in the algorithm, Implement T-ACM, below.

Since the trapezoidal rule of numerical integration is more accurate than the left-end

or right-end rectangular rule of numerical integration, it is obvious that by virtue of the

construction of the T-ACM, TA is more accurate than the equi-width histogram HB. We

note that the area of a sector in TA may not be exactly equal to the actual number of tuples

falling in that sector. Hence, using the actual number of tuples within the sectors we can

partition the sectors to obtain the T-ACM, TB , where the sector areas represent the actual

number of tuples more accurately. Using the same arguments, we obtain the T-ACM, TC ,

from TB . The T-ACM, TC , can be expected to be more accurate than the T-ACM, TB , as

its boundary frequencies are more accurate estimates based on the actual number of tuples

falling within the sectors.

Algorithm 1 Implement T-ACM

Input: (i) Equi-width histogram HA with sector width l.

(ii) Starting frequencies of every 2nd sector.

Output: T-ACM with sector width l=2.

begin

Merge every two adjacent sectors of HA to get HB;

Generate T-ACM, TA from HB.

Estimate frequencies of TA's middle attribute values.

Generate TB from TA using frequencies obtained from the last step.

Estimate frequencies of TB's middle attribute values.

Generate TC from TB using frequencies obtained from the last step.

end;

EndAlgorithm Implement T-ACM

Thus, by invoking a small preprocessing step, we have generated a T-ACM that is much

more accurate than the original T-ACM derived directly from the corresponding histogram.

An example highlighting the steps taken by the above algorithm is shown in Figure 3. In this

example, the input to the algorithm is an equi-width histogram with two sectors as shown

in Figure 3(a). The number of tuples in the sectors are n = 24 and n = 36 respectively.

Also the starting frequency value of the �rst sector is 9 and the terminal frequency of the

second sector is 15. The �rst step of the algorithm merges these two sectors to create

a single histogram sector shown in Figure 3(b). The next step generates a trapezoidal

sector equivalent to this larger histogram sector. Since the trapezoidal sector is only an

approximation of the number of tuples represented by the rectangular sector, its area may

not reect the actual number of tuples (n = 60) falling within that sector. Hence in the
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Figure 3: Construction of a T-ACM

next step of the algorithm, we estimate the middle frequency (i.e: x3 = 8) of this sector

by using the total number of tuples within the sector. The resulting T-ACM sectors are

shown in Figure 3(d). Since the actual number of tuples contained in these two T-ACM

sectors are already known (they are n = 24 and n = 36), the next step of the algorithm

using this information, estimates the middle frequencies of these two sectors. The result is

the T-ACM shown in Figure 3(e).

Before we conclude, we emphasize that the technique speci�ed above for generating a T-

ACM is more heuristic in nature. The problem has also been formally approached. Indeed,

the issue of how the slope of a T-ACM bucket is determined is an interesting problem in

its own right. In [24], this problem has been reduced to an optimization problem based on

two error norms : the mean square norm and the absolute error norm. In each case, the

properties of the optimal T-ACM have been derived. This topic is discussed in depth in

[24], and is currently being prepared for publication.

3.4 Comparison of the ACMs to the Current State-of-the-Art

Since most of the current commercial DBMSs utilize non-parametric statistical techniques

for query result size estimations, we have listed these techniques for some of the popular

commercial DBMSs in Table 1. As can be seen from this table, most vendors use equi-depth

histograms as it is more accurate than the equi-width histograms for both worst-case and

average-case situations.

Having described the properties of the R-ACM and the T-ACM in the previous sections,

we shall now provide a comparison of the worst-case and average-case errors of these new
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Vendor Product Histogram Type

Oracle Oracle Equidepth

Sybase System 11.xx Equidepth

IBM DB2-MVS Equiwidth, Subclass of End-Biased(F,F)

Tandem NonStop SQL/MP Equidepth

Informix Online Data Server Equidepth

NCR Teradata Equidepth

Table 1: Histograms used in Some Popular Commercial DBMSs.

techniques to that of the traditional histograms. This is summarized in Table 2. It can be

seen from this table that both the R-ACM and the T-ACM are much more accurate for

query result size estimation than the traditional equi-width and equi-depth histograms.

Histogram Worst-case Error Average-case Error

Equi-width max
�
nj �

nj

l
;
nj

l

�
max

�
nj �

nj

l
;
nj

l

�
Equi-depth

2
3lj

1
2lj

R-ACM �

���ln� lj
i�1

�
� 1

��� 2�

T-ACM max
�
aj +

2(nj�aj l)

l(l�1)
i; nj � aj �

2(nj�aj l)

l(l�1)
i

�
0

Table 2: Comparison of Histogram and ACM Errors. Note that � is much smaller than lj.

Note that the quantities aj ; nj; i and l denote the frequency of the �rst attribute value

in a sector, total number of tuples in the sector, location of the attribute value Xi within

the sector and the sector width respectively.

4 TPC-D Benchmark Speci�cation

The TPC Benchmark D (TPC-D) has been proposed by the Transaction Processing Perfor-

mance Council (TPC) as a decision support benchmark. TPC-D models a decision support

environment in which complex ad hoc business-oriented queries are submitted against a large

database. The queries and the data populating the database have been chosen to have broad

industry-wide relevance while maintaining a suÆcient degree of ease of implementation. We

briey describe the TPC-D benchmark queries and its database model below. A detail de-

scription about the complete benchmarking requirements, including auditing can be found
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in the TPC-D speci�cation document [25].

4.1 TPC-D Benchmark Queries

The TPC-D benchmark queries typically involve, multi-table joins, extensive sorting, group-

ing and aggregation and sequential scans. The purpose of TPC-D is to assess cost versus

performance of a particular commercial system which supports the above queries. Since our

objective is to study the performance of the ACMs in terms of their estimation accuracy,

unlike a commercial DBMS, we do not require a fully functional DBMS for our experiments.

Most of the TPC-D queries contain relational operators other than selection and equality

join, and thus are not directly suitable for running on ACMs. Consequently, for our testing

purposes, we shall use a slightly modi�ed form of TPC-D queries by systematically elim-

inating the inapplicable operations such as grouping and aggregations etc., which are not

supported by our current research work. Eliminating queries containing views, and modify-

ing the remaining queries, we obtained a total of 11 query types from the original 17 query

types speci�ed in the TPC-D speci�cation. These query types are given in Table 4.

For each of the relevant query types listed in Table 4, we construct an operator tree

and estimate the result size of these operator trees in a bottom-up fashion. This bottom-up

query execution strategy works as follows. First, we estimate the result sizes and distribu-

tions of leaf-level operators using the ACMs on the base relations. Then we construct4 the

ACMs on the result distributions and use these ACMs for estimating the result size and

distributions of the operators in the next level of the tree. This process is repeated until the

result size of the root node of the operator tree is estimated. We also compute the exact

result size of the query by actually executing the simpli�ed queries on the same data using

a simple query processor which we implemented. Using these we compute the error from

the result size estimation using the ACMs. For example consider the query Q9 from Table 4:

select *

from supplier, partsupp, lineitem, order, nation

where partsupps.suppkey == lineitem.suppkey and

order.orderkey == lineitem.orderkey and

supplier.suppkey == lineitem.suppkey and

supplier.nationkey == nation.nationkey

Observe that the query itself involves joining the four relations supplier, partsupp,

lineitem, order and nation based on the equality predicates:

(i) partsupp.suppkey = lineitem.suppkey,

4The assumption we use is one of independence, in which the joint distribution at the higher level is taken

as the product of the marginals at the lower level. The question of how this is accomplished in a real query

optimizer is discussed in detail elsewhere [15]. [15] also catalogues the actual query processing advantages

(as opposed to histogram accuracy advantages) of both the R-ACM and the T-ACM.
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Figure 4: Operator Tree for Query Q9: Product Type Pro�t Measure Query

(ii) order.orderkey = lineitem.orderkey,

(iii) supplier.suppkey = lineitem.suppkey and

(iv) supplier.nationkey = nation.nationkey.

Each of them, in turn, is joined by an and clause which is �nally used to select all the tuples

from the resulting relation. Note that this join is actually a multi-table equi-join with a

multi-clause predicate. An operator tree corresponding to the query, Q9, is given in Figure

4.

All of the TPC-D benchmark queries involve business oriented questions using standard

SQL syntax, conforming to SQL-92 speci�cation. Table 3 describes each query in plain

English.

4.2 TPC-D Benchmark Database

The TPC-D database schema consists of eight tables detailed in the TPC-D speci�cation.

This schema models a database for a worldwide distributor that purchases parts from sup-

pliers and sells them to customers. The two largest tables are the master-detail pair of

Order and LineItem, which together constitute about 85% of the database. The other

tables describe the business's parts, suppliers and customers. All tables except the two

small Nation and Region tables scale linearly with the size of the database. The TPC-D

database can be scaled upto a size of 1000GB in order to support high-end systems. For

our experiments, we use a prototype version of this, namely, a test database with a size of

approximately 100MB. The TPC-D database itself is generated using the data generation
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Query No Name Description

Q2 Minimum Cost Find which supplier should be selected to

Supplier Query place an order for a given part in a given region

Q3 Shipping Priority Retrieve the 10 unshiped orders with the

Query highest value

Q5 Local Supplier List the revenue volume done through

Volume Query local suppliers

Q6 Forcasting Revenue Quantify the amount of revenue increase

Change Query in a given year

Q7 Volume Shipping Determine the value of goods shipped

Query between certain nations

Q9 Product Type Pro�t Determine how much pro�t is made on a

Measure Query given line of parts

Q10 Return Item Identify customers who might be having

Reporting Query problems with parts shipped to them

Q11 Identi�cation of Find the most important subset of

Stock Query suppliers' stock in a given nation

Q12 Shipping Mode Determine whether selecting less expensive

Query modes of shipping a�ect priority orders

Q14 Promotion E�ect Monitor market response to a promotion

Query such as a TV advertisement

Q17 Small-Quantity Determine revenue lost if orders where not

Order Query �lled for small quantities of certain parts

Table 3: Description of the TPC-D Queries

utility, DBGEN, supplied by the TPC. The DBGEN program generates mainly uniformly dis-

tributed data. Since, we are interested in modeling skewed data distribution as well, we

have opted to populate the database in three di�erent ways listed below.

In the �rst method we simply use the data from the DBGEN program. This typically

results in uniform data.

In the second method, we generate frequencies from a Zipf distribution with an appro-

priately chosen skew parameter, z, while retaining the original value domain and relation

sizes. We combine the attribute values in various attributes in each relation randomly to

generate the tuples for that relation, according to the frequencies obtained from the Zipf

distribution.

It is claimed that the multi-fractals distributions occur more frequently in the real world

data [5]. So in our third method, we generate frequencies using multi-fractal distributions

with various bias values for the original value domain from the TPC-D database. The

frequency values resulting from the multi-fractal distributions are combined with the values
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Query Number TPC-D Query

Q2 select s acctbal, s name, n name

from part, supplier, partsupp, nation, region

where r regionkey == 3 and

n regionkey == r regionkey and

s nationkey == n nationkey and p size == 40 and

ps partkey == p.partkey and ps suppkey == s suppkey

Q3 select l orderkey, o shippriority

from lineitem, order, customer

where l orderkey == o orderkey and c custkey == o custkey

Q5 select n name

from order, lineitem, customer, supplier, nation, region

where o orderkey == l orderkey and

l suppkey == s suppkey and c nationkey == s nationkey

and s nationkey == n nationkey and

n regionkey == r regionkey and r regionkey == 1

Q6 select * from lineitem

where l quantity � 25

Q7 select supp nation, cust nation

from lineitem, order, customer, supplier, nation

where s suppkey == l suppkey and

l orderkey == o orderkey and c custkey == o custkey

and n nationkey == c nationkey and n nationkey == 3

Q9 select *

from supplier, partsupp, lineitem, order, nation

where ps suppkey == l suppkey and

o orderkey == l orderkey and

s suppkey == l suppkey and s nationkey == n nationkey

Q10 select c custkey, c name, c acctbal, n name

from lineitem, order, customer, nation

where c custkey == o custkey and

l orderkey == o orderkey and c nationkey == n nationkey

Q11 select ps partkey from partsupp, supplier, nation

where ps suppkey == s suppkey and

s nationkey == n nationkey and n nationkey == 3

Q12 select * from order, lineitem

where o orderkey = l orderkey

Q14 select * from part, lineitem

where p partkey == l partkey

Q17 select * from lineitem, part

where p partkey = l partkey and

p brand = 'Brand4'

Table 4: Simpli�ed TPC-D Benchmark Queries
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Figure 5: Zipf Distributions for Various z Parameters

from the TPC-D database to generate the tuples for the new relations.

Since the second and third methods of populating the databases of our experiments

involve the Zipf and multi-fractal distributions, we give a brief overview of these distributions

in the next section.

5 Overview of the Distributions Used in the Experiments

5.1 Zipf Distribution

G.K. Zipf �rst proposed a law, called the Zipf's law, which he observed to be approximately

obeyed in many of the real-world domains, such as physics, biology, income distributions

[26]. Zipf's law is essentially an algebraically decaying function describing the probability

distribution of the empirical regularity. Zipf's law can be mathematically described in the

context of our problem as follows.

For an attribute value X of size N with L distinct values, the frequencies generated by

the Zipf distribution are given by,

fi = N:
1=izPL
i=1 1=i

z
; for 1 � i � L:

The skew of the Zipf distribution is a monotonically increasing function of the z param-

eter, starting from z = 0, which is the uniform distribution. We have plotted the frequency

sets of several Zipf distributions with di�erent z values in Figure 5. These frequency distri-

butions were all generated for N = 2000 and L = 10.

One of the common claims in database literature is that many attributes in real-life

databases contain a few attribute values with high frequencies and the rest with low fre-
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Figure 6: Generation of a Multi-fractal Distribution - First three steps

quencies [4], and hence can be modeled satisfactorily by Zipf distributions. Statistical

literature also abounds with information on modeling real-life data by Zipf distributions.

This is why we have also resorted to using Zipf distribution to generate frequencies for the

value domains in the TPC-D benchmark databases.

5.2 Multi-fractal Distribution

The relationship of multi-fractals with the "80-20 law" is very close, and seem to appear of-

ten. Several real-world distributions follow a rule reminiscent of the 80-20 rule in databases.

For example, photon distributions in physics, or commodities (such as gold, water, etc) dis-

tributions on earth etc., follow a rule like "the �rst half of the region contains a fraction p of

the gold, and so on, recursively, for each sub-region." Similarly, �nancial data and people's

income distributions follow similar patters.

With the above rule, we assume that the attribute value domain is recursively decom-

posed at k levels; each decomposition halves the input interval into two. Thus, eventually

we have 2k sub-intervals of length 2�k.

We consider the following distribution of probabilities, as illustrated in Figure 6. At the

�rst level, the left half is chosen with probability (1� p), while the right half is with p; the

process continues recursively for k levels. Thus, the left half of the sectors will host (1� p)

of the probability mass, the left-most quarter will host (1� p)2 etc.

For our experiments we use a binomial multi-fractal distribution with N tuples and

parameters p and k, with 2k possible attribute values. Note that when p = 0:5, we have the

uniform distribution. For a binomial multi-fractal, we have

Count Relative Frequency

C
k
0 p

k

C
k
1 p

(k�1)(1� p)1

: : : : : :

C
k
a p

(k�a)(1� p)a

: : : : : :

22



In other words, out of the 2k distinct attribute values, there are C
k
a distinct attribute

values, each of which will occur N � p(k�a)(1 � p)a times. (For example, out of the 2k

distinct attribute values, there is Ck
0 = 1 attribute value that occurs pk times.)

6 Experiments with the TPC-D Benchmark Database

Unlike the prototype validating experiments which were discussed in [22, 23], the TPC-D

benchmarking experiments involve arbitrarily large and complex query types. Consequently

there are often thousands or more possible query evaluation plans (QEPs) for executing

them. Since our objective is to compare the query result size estimation accuracy of various

techniques as opposed to choosing the optimal QEP, we randomly selected an arbitrary QEP

for a given query type and constructed the corresponding operator tree. The result size of

this operator tree was then estimated in a bottom-up fashion from the leaves of the tree to

the root of the tree. It is important to note that, unlike the case of a primitive relational

operation, with these simulated "real-life" query types, it was necessary to construct the

ACMs and histograms for all the resulting intermediate relations. What follows is the

details of the results we obtained.

The experiments we conducted with the TPC-D benchmark database involved three

distinct groups. In the �rst set of experiments, we used the uniform distribution data

that was generated by the DBGEN program from TPC. We computed the estimation errors

from the equi-width, equi-depth histograms, the R-ACM and the T-ACM for the set of

TPC-D queries from Table 4. We conducted ten di�erent set of experiments using the

histograms and the ACMs with di�erent build-parameters. The build-parameter for the

equi-width histogram and the T-ACM is the sector width, the build-parameter for the

equi-depth histogram is the number of tuples per sector and the build parameter for the

R-ACM is the tolerance value, � . For each attribute involved in the query, we generated the

equi-width and equi-depth histograms with di�erent sector-widths and di�erent number of

tuples/sector respectively. The corresponding T-ACMs were also generated with the same

sector widths that were chosen for the equi-width histograms. The T-ACMs were generated

using the Implement T-ACM algorithm, which is a much improved version of the original

Generate T-ACM algorithm given in [17]. Similarly for each attribute involved in the query,

we generated the R-ACM with a di�erent value for the tolerance, � . In order to obtain a

fair comparison, the build-parameters for all di�erent techniques were chosen such that the

resulting storage requirements were the same, regardless of the method. The result sizes and

consequently the computed estimation errors were averaged over these set of experiments.

The results are shown in Table 5.

In the second set of experiments, we used Zipf data distributions with three di�erent skew

values (z = 2; z = 4; z = 6) on the value domains of the various attribute values of the TPC-

D database and computed the estimation errors from the equi-width, equi-depth histograms,

the R-ACM and the T-ACM. Again we conducted ten di�erent set of experiments using

di�erent build-parameters for the equi-width, equi-depth histograms, the R-ACM and the

23



Error with Uniform TPC-D Database
TPC-D Query Actual Result Size

Equi-width Equi-depth R-ACM T-ACM

Q2 918 10.94% 9.60% 3.21% 3.72%

Q3 42190 13.62% 11.39% 4.37% 5.73%

Q5 209018 10.05% 9.68% 2.55% 3.61%

Q6 20706 12.33% 10.16% 4.38% 4.27%

Q7 2041 15.20% 10.75% 6.13% 5.99%

Q9 2.71e+06 13.83% 11.42% 5.48% 4.91%

Q10 44823 14.07% 12.93% 5.06% 6.15%

Q11 511 11.39% 10.40% 4.21% 5.03%

Q12 19 25.97% 22.73% 5.81% 5.62%

Q14 36724 14.66% 13.45% 4.77% 5.28%

Q17 523 20.35% 19.73% 5.81% 6.37%

Table 5: Estimation Error with Histograms, R-ACM and T-ACM on Uniform TPC-D

Database

T-ACM. Due to the steep frequency variations of the Zipf distributions used, the R-ACM

partitioning resulted in a very large number of sectors. In order to avoid this, we were

forced to choose somewhat larger tolerance values for the R-ACM partitioning. As with the

�rst set of experiments, in order to make a fair comparison of the various techniques, the

build-parameters were chosen so that the resulting storage requirements were same for the

histograms and the ACMs. The experiments were conducted for the set of TPC-D queries

listed in Table 4. We averaged the results for the three Zipf distributions and computed

the estimation errors. The results are given in Table 6.

The third set of experiments involve using the multi-fractal distributions. A single scan

through the data generated by the DBGEN program returns the number of distinct attribute

values for each of the attributes involved. We selected three di�erent bias values (p =

0:1; p = 0:3; p = 0:4) that resulted in three completely di�erent multi-fractal distributions.

The frequencies from these multi-fractal distributions were applied randomly to the value

domain of the attributes in the TPC-D database to generate a new set of relations. As

before we conducted ten di�erent set of experiments with di�erent build-parameters for the

equi-width, equi-depth histograms, the R-ACM and the T-ACM, using the same storage

requirements. Again the experiments involved applying the TPC-D queries from Table

4. We averaged the results for the three multi-fractal distributions and computed the

estimation errors. The results are given in Table 7.
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Error with Zipf-TPC-D Database
TPC-D Query Actual Result Size

Equi-width Equi-depth R-ACM T-ACM

Q2 161 27.46% 24.30% 9.62% 11.83%

Q3 26428 29.75% 26.42% 12.87% 12.90%

Q5 38620 19.07% 17.29% 9.46% 10.94%

Q6 16271 17.20% 14.65% 9.33% 6.85%

Q7 263 26.71% 25.80% 13.42% 15.25%

Q9 2.8e+06 19.81% 20.11% 10.66% 11.17%

Q10 22670 26.28% 23.04% 12.37% 8.42%

Q11 395 21.44% 17.59% 9.28% 9.91%

Q12 38 37.46% 31.72% 14.36% 15.11%

Q14 26538 23.81% 21.25% 15.30% 14.65%

Q17 1932 31.63% 29.28% 11.92% 10.87%

Table 6: Estimation Error with Histograms, R-ACM and T-ACM on Multi-fractal TPC-D

Database

7 Analysis of the Experimental Results

Our results from these three set of TPC-D benchmark experiments con�rm our theoretical

results, summarized in Table 2, and clearly demonstrate that the estimation accuracy of

the R-ACM and the T-ACM structures is superior to that of the traditional equi-width and

equi-depth histograms.

As we can observe, the estimation errors for the histograms and the ACMs are the lowest

for the experiments with the original TPC-D database, which was generated by the TPC

supplied DBGEN program. For example, for the TPC-D query Q2, the estimation errors

for the original TPC-D database from Table 5 are 10.94%, 9.60%, 3.21% and 3.72% for

the equi-width, equi-depth, R-ACM and T-ACM respectively. Whereas, as can be seen

from Table 6, the estimation errors for query Q2 with the multi-fractal TPC-D database

are 27.46%, 24.30%, 9.62%, and 11.83% in the same order. The estimation errors for the

Zipf TPC-D database, given in Table 7, are even higher. The reason for the lowest error

with the original TPC-D database is, that it is uniformly distributed. Similarly the reason

for the largest estimation errors with the Zipf TPC-D database is obviously due to the

steep frequency changes by virtue of the underlying Zipf distribution. Another reason why

the estimation errors for the R-ACM are larger than for the �rst set of experiments is

our choice of comparatively larger tolerance values to avoid generating R-ACMs with large

number of sectors. The estimation accuracy of the R-ACM and that of the T-ACM are

almost comparable except for range-select queries, where the T-ACM out-performs the R-

ACM. This is due to the fact that the trapezoidal rule of numerical integration is more

accurate than the right-end or the left-end rectangular rule of numerical integration for
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Error with Multi-fractal-TPC-D Database
TPC-D Query Actual Result Size

Equi-width Equi-depth R-ACM T-ACM

Q2 528 30.49% 28.26% 15.42% 17.22%

Q3 26210 29.83% 24.68% 14.58% 16.26%

Q5 132450 40.63% 36.27% 12.72% 10.67%

Q6 19204 30.20% 26.11% 14.32% 11.71%

Q7 3096 34.26% 27.42% 12.33% 15.24%

Q9 3.6e+06 28.39% 25.75% 9.97% 9.29%

Q10 40022 26.92% 24.18% 11.92% 13.33%

Q11 212 28.21% 22.73% 12.07% 13.15%

Q12 86 26.42% 23.12% 10.25% 12.63%

Q14 49270 26.25% 21.49% 13.92% 12.84%

Q17 976 23.46% 21.22% 14.67% 15.90%

Table 7: Estimation Error with Histograms, R-ACM and T-ACM on Zipf TPC-D Database

computing the area under a curve.

The results from all three sets of experiments show that the estimation errors resulting

from the R-ACM and the T-ACM are consistently much lower than the estimation errors

from the equi-depth and equi-depth histograms. This is consequent to the fact the fre-

quency distribution of an attribute value within an R-ACM is guaranteed to be close to the

sector mean since the partitioning of the sectors is based on a user-speci�ed tolerance value,

and the deviation from the running mean. Similarly, the trapezoidal rule of the numerical

integration technique is more accurate than the right-end or left-end histogram approxima-

tion techniques. Thus, these set of experiments with the TPC-D benchmark queries and

databases demonstrate that the R-ACM and T-ACM strategies exhibit a distinctively su-

perior performance over the traditional equi-width and equi-depth histograms. Such results

are typical with both synthetic data and real-world data. The power of the ACM structures

is obvious!

8 Conclusion

Benchmarking is an important and complex phase in the development of any new software

strategy. In this paper, we have presented a set of benchmarking experiments and reported

their respective results to validate the performance of two new histogram-like query result

size estimation strategies, namely the Rectangular and Trapezoidal Attribute Cardinality

Maps (R-ACM and T-ACM) [16, 17]. The set of benchmarking experiments we used were

based on the industry-popular TPC-D benchmark database and query sets.

It was claimed in [16, 17] that, since the R-ACM and T-ACM techniques are based
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on the philosophies of numerical integration, they are more accurate than the traditional

histograms. Their analytical properties were also presented in [16, 17]. We also presented a

set of prototype validating experiments and their results on real-world data in [22, 23]. But

those experiments only included some synthetic queries, involving simple elementary rela-

tional operations. The benchmarking experiments we conducted in this work included both

an arbitrarily large simulated "real-world" database and a set of highly complex simulated

"real-world" query patterns, both satisfying strict industry related standards. These exper-

imental results clearly demonstrate and validate our theoretical analysis of the R-ACM and

the T-ACM and their superiority over the current state-of-the-art estimation techniques

based on the traditional equi-width and equi-depth histograms. We hope that these new

structures will become invaluable tools for query optimization in the future due to their

superior estimation accuracy and low implementation overheads.

Although this paper has answered a few questions, it has also opened the door to a

lot of new research avenues. It is not unwise to add that since the study of ACM's is

in its infancy, many questions remain unanswered. In particular, we emphasize that the

experimental comparison between the ACMs and many of the other reported histogram

methods (other than the equi-width and equi-depth representations) has still to be done.

The entire issue of how insertion and deletion operations can be achieved using the ACM's

also remains unsolved. Although some of the work in these areas has been initiated, we

invite collaborations and joint research endeavours.

A few commercial database vendors are currently investigating the possibility of using

some of the concepts introduced in this work.
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