
INFORMATION SCIENCES 23,201-217 (1981) 201

An Effective Algorithm for String Cowection
Using Generaliied Edit Distances-
II. Computational Complexity of the Algorithm and Some Applications*

R. L. KASHYAP
and
B. J. OOMMEN

School of Electrical E~gj~eer~n~ Purdue Uniuersity, West Lafayette, Indiana 47907

Communicated by John M. Richardson

ABSTRACT

This paper deals with the problem of estimating an unknown transmitted string X,
belonging to a finite dictionary H from its observable noisy version Y. In the first part of this
paper [IS] we have developed an algorithm, referred to as ~go~t~ I, to find the string
Xi fH which minimizes the generalized Levenshtein distance D(X,/Y). In this part of the
paper we study the computations complexity of Algorithm I, and illustrate qu~titatively the
advantage Algorithm I has over the standard technique and other algorithms. Its superiority
has been shown for various dictionaries, including the one consisting of the 102 1 most common
English words of length greater than unity [23]. A comparison between Algorithm I and other
algorithms used to correct misspelled words of a regular language is also made here. Some
applications of Algorithm I are also discussed.

I. INTRODUCTION

This paper discusses the ~rnpu~tio~~ ~mple~ty of the agony, called
Algorithm I, presented in the companion paper [18]. The algorithm processes a
string Y, which is a noisy version of a transmitted string X,, an element of a
finite dictionary 2%. It yields as its output the string X+ EH, defined as the best
estimate of X,, which minimizes the generalized Levenshtein distance D(X/ Y)
between X and Y.

To study the complexity of Algorithm I, we shall make use of the tree
structure of the finite state machine (FSMJ that accepts the dictionary H. We
shall first derive an upper bound for the number of symbol comparisons

*Partially supported by National Science Foundation under Grant No. NSF 7% 1827 I.

WJsevier North Holland, Inc., 1981
52 Vanderbilt Ave., New York, NY 10017 oo2o-o255/81/03201-17$02.50

202 R. L. ICASHYAP AND B. J. OOMMEN

required by Algorithm I in terms of the parameters of this tree. We shall then
proceed to obtain an approximate, but more useful, expression for the number
of symbol comparisons required by Algorithm I. Using these results, a quantita-
tive comparison is made between Algorithm I and the standard technique (ST),
which computes X+ after individually computing D(X/Y) for every XEH.
This comparison has been made for many dictionaries, including the one
consisting of the 1021 most common English words of length greater than unity
[23]. From the results presented here, we claim that Algorithm I is in general less
complex than the ST and other algorithms.

Throughout this paper, a knowledge of the rest of the terminology and the
notation of the companion paper [181 is assumed.

II. COMPUTATIONAL COMPLEXITY

To evaluate the number of symbol comparisons Algorithm I needs, we will
have to take into account not onb the lengths of the words in the dictionary and
the length of the incoming string, but also the advantage obtained by the use of
the information contained in the prefixes of the words. To do this we shall make
use of the tree structure of the FSM that accepts H, described in Sec. III of our
companion paper [181. Let Y be the set of all the prefixes of the words in H.
Any study of the complexity of Algorithm I will have to progressively count the
number of elements of V (or equivalently, the number of nodes of the tree) to
which YtK) can be edited with a finite pseudodistance. The technique by which
this counting is done is explained in the next subsection.

11.1. UPPER BOUND FOR THE NUMBER OF SYMBOL COMPARISONS REQUIRED

Let H be a dictionary consisting of J words, and let N,,, be the length of the
longest word in H. Let M be the length of the noisy string Y. Let qi be the
number of elements of Y of length i. Since p is the only prefix of length zero, we
define q. to be equal to unity. Further, since N, is the length of the longest
words in H, qN,,+ , is identically equal to zero.

For the sake of convenience, we define ai as the ratio of q, to qi- , for i3 1:

By definition, a, is unity, and a,“, + , is zero. Consequently, qi =~+,a,. . . a, for all
i. a, can be interpreted as the average number of branches from the nodes of the
tree which have a depth of i - 1.

ALGORITHM FOR STRING CORRECTION-II 203

To simplify the notation, we introduce a constant T, defined as

N

T=? I 1 NIPI if May,

=M otherwise, (2.1)

where [bl is the smallest integer greater than b. Using the above constants we

shall first obtain an upper bound for the size of the set R(‘).

LEMMA I. Let q, be the number of elements of V which are of length i. Then an
upper bound for the number of elements in R(” is

2i

#(R”‘)G x q J
if itT,

j=O

otherwise.

Proof. Suppose we edit Yci) into some string Z. If the pseudodistance

D,(Z/ Yci)) has to be finite, then by virtue of Assumption ii of [181, (ZJ must be
less than or equal to 2i. Hence, the set R(‘) is always a subset of the smaller of
the two sets H(2i) and V. When i< T, the smaller of the two sets is always Hc2’) ,
and when i&T, every string in V can be in R”‘. The Lemma is proved by
combining this fact with the fact that

We shall now derive an
required by Algorithm I.

#@I”‘)= 2 4,.
J=o

n

upper bound for the number of symbol comparisons

THEOREM I. Let qi be the number of elements of V which are of length i.
Further, let qN,, be zero. Then an upper bound for the number of symbol
comparisons required by Algorithm I is given by S,, as

T 2(i--1) Nn,--l

~AI= E I: (qj+l+qj+2)+(M_TT) 2 (qj+,+qj+z). (2.2)
i=l j=O j=O

Proof. Consider the tree which represents the FSM described above.

204 R. L. KASHYAP AND B. J. OOMMEN

(1) Between any node (Y and its child old there is only one extra symbol, say
ad,, which is the last symbol of the node Q. Thus for any node cu ER(‘- I), we
need only one symbol comparison, namely that of a,, with y,, to determine
whether its child (Ye belongs to R(‘) or not.

(2) Between any node a and its grandchild og there are two extra symbols,
say a,, and a,,, the last and the last-but-one symbols of ag respectively. By
virtue of Theorem II of [181, for every node (Y E R”- ‘), we need only one symbol
comparison, namely that of a,, withy,, to determine whether (rg belongs to R(‘)
or not.

(3) Consider the ith stage of Algorithm I, when the symbol yi has to be

processed. Let us assume that all the qj nodes at thejth level of the tree are in
R(‘-‘). These qj nodes together have exactly qj+, children nodes, and qj+2
grandchildren nodes. Using the arguments of (1) and (2) above, we will need one
symbol comparison for each child and grandchild node respectively to de-
termine whether they are in R(‘) or not. Hence in the process of iterating from

stage i- 1 to stage i the total number of symbol comparisons required by all the
qj nodes in R(‘-‘) is given by

Clearly this will be true for all OGj< N,,, - 1, since q,,,+ , =O.
(4) Combining the results of (l)-(3) above, and using the expression for the

upper bound of the size of R”’ given by Lemma I, we obtain that for a giuen
i< T, the total number of symbol comparisons required to iterate from stage
i- 1 to stage i has an upper bound of

2(i- 1) ,

If (qj+l+q,+*)-

j=O
(2.3)

Consequently, the total number of symbol comparisons required to iterate till
stage T is bounded by

T 2(i--1)

IZ 2 (qj+l+qj+*).
i=t j=lJ

(2.4)

In a similar way we argue that the total number of symbol comparisons required
to iterate from stage T till the end of the algorithm is bounded by

N,,,-1

CMBT) X0 (qj+l+qj+J. (2.5)

ALGORITHM FOR STRING CORRECTION-II 205

If MCI N,J21, obviously, only the terms contributed by (2.4) need to be
included in S,,. In such a case, the terms contributed by (2.5) will be automati-
cally excluded, since T will then have the value M. Combining (2.4) and (2.5),
we obtain the expression given in (2.2), and the theorem is proved. l

REMARK. The above expression can be equivalently written in terms of the
aj’s defined earlier. In the case of a dictionary in which each aj is equal to an
integer a, where a>2, S,, has the form

T Z(i-1) N,,,-2

aA,= x 2 (aj+‘+aj+2)+(M-T) 2 (ai+‘+ai+2)+(M-T)J.
i=, j=O i=O

If all the words in H are of the same length, this reduces to

a2
44, = 2

a2

(a-l)
*a2’+(M-T)J.~--_i--

(a-1)
MT;“:,‘) . (2.6)

11.2. APPROXIMATE NUMBER OF SYMBOL COMPARISONS REQUIRED

Simulations of Algorithm I indicate that the upper bound for the size of R(‘)
given by Lemma I is far too conservative. Thus, we believe that the upper bound
S,, is also far too conservative. We will derive a “better” estimate of the number
of symbol comparisons required by Algorithm I, by obtaining an estimate of
R(‘) which gives a better reflection of its true size than that given by Lemma I.

Suppose that with every bEA, we associate a set A, which is a subset of A.
Let x EA, iff d(x/b) < 00. A,, is the set of letters in A which could have given
rise to the received symbol b. The set A, is always a set much smaller than A [12,
211. Hence R(‘) will not contain all the elements of V which are of length less
than or equal to i. Some typical values of the sizes of R(‘) and H(‘) obtained in
the actual simulation of Algorithm I for a dictionary of 50 words used in the
context of computers is given in Table 1.

TABLE 1

Approx. Size

Size R(” of H”’

17 17
33 52
51 97
74 138

100 167

206 R. L. KASHYAP AND B. J. OOMMEN

Table 1 seems to indicate that a more reasonable assumption regarding the
set R(‘) is that R(‘) has the same number of elements as H(j). Using this

assumption, and arguments similar to the ones used to get the upper bound aa,,
we can derive an expression for ear, the approximate number of symbol
comparisons required by Algorithm I. For a dictionary which has aj =CI, and
when M=N, ti,, will have the following expression:

N-l i-l N-2

BA,= 2 2 uj(a+a2)+ 2 uj(u+u2)+.r. (2.7)
i=r j=O j=O

We shall later compare Algorithm I and the ST using (2.7).

III. COMPARISON OF ALGORITHM I WITH OTHER EXISTING
ALGORITHMS

III.1. COMPARISON WITH THE ST

The standard technique (ST) of obtaining the string X+ which minimizes the
distance D(X/Y) is one of individually computing the distances D(X/Y) for

every XEH, and then by observation deciding on X+. Wagner and Fisher [21]
have given an algorithm using which D(X/ Y) can be computed for a given pair
X and Y involving at least (X(] YJ symbol comparisons.

An asymptotically faster algorithm has been suggested in [5], but due to the
amount of preprocessing required for it, the latter algorithm is preferable only
when 1 XI and 1 Y) are vey large. In our comparison of Algorithm I with the ST,
we shall restrict ourselves to the algorithm of Wagner and Fisher [21], since it
has some desirable optimal properties [22].

Let H, the finite dictionary, consist of J words, and let N, be the length of the
i th word in H. Then 0sr , the minimum number of symbol comparisons required
by the ST, has the expression

where M is the length of the noisy string Y.
Comparing the expressions for 8, and aA,, we observe that they are depen-

dent on different sets of parameters of H. Whereas Bs, involves the lengths of
the words in H, S,, involves the parameters q, , i G N,,, , defined earlier. Thus a
quantitative comparison between 8,, and S,, can be made only for specific
dictionaries, in which all the parameters required for the comparison are known.

ALGORITHM FOR STRING CORRECTION-II 207

We shall employ the following strategy to compare 8sr and S,,. In Case i, we
first consider the dictionary consisting of the 1021 most common English words
of length greater than unity [23] and show the superiority of Algorithm I over
the ST for this dictionary. In Cases ii and iii we consider some generalized
dictionaries specified by the parameters of the FSM accepting H. Concerning
the lengths of the words in H, we observe that whereas S,, requires the
knowledge of the length of only the longest word in H, 0, requires the
knowledge of the lengths of all the words in H. Specifying the lengths of all
the words in H will increase the number of parameters in this comparison, and
will make the comparison more cumbersome. To simplify the issue, we make the
comparison in the latter two cases by assuming that all the words in H are of the
same length N.

Case i. Comparison with the ST for a Practical Dictionary

We shall first compare Algorithm I with the ST for a practical dictionary,
taking into consideration both the varying lengths of the words in H, and the
statistical properties of the prefixes of the words in H. The dictionary which we
have used is the set of the 1021 most common English words of length greater
than unity [23]. The lengths of the words varied from 2 to 14, the average length
being 5.57.

In Table 2 we give some statistics regarding the dictionary and of its prefixes.
From the table we observe that though the sum of the lengths of all the strings is
5684, the total number of states in the FSM is only 2942.

i

1
2
3
4
5
6
.I
8
9

IO
II
12
13
14

TABLE 2

No. of words

0
21
91

239
205
167
126
76
51
20

9
6
2
2

4, a

24
157
524
611
561
409
272
156
88
39
19
10
4
2

aN~tation: q, is the number of ele-
ments of V of length i.

R. L. KASHYAP AND B. J. OOMMEN

Using arguments analogous to those used in Theorem I, we have computed
aA,, the upper bound of the number of symbol comparisons required by
Algorithm I. We have also computed 8,, the number of symbol comparisons
required by the ST. S,, and t9sr have been evaluated for values of M, the length
of the incoming string, ranging from 2 to 14. Since we have assumed that the
channel obeys Assumption ii of [181, if the noisy string is of length M, the length
of the transmitted words has to be less than or equal to 2M. Hence, to be fair,
when we computed 8,, we considered only the words of H which were of length
less than or equal to 2M.

In Table 3 we have tabulated the results obtained. The superiority of
Algorithm I over the ST is obvious. For example, if the length of the incoming
string is 4,&r is greater than aA, by a factor of 1.6 14. In this case, the number of
symbol comparisons required by the ST is at least 19,200; the upper bound on
the number of symbol comparisons required by Algorithm I is only 11,895. The
approximate number of symbol comparisons in this case is only 6,407, indicat-
ing that Algorithm I has an approximate advantage over the ST of a factor of
about 3.00. The average value of f?,, is 28,180, and the average value of BST is
43,843, which exceeds 6’,, by approximately 56%.

TABLE3

M 6 ST 6
esT

Al e Al G
2 2,566 2,244 1.15 1,043 2.46
3 9,930 6,515 1.52 3,106 3.20
4 19,200 11,895 1.61 6,401 3.00
5 27,295 11,646 1.55 10,678 2.56
6 33,780 23,484 1.44 15,630 2.16
7 39,188 29,342 1.36 21,010 1.89
8 45,412 35,202 1.29 26,634 1.71
9 51,156 41,062 1.25 32,385 1.58
IO 56,840 46,922 1.21 38,194 1.49
11 62,524 52,782 1.19 44,032 1.42
12 68,208 58,642 1.16 49,884 1.37
13 13,892 64,502 1.14 55,742 1.33
14 79,516 70,362 1.13 61,602 1.29

The superiority of Algorithm I over the ST for this dictionary is much smaller
than what we can obtain for other dictionaries. In this case, whereas a, has the
value 24, and a2 has the value of about 6.5, all the other ai’s are of the order of
unity. This large value of a, in comparison with the rest of the ui’s dampens the
advantage gained by Algorithm I. A much greater advantage can be expected
when all the ui’s are of the same order of magnitude. The following two cases
illustrate this.

ALGORITHM FOR STRING CORRECTION-II

Case ii. when M= Nf 4 and the Parameters a, Vary Independentb

When N = 2,

S,, =2a, +3a,a,

and

8, =4a,a2.

It is seen that t9sT>aA, for all a, when a, >2. When a2 =2, BsT=SA,, and
hence, independently of a,, for all a2 >2, Algorithm I is computationally less
complex than the ST.

When N=3,

6,,=3a, +5a,a, +4a,a,a,

and

so

4T34I for a,>$--+l.
2

(3.1)

From (3.1) we observe that &r>GA, for all dictionaries for which a2= 1.
Further, when a2 > 1, the subset of dictionaries for which the ST can be superior
to Algorithm I is a small subset of the set of dictionaries that can be formed
with words of length 3 haying a, > 1. This is because, if a3 is plotted as a
function of a2 so as to satisfy (3.1), it is seen that area in which a3 <3/5a, + 1

is much smaller than the area in which a3 > 3/5a, + 1.
When N=4,

6,,=4a, +7a,a, +6a,a2a3 +5a,a2a3a,

and

OS,== 16a,a,a,a,. (3.2)

The inequality 8, >SA, has three independent parameters a2, a3, and a4. But

210 R. L. KASHYAP AND B. J. 00-N

we can analyze it for various values of a2. For example, if a2 = 1,

Gr%Al
1 6

when a,>---+~.
a3

In this case, the area in the u3-a4 space for which Bsr>SA, is much larger than
the area for which 8, <aa,. Further, this area increases with cr. Thus the subset
of dictionaries for which the ST can be superior to Algorithm I is a very small
subset of the set of dictionaries of words of length four.

Case iii. Dictionaries in which N>4 and AN the ai’s Are Equal.

When N>4, a comparison such as the above is more complex, due to the
number of independent parameters. We shall simplify the comparison by using
the expression (2.6). Consider the case when N is even. Since J=aN,

a2J &4Al=----5 +(ZM-N)J--5 -
Ma(a+ 1)

(a-1) a-l ’ (3.3)

8, = JMN.

From the above we observe that though es, has a product term involving M
and N, S,, has only terms linear in M and N. Hence, S,, will be one order of
magnitude smaller than 0,.

In particular, S,, G& for all N>2 and even. This follows from the fact that
since a/(a- 1) >2 for a>2, the sufficient condition for S,, <8, reduces to

(M+2)(N-4)> -4,

which is clearly satisfied for all positive integers M, N, N>2.

To appreciate the advantage of Algorithm I for more general values of J, M,
and N, the equation (2.6) has been evaluated for various values of a, M, and N,
N>4. For any given a and N, the length A4 of the noisy string Y was varied
from N/2 to 3N/2. In each case the values of BsT and S,, and the ratio t9,/8,,
were computed. The average values of BsT, S,, , and 8,/8,, are tabulated in
Table 4. We have simultaneously tabulated the values of 0,, from (2.7) for
various values of the parameters and given the ratio of es, to e,,. In the last
column, we present the actual ratio of es, to t9,, , for M= N. The following are

ALGORITHM FOR SIRING CORRECTION-II 211

TABLE 4=

J a N Av(a,,) Av(k)
8 F
Al

Al

32 2 5 353 120 2.85 218 2.88

64 2 6 984 2,304 2.16 592 3.89

128 2 I 2,005 5,824 4.15 1,226 5.12

243 3 5 1,916 5,468 4.80 1,419 4.28

256 2 8 5,068 16,384 3.95 2,500 6.55

512 2 9 10,185 39,168 5.69 5,054 8.21

129 3 6 8,163 26,244 4.00 4,329 6.06

1,024 4 5 1,250 23,040 6.64 4,964 5.16

1,024 2 IO 24,512 102,400 5.21 10,168 10.07

aNotation: Av() = average of the quantity in parentheses for N/2< M< 3 N/2.

some of the results observed from the computations:
(1) For all values of M and N, the ratio of 8, to S,, increases with J.
(2) For all values of J and N, the ratio &-r/~,, decreases with M.
(3) For all N and for all N/2< M<3N/2, independent of the value of J,

0, ~6”~. For example, when H consisted of 256 words each of length 8, for
M= 4, the number of comparisons required by the ST was 8192, whereas 996
comparisons were required by Algorithm I. The ratio &r/S,, for this J, N and
M was 8.225. It must be noted that the average value of 0,/S,, is not the same
as the ratio of the average values of es, and S,, . The index Av(B, /a,,) has
been computed by evaluating esr /a,, for various values of M, N/2 d M< 3 N/2
and averaging these quantities over M. In this case the average values of 8, and
S,, were 16384 and 5068 respectively. The average value of &r/a,, indicated an
average advantage of Algorithm I over the ST of a factor 3.945.

(4) From the last two columns of the table, we observe that the approximate
number of symbol comparisons required by Algorithm I given by e,, is much
less than the upper bound given by S,,. Consequently, the advantage of
Algorithm I over the ST is much greater than the sixth column seems to
indicate. For example, in the case when H consists of 256 words, each of length
eight and a = 2, the number of approximate number of comparisons required by
Algorithm I is only 2500, compared to the 16,384 comparisons required by the
ST. In this case the gain in computation is approximately 6.5.

111.3. COMPARISON WITH ALGORITHMS OTHER THAN THE ST

Wagner [20] has given an algorithm, called Algorithm A,, to correct errors
in regular languages, which utilizes the fact that the recognizer for a regular
language is a FSM. We shall compare Algorithm I and Algorithm A,, making

212 R. L. KASHYAP AND B. J. OOMMEN

use of the assumption that the channel does not delete P consecutive symbols of
X, in transmission (which assumption has been validated in [181).

Since Algorithm I makes the maximum use of the information contained in
the prefixes of the words in H, its complexity is not merely a function of the
length of the noisy string, but is also an explicit function of the quantities qi,
defined in Sec. II. To render the comparison between the two algorithms
meaningful, we shall compare Algorithm I and Algorithm A, for identical
dictionaries and for identical noisy strings.

Since the dictionary H is finite, and since the processing of the input string is
symbol by symbol, the FSM used by A, to accept H will be identical to the one
defined by us. Both Algorithm A,,, and Algorithm I perform the distance
computation in M stages, where M is the length of the noisy string Y. The
number of computations done per stage in either case is the function of the total
number of computations done per state of the FSM and the number of states
for which the computation must be done.

At the Kth stage of the computation, let QCK’ be the set of states for which
the edit distance must be computed by Algorithm A,. The corresponding set
for Algorithm I is R (W In the case of A W, even for the processing of yr (the first .
incoming symbol), the distance D(a/ Y(l)) will be computed for every cw E I/.
This is because Algorithm A,,, has no ability to exploit the property of the
channel given by Assumption ii of [181. However, as shown in Lemma I, the set
RcK) is always a subset of HcZK) which in turn is always a subset of V. Thus for
every stage of the computatiok, Algorithm A, computes D(a/YcK)) for a
superset of R (K) This fact itself makes Algorithm I computationally less .
complex than Algorithm A,.

Further, in the execution of Algorithm I, suppose some state OL E V is an
element of RtK). To determine D,(a/YcK)), the only distances that need to be
considered are D,(/3/YcK-‘Q where/J is an element of a set, say TA,(a), defined

by

T,,(a)={j3]/3is thejth order left derivativeof cy; O<jGP}.

The set 7”,(CY) will contain at the most P+ 1 terms. Hence, for every (YE RcK), to
compute D,(a/YcK’), only a maximum of P+ 1 computations need be done.

However, if the algorithm A, is at an identical stage in the processing of Y,
for every CXEQ (K), the computation of D(a/YtK)) will involve the distances
D(@/ YcK- “) for every /3 E T,(a), where

TW(o)={/3]j?isanyleftderivativeofa}.

Clearly T,(o) is a superset of TA,(o) and will contain 1 al + 1 terms. Thus to

ALGORITHM FOR STRING CORRECTION- II 213

compute every D(a/YtK)) Algorithm I will require L additions and minimiza-
tions less than Algorithm A ,+, , where

L=max[Ja(-P,O].

Combining the above two facts, we conclude that the number of computations
required by Algorithm A W will exceed the number of computations required by
Algorithm I, the excess being proportional to:

Algorithm I further optimizes on the number of computations per state per
recursion by working in the pseudodistance measure D,(. / .) and then in the
final stage computing the distance D(- / -).

To sum up, Algorithm I is superior to Algorithm A,,, because: (1) it takes the
maximum advantage of the fact that H is a finite dictionary, and thus its

recognizer is a cycle-free FSM, (2) it optimizes on the fact that the channel obeys
Assumption ii of [18], and (3) it does the recursion using the pseudodistance
measure, which reduces the number of terms in any one stage of the distance
computation to merely three.

IV. POTENTIAL APPLICATIONS OF ALGORITHM I TO CORRECT

COMPUTER PROGRAMS

Algorithm I can be readily applied to problems where erroneous strings are
to be corrected. One of the problems which it has been used to solve is that of
searching a list when the input to the algorithm is an approximate version of one
element in the list. It can thus be used to retrieve data from data bases and
libraries.

Another area where an algorithm which corrects misspelled strings will be of
use is in the correction of computer programs. Considerable literature is
available on this topic. Morgan [1 I] noted that most mispunched errors were a
single substitution, deletion, insertion, or interchange of adjacent symbols.
Litecky and Davis [8] have indicated that a large percentage of the total errors
in COBOL were due to misspelling and errors due to punctuation. Out of 1777
errors studied, at least 574 were due to misspelling, punctuations added or
missed out, and other keypunch errors.

As other authors have pointed out, an algorithm such as this can be included
to automatically correct errors encountered when the source program is being

214 R. L. KASHYAP AND B. J. OOMMEN

compiled. Only when an erroneous string is detected need the error-correcting
algorithm be called. Scowen [151 claimed that misspelled identifiers in FORTRAN
can be recognized by the system by an initial declaration of all the variables that
are encountered in the program. If similarly the names of the functions and
subroutines are also included, a finite dictionary H can be created, and using it
the algorithms presented here can be used to correct errors in spelling, not only
in legal FORTRAN phrases but also in misspelled identifiers, function subpro-
grams, and subroutine names. By including the p~ct~tion symbols too in H

[such as (,), ., etc.], misspelled logical operators (.NoT., .oR., m-3., .AND., etc.)

and other syntax errors can also be corrected.
Fifty words used in the programming context were used to test Algorithm I.

For the purpose of study the confusion matrix was assumed and the sets A, were
subjectively created. The elements of A, were some of the symbols of A nearest
to b on the typewriter keyboard. The details of these sets are given in Table 5.

Using the confusion matrix and the techniques described by Kashyap [4],
elementary edit distances related to the probabilities of the individual errors
were obtained. The distance associated with deleting a symbol was made equal
to the distance associated with inserting one (for lack of any better information).
100 erroneous strings were then fed in as inputs to the algorithm. The average
mrmber of errors per string was two, and the maximum was three. In some
erroneous strings, all three types of errors (substitution, insertion, and deletion
errors) were present. In others, errors of the same type were repeated. But in all
the cases, the estimated word X+ was identical to X,. Some of these results are
tabulated in Table 6.

The error-correcting capability of the distance measure used, which uses
intersymbof elementary edit distances, can be clearly seen by studying the
correction of the misspelled string “eecode’. ‘eecode’ can either represent a
transmitted ‘decode’ or a transmitted ‘encode’. But since the probability that a
typewritten ‘n’ is mistyped as an ‘e’ is much smaller than the probability of a ‘d’

TABLE 5

Details Regarding the Sets A and A,, for bEA

A={u, h, c, d, e,f, g,i, f, m, n, 0, P, r,s, t, u, w,O)

A,=(u,s,w} A,,={b,c,g,n)
A,.=(c,d) A, = (c, d, e, f, r, s)

A, = (d, e, r, s, w) A, = {c, d, f, g, r. t)

A, = (h f, g, 0, t) Ai = {i, I, u,O, o)

A, = ii, I, m, 0, P) A,,=(m,n)

A,, =(h, m, n) A,=(i,Lo,p,O)

A, = {l, p, o,O) A,=(e,f,r,tl
A, = {u, d, e, s, w) A, = {g, r, I. u)
A,={i,u) A,=(a,e,s,w)

A, = (0, ~301

ALGORITHM FOR STRING CORREETION-II 215

TABLE 6

Erroneous Recognized
input string word

ane and
ssaign assign
acll call
cmmin common
cntonud continue
dat data
febbog debug
eecode decode
drffine define
edlete delete
demenson dimension

dP do
dobuble double
dinp dump
necod encode
ned end
emndflle endfile
er err
flase false
illes file
found find
fromat format
unctioon function
gotd got0
iif if

Erroneous
input string

mpliscit
innut
inetgar
loical
mialm
nsmelst
nott

ogf
ot
ooitput
pattse
persision
pint

P@Yaam
pout
treed
reel
reumn
reiwinnd
srop
bubroutine

twwPe
tarcce
triu
weitr

Recognized
word

implicit
input
integer
logical
main
namelist
not
off
or
output
pause
precision
print

program
Put
read
real
return
rewind
stop
subroutine
tape
trace
true
write

being mistyped as an ‘e’, it is more likely that ‘eecode’ represents ‘decode’ than
‘encode’. However, we can edit ‘encode’ to either ‘decode’ or ‘encode’ by one
substitution. Neither Levenshtein nor weighted Levenshtein distances will be
capable of deciding which is the more likely estimate. But since d(d/e) < d(n/e),
the word estimated is ‘decode’, which is the more likely estimate of X,.

V. CONCLUSIONS

In this paper we have dealt with the problem of estimating a given trans-
mitted string X, from its noisy version Y. A distance measure D(X/ Y) was
defined in [181 between XE H (the finite dictionary) and I’. Using it, X+ , the
best estimate of X,, is defined as that string X which minimizes D(X/ Y).

In [IS], we have presented an algorithm (Algorithm I) which yielded X ’ as
its output without computing every D(X,/Y) individually. Here, by studying
Algorithm I using the tree structure of the FSM that accepts H, we have shown

216 R. L. KASHYAP AND B. J. OOMMEN

that it is, in general, computationally less complex than the ST, which obtains
X+ after individually computing every D(X, /Y), Xi EH. Both an upper bound
and an approximate bound for the number of computations required have been
derived. The superiority of Algorithm I over the ST has been demonstrated for a
number of dictionaries. Some practical applications of Algorithm I are also
discussed.

REFERENCES

I. A. V. Aho, D. S. Hirschberg, and J. R. Ullmann, Bounds on the complexity of the longest
common sub-sequence problem,” J. Assoc. Compuf. Much. 23(1): I- 12 (Jan. 1976).

2. A. V. Aho and J. D. Ullman, The Theory of Parsing, Translation and Compiling, Prentice-
Hall, 1972.

3. L. W. Fung and K. S. Fu, Stochastic syntactic decoding for pattern classification, IEEE
Truns. Computers C-24(6):662-667 (June 1975).

4. R. L. Kashyap, Syntactic decision rules for recognition of spoken words and phrases using
a stochastic automaton, IEEE Truns. Pat. Anal. and Mach. Intel. PAMI-l(2): l54- 163
(Apr. 1979).

5. W. J. Masek and M. S. Paterson, A faster algorithm computing string edit distances, J.
Compur. System Sci. 20:18-31 (1980).

6. D. E. Knuth, The Art of Computer Programming, Vol. 1, Addison-Wesley, Reading, Mass.,
1973, pp. 473-479.

7. A. Levenshtein, Binary codes capable of correcting deletions, insertions and reversals,
Soviet Physics Dokl. 10(8):707-710 (Feb. 1966).

8. C. R. Litecky and G. B. Davis, A study of errors, error proneness, and error diagnosis in
COBOL, Comm. ACM 19(1):33-37 (Jan. 1976).

9. S. Y. Lu and K. S. Fu, A sentence-to-sentence clustering procedure for pattern analysis, in
Proceedings of the IEEE Computer Society 1st International Computer Software and Applica-
tions Conference, 1977, pp. 492-498.

10. R. Lawrence and R. A. Wagner, An extension of the string to string correction problem, J.
Assoc. Comput. Mach. 22: 177- 183 (1975).

11. H. L. Morgan, Spelling corrections in systems programs, Comm. ACM, 13(2):90-94
(1970).

12. D. L. Neuhoff, The Viterbi algorithm as an aid in text recognition, IEEE Trans.
Information Theory IT-21(2):222-226 (1975).

13. T. Okuda, E. Tanaka, and T. Kasai, A method of correction of garbled words based on the
Levenshtein metric, IEEE Trans. Computers C-25: l72- 177 (Feb. 1976).

14. E. M. Riseman and A. R. Hanson, A contextual post processing system for error correction
using binary n-grams, IEEE Trans. Computers C-23:480-493 (May 1974).

15. R. S. Scowen, On detecting misspelt identifiers in FORTRAN, Software-Practice and
Experience 7 : 536 (1977).

16. M. G. Thomason, Errors in regular languages, IEEE Trans. Computers 23 :597- 602 (1974).
17. R. L. Bahl and F. Jelinek, Decoding for channels with insertions, deletions, and substitu-

tions with application to speech recognitions, IEEE Trans. Information Theov IT-2 1:404-
411 (1975).

18. R. L. Kashyap and B. J. Oommen, An effective algorithm for string correction using
generalized edit distances-I. Description of the algorithm and its optimality, Information
Sci.

ALGORITHM FOR STRING CORRECTION--II 217

19. 3. D. Ullman, A binary N-gram technique for automatic correction of substitution,
deletion, insertion and reversal errors in words, Compur. J. 20: 141- 147 (1977).

20. R. A. Wagner, Order-n correction for regular languages, Comm. ACM 17:265-268 (1974).
21. R. A. Wagner and M. J. Fisher, The sthg to string correction problem, J. Assoc. Cornput.

Much. 21:168-173 (1974).
22. C. K. Wong and A. IL Chandra, Bounds for the string editing problem,” J. Assoc. Comput.

Mach. 23:13- 16 (Jan 1976).
23. G. Dewey, Relutiue Frequency of En&h Speech Sounds, Harvard U.P., 1923.

Received July 1980

