COMP2109 1 Notes: Feb 9, 2023

Computer and Internet architecture, relevant to threat models, security and privacy

Feb.7:

a) §1.5-§1.6.1 [threat models/modeling, e.g., attack trees, STRIDE]
+ Fig.10.10 (p300) of 10.5 [network stack]
+ §10.6 [networking and TCP/IP background]
+ Fig.11.9 (p329-330) of 11.6 [TCP 3-way handshake]

The above are from Tools and Jewels (URLs are given in the online course page)

b) How the Internet works—network stack model/flow diagram:

https://people.scs.carleton.ca/~paulv/slidel-76-v8.1-KuroseRoss.x.pdf

Notes for Feb.9 class:

OS, kernel, virtual memory spaces, how an OS works, how unauthorized software enters/runs

a) User space vs. kernel space — see Fig.7.4 (p.197) in §7.5:
https://people.scs.carleton.ca/~paulv/toolsjewels/TJrevl/ch7-revl.pdf

b) syscalls, shells, creating processes — see pp.176-177 of §6.8:
https://people.scs.carleton.ca/~paulv/toolsjewels/TJrevl/ch6-revl.pdf

¢) Class notes related to the above: see below. Other students will made have their own notes.

The OS provides memory-resident, core software functionality to host application programs and
other software on general-purpose computing platforms. The OS manages allocation and separation
of computer resources across programs. For example, the login program (used to verify username
+ password), and software to access files (including filesystem drivers), are both parts of the OS.

A low-level subset of OS functionality is found in a component called the OS kernel. The
kernel handles process management (CPU scheduling and program loading), memory management
(allocating distinct regions of virtual memory to processes), low-level network communications,
and access to hardware peripherals (i/o buses, physical devices, various filesystems).

Kernel memory is protected and distinct from so-called user space memory that is allocated to
processes for programs. User space includes library software such as the standard C library (libC).
On Unix systems, a program running with root privileges is still in user space (i.e., does not have
direct access to kernel memory).

A set of kernel services (and thereby, kernel resources) are accessed by user space programs
through system calls, which thus provides an API to kernel services. Most system calls are actually
made through so-called wrapper programs in shared libraries. System calls result in a status
change in a CPU hardware register, from user mode to supervisor mode (kernel mode). Supervisor
mode enables privileges not available in user mode, such as access to special hardware registers and
restricted CPU instructions (e.g., one halts the CPU). Supervisor mode software can also read and
write to kernel memory, including special memory addresses used to communicate with hardware


https://people.scs.carleton.ca/~paulv/slide1-76-v8.1-KuroseRoss.x.pdf
https://people.scs.carleton.ca/~paulv/toolsjewels/TJrev1/ch7-rev1.pdf
https://people.scs.carleton.ca/~paulv/toolsjewels/TJrev1/ch6-rev1.pdf

COMP2109 2 Notes: Feb 9, 2023

devices. In so-called monolithic kernels such as Unix, device drivers (which are necessary to
interface with peripheral devices such as printers) are part of the kernel itself.

Word processors and productivity software (spreadsheets, presentation software) are application
programs, distinct from the OS. Browsers are often installed when an OS is, and may be viewed as
application software, but now contain much of the functionality of (the non-kernel part of) an OS.

Compilers, text editors, and other tools used in software development are often installed with an
OS (especially on desktop development PCs). These are best viewed as separate from the OS, albeit
considered “standard tools”.

Neither command shells (programs that provide a command shell interface to users), nor com-
mon OS utility programs (such as popular Unix executables called from shell command lines) are
part of the kernel, but they are commonly viewed as part of the OS.

Privilege level of programs. When you log in to your computer (e.g., regular user account), the
programs (processes) you run have privileges based on the account’s numeric UID. The processes
will have access to files that this UID has access to (e.g., files created through/owned by that UID).

If you also know the root password for the machine (Unix/Linux), and switch to a root user
account, any programs that you start up will then run with root privileges. Any attachment to an
email that you click will run with those same privileges.

Any software program (including malware) that manages to start running on your machine, was
somehow launched or spawned or started by an earlier program (process), and will typically run
at the privilege level of that process. (On Unix systems, the child process inherits the UID of the
parent process that created it.) The privileges of a typical user will allow access to all files that this
user has access to, while root privileges will allow access to all user-space files on the machine.

If malware gets started “by” (on behalf of, or by exploiting) code that was running in the kernel
itself, then the malware will run with kernel privileges (including access to kernel memory).

So there is a hierarchy of privileges, from lower to higher (malware perfers higher):

1. ordinary user (access to user space virtual memory of that user, and that user’s files)

2. root user (this is still in user space, but allows access to all user space files)

3. kernel (access to both user space memory and kernel memory)

By exploting software vulnerabilities (beyond scope of COMP2109), an attacker can often move
from lower to higher privileges (i.e., escalate their privileges).

Some ways for an attacker to get malware running on your machine, or gain control of it:
1) Get your credentials and log in as you, to your machine (or your bank account).

2) Trick you into installing malware yourself, perhaps using some form of social engineering.

This may involve a Trojan horse program, i.e., having hidden or unexpected functionality.
Another type of malware here is called a computer virus (these make use of regular software
features, in perhaps unexpected ways). These programs will inherit the user’s privileges.

3) Exploit a software vulnerability (flaw) to get malware installed/running. A common vec-
tor here is a computer worm that exploits a flaw in a network service program (daemon).
Another is a drive-by download (silent malware that is installed upon visiting a shady or
compromised web site).



