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Abstract These notes aim to provide an accessible, self-contained explanation of memory errors
in software programs, and the related concept of memory safety in programming languages, along
with brief discussion of type safety. The context is software security. We focus on C, Java, and Rust.!

For major operating system and browser vendors who make heavy use of systems languages,
65—70% or more of reported software vulnerabilities in recent years have involved memory errors
[18, 34]. For Microsoft, the share has remained near 70% for a dozen years, per a 2019 report [32].
In a broad study counting the number of exploits in the US National Vulnerability Database over
2013-2017, the top category was (memory) buffer errors, among 19 vulnerability categories [11].
Though these statistics lag by a few years, decades-old problems clearly remain with us today.

In these notes we aim to provide background and context, for students and security novices,
to provide an understanding of memory safety and type safety. Definitions for these terms remain
hard to find in older computer security textbooks, while discussion meaningful to practitioners is
often absent from the research literature. To that end, we ground our discussion using C for simple
examples of security vulnerabilities involving memory errors related to language design. While
we note Java for some contrasting design choices, we give greater focus to the Rust programming
language, explaining how a number of its major design features directly address memory errors.

In teaching software security, we believe much can be gained by giving greater focus to the
impact of programming language design choices and features, over the historical focus of (miti-
gating) malware exploits on target executables. This may help steer development teams to better
programming language choices for long-term projects. A language-centered discussion of software
security and memory errors may also serve students well by motivating them to learn more about
comparative aspects of programming languages and their designs.

1.1 C language features and security pitfalls

In contrast to high-level programming languages such as Java and modern scripting languages like
Python, low-level systems languages like C prioritize efficiency and programmer access to memory
addresses over built-in security protections. Programming of device drivers and hardware interfaces
is supported by program access to explicit memory addresses (raw pointers) and easy drop-down
into assembly language or machine code.

As is well known, this comes with a downside. C and closely related C++ have historically been
accomplices in a lion’s share of security vulnerabilities. To understand the relationship between
programming language design and software security, we review language features that have histori-
cally been associated with programming errors underlying software vulnerabilities. To this end, and
to set the background for understanding memory errors, we first review basic C language features
and syntax that are highly relevant to security; C experts can skip over this. We later discuss how
the design of recent programming languages aims to avoid such security problems.

T'A shortened version of these notes appear across a two-part article in the March-April and May-June 2023 issues of
IEEE Security & Privacy magazine, titled “Memory errors and memory safety”.
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Figure 1: C pointers, and the operators * and &.

C pointers and casting. First recall some basic C syntax. If p is a variable denoting a value
that is a pointer, then the value of *p is the value pointed to (i.e., the value stored in the memory
location indicated by the pointer). Here * is the dereference operator. Its opposite is &, the address
operator; &z denotes the address at which the value denoted by variable z is stored.

C values of type pointer are raw pointers (often 4 or 8 bytes, based on machine architecture),
giving programming language access to memory addresses. The addressed memory may be any
data, e.g., integers, floating point numbers, bytes of a string, or executable code in a function.

Like most languages, C uses data types, i.e., is a typed language. Pointer declarations define the
type of data item that is pointed to. For example:

int *intptr; // an equivalent declaration is: int* intptr
defines a “pointer to int”, or read as: *intptr is an integer. Synonyms can be created for existing
data type names. For example:

typedef char *String;
makes the identifier String a synonym for char *, i.e., pointer to char.

In principle, “every pointer points to a specific data type” [27, p.94]. But there are exceptions:
void * (“pointer to void”) is “used to hold any type of pointer but cannot itself be dereferenced” .
The intent here is that such a pointer will later be manually cast to (any specific) desired type.

Such type-casting in C allows programmers to convert one data type to another, including from
integers to pointers. The cast operation is indicated by putting the desired type name in parenthesis
before an expression. For example, integer 3 is converted to a floating point double in C by writing:

(double) 3
C supports pointer arithmetic, e.g., you may add or subtract an integer from a pointer, in which
case the integer is implicitly scaled by the size (in bytes) of the data type of the object pointed to.

C primitive types and expressions. Aside from pointers (above), basic data types in C include
the following [27].

Integer (five widths): char (8 bits), short int (16), int (16 or 32), long int (32), long long (64).

Floating point (reals): float, double, long double (platform-dependent, e.g., 32, 64, 80-128 bits).
Integers and float types can be given clarifying modifiers: signed or unsigned, short or long.

Enum (enumerated types): these associate integers with names. Example:

enum colors {RED = 2, BLUE, GREEN} /* BLUE = 3, GREEN = 4 */

Boolean: true/false. Traditionally, O is interpreted in C as false, and non-zero as true. This
was formalized by the addition of boolean as a primitive data type in the C99 revision (1999).

Struct: a programmer-defined object (record) grouping multiple (typically different) data types.
For a struct (or union) with name t and pointer tptr = &t, a field £1d (or union member memb) is
accessed using as syntax either a dot or arrow operator: t.fld or (*tptr).fld or tptr->fld
(thus dot and dash-arrowhead are in effect dereference operators for a struct field or union member).



Union: this type allows one memory area to be used by two or more different data types at
different times. Space is allocated to accommodate the largest variant. Readout from memory does
not change the representation of the data (proper interpretation is the developer’s responsibility).

Character strings are not supported as a basic C type, but by convention a string is an array of
char, terminated by a NUL char 0x00, and referenced using a pointer (address of string’s first byte).
Standard C library (libc) functions provide string utilities based on this convention—however, they
are a notorious source of programming errors and security vulnerabilities, as discussed shortly.

Array: a contiguous sequence of n data values of one type. The memory address referred to by
b[i] is b+ (1) evaluated in pointer arithmetic. Here b serves as a base address, 1 is an index, and
(1) signals that the offset implied by the index is scaled up by the element size of the referred object
(as defined by its data type). In some contexts, an array’s name b implies its address &b, which is
also the address of its first element b[0]. An array can hold values of any type, including an array:

int myarray[4][10] //4 items, each item being an array of 10 int
Scaling within array indexing is an easily-forgotten detail when done manually; this leads to pro-
gramming errors, especially combined with casting. Critically, C does no bounds checking (on
reads or writes) to ensure array accesses are within the memory allocated for the data structure; this
is the programmer’s responsibility. Out-of-bounds accesses result in “undefined behavior”.

Evaluation of C expressions. To evaluate expressions per C’s language specification, compil-
ers may generate code that does implicit coercion (discussed also page 7), i.e., automated type
conversions not requested by the programmer. This is part of type-checking system designs. For
example, to ease programming of arithmetic expressions combining integer types of different width,
some shorter integer data types are converted to a wider type compatible with longer integers; this
is called integer promotion. C’s specification calls for coercion not only in the case of arithmetic
expressions that mix integer types of various widths and signedness with floats, but also in assign-
ment statements, function return values, and function arguments whose types do not match declared
formal arguments types; a syntax error is declared if no compatible conversion exists.

C objects and storage classes. In C, an object is “a named region of storage” [27, p.197].
Program variable names (including for pointers) are used in the usual way to access values stored
in memory. In principle, a variable’s type “determines the meaning of values found in the identified
object” [27, p.195]. A variable’s storage class determines its lifetime, i.e., the validity period of the
association between the variable and the memory assigned to store its value. C variables may be:

e static (e.g., variables private to a function or file, or globals imported to a program’s names-
pace by keyword extern). These retain value across block and function exit and re-entry.

e automatic (including register). These are local to a block and discarded on block exit.

1.1.1 C string issues and buffer overflows

Compounding C’s lack of bounds-checking on array accesses, many utility functions in the standard
C library (1ibc) fail to carry out error-checks that might be expected. This is left as a responsibil-
ity of human programmers, who of course make mistakes. Instances of these mistakes produce
both “normal” errors (incorrect results, run-time exceptions, program crashes) and exploitable er-



rors (software vulnerabilities). For example, one type of buffer overflow vulnerability enables
overwriting a run-time stack return address, which can then alter execution control flow.”

Our point is not to repeat from your introductory systems programming course that C programs
are tricky and error-prone, but to emphasize that programming errors can have severe consequences,
including surprisingly often, enabling remote parties to run unauthorized code (malware) that can
take control of host machines. You might not think this concerns you directly, but your view may
change when somehow money is removed from your online bank account and your bank insists that
it was your fault for not properly protecting your account password, or a ransomware attack results
in all content of your laptop being rendered inaccessible, or malicious software results in disruption
of the power supply at the hospital while your mother is on the operating room table.

One subset of libc utilities is notoriously problematic: functions supporting string operations.
Strings are not a built-in (primitive) data type. Instead, C uses the efficient but error-prone conven-
tion that a string is a sequence of char (bytes) terminated by the zero byte ‘\0‘, which we denote
NUL. (Thus we say pointers may be NULL, strings are NUL-terminated; NUL and NULL differ in size.)

strcpy (char *dst, char *src), for example, is a string-copy utility. It copies whatever
string is found at the src address to the address indicated by dst in the usual C way: byte-by-byte,
ending once a NUL byte is found and copied. If fewer bytes were allocated for the destination buffer
than present in this source string, that does not matter—the copying blindly continues until a NUL
byte is found. This overwrites (corrupts) memory beyond the end of the dst buffer, continuing into
the adjacent data structure or executable code at the next higher memory address, and the one after
that and so on. Eventually a NUL byte is copied (a random byte has value 0x00 with chances 1 in 28).
Not all such instances are exploitable; by this we mean, it might “only” trigger an access violation
or segmentation fault (e.g., if a corrupted byte is later retrieved for use as part of an address for a
memory access, and the corrupted address is not in the address space of the current process), or
“only” an OS crash (e.g., if critical kernel data structures were corrupted). Security-wise, these are
typically considered less serious outcomes than (true) “exploits”!

While such an overrun can clearly arise if the dst buffer is shorter than the src buffer, it can
also occur even when the dst data structure (number of bytes allocated) is the same size or larger
than that of src, in the case that the src buffer itself contains no ending NUL byte. Distinct from
outcomes mentioned above, this can result in a problem at the src end: reading of non-NUL bytes
beyond the end of the src buffer may result in an information leak exposing potentially sensitive
data (e.g., secret keys) from memory beyond the intended src buffer.

gets () and puts (), the get-string and put-string functions, raise similar issues. They re-
specitvely read a string from standard input into a buffer, and write a string from a buffer to standard
output. Another example is the string concatenation function: strcat (char *dst, char *t). It
concatenates the string denoted by t to the end of that denoted by dst, and “assumes [without
checking] there is enough space in dst to hold the combination” [27, p.47].

strncpy () is a libc utility that a developer seeking a safe alternative to strcpy () might dis-
cover. It takes a third parameter n, specifying a maximum number of bytes to copy. Copying stops
after either the first NUL byte or n bytes, whichever comes first. This enables a different error: the re-
sulting destination string may end up not being terminated by a NUL char. If the programmer doesn’t

ZWhile widely available and easily understood, it is not our goal to explain the details of how buffer overflows are
exploited to allow execution of malicious software. Among many other sources, see for example [36, §6.3-§6.5], available
at: https://www.scs.carleton.ca/~paulv/toolsjewels/TJrevl/ch6-revl.pdf.
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check for this, then because later code will expect that this sequence of bytes is a conventional
NUL-terminated string, a later memory error will almost surely occur.

strncat () is another utility with a third parameter n for length, here a concatenation alternative.
Sadly, it also induces errors. In this case, n specifies the maximum number of non-NUL characters
concatenated to the end of the dst string, but a terminating NUL byte is always inserted—extending
the length of the dst string by possibly n 41 bytes. This semantic inconsistency versus how n is
used in strncpy () induces so-called off-by-one memory errors, corrupting single bytes.

strlen(s) sets another off-by-one trap: this utility returns the number of bytes in its string
argument, excluding the terminating NUL byte—so one byte more than the returned count is needed
to store such a string. Thus for example, the following code may, depending on the sizes of the
objects in play, be off-by-one:

if (strlen(src) <= sizeof dst) strcpy(dst, src);
The problem is that while the compile-time unary operator sizeof object yields the storage size
in bytes (as does sizeof (typename)), and strlen counts the number of non-NUL bytes, strcpy
will copy also the terminating NUL byte from the src string. That’s one byte more.

Documentation for such library utilities does give warnings, e.g., that for st rncat the resulting
behavior is “undefined” if the dst character array has insufficient space to store the combination of
the original string plus the first n chars of the string being appended plus the ending NUL char; and
also if the pointer to the original dst string is not itself originally NUL-terminated; and also if the
string arguments overlap. But a warning in documentation does not stop errors from occurring.

What we need is library utilities that are resilient to human errors. Instead, C programmers are
expected to be familiar with all these nuances, and to avoid all such string-related traps. The re-
sult: C programmers continue to fall into traps, and security vulnerabilities creep into code, silently
awaiting exploitation at unknown later times. Meanwhile, various 1ibc utilities are declared “un-
safe” by warnings in many tools, but often remain available for backwards compatibility.

Homework. When C was first introduced, programmers had a sense of how code would map to
machine instructions. This is no longer generally true, as compilers now carry out a wide variety of
optimizations on specific platforms. To understand this, read Chisnall [10].

1.2 Manual memory management vs. garbage collection

The next piece of the memory error puzzle to discuss is garbage collection.

When a process is created, the OS assigns to it a memory space (set of virtual addresses) distinct
from kernel memory and other processes. In C environments, this is often split into five regions:
run-time call stack (for data related to function calls, e.g., arguments, return addresses, local vari-
ables), heap (for dynamically allocated data structures), text segment (program code), data segment
(initialized global data), and the BSS area (uninitialized global data, sometimes called the block
storage segment). Memory errors most frequently involve the run-time stack and heap.?

In many systems languages, heap memory is manually allocated by programmatically request-
ing blocks of the desired size (chunks). In C, calls to malloc () return a pointer p to a chunk of
uninitialized heap memory, or a NULL pointer if the request cannot be filled; the related calloc ()

3See Fig. 6.3 in [36, p.166] at https://www.scs.carleton.ca/~paulv/toolsjewels/TJrevl/ch6-revl.pdf.
Or for a memory layout with a few more details, see [4] at: https://tiemoko.com/blog/blue-team-rust/
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returns a zero-initialized chunk. Memory no longer needed is released by calling free (p); if not,
the memory is effectively lost (called a memory leak), inducing out-of-memory errors over time.

Such manual memory management is avoided in most higher-level languages (e.g., Java) through
a process called garbage collection (GC), whereby memory chunks no longer used or reachable (in-
accessible) are automatically reclaimed and returned to a system free pool of available memory
chunks. Any of various storage allocator approaches are used to manage this heap memory, often
arranging the free pool in a double-linked list ordered by size, and occasionally reorganized.*

As advantages of GC, beyond unburdening programmers from the responsibility of allocating
and deallocating memory, it eliminates temporal memory errors and can significantly reduce mem-
ory leaks (these terms are discussed shortly, in §1.4).

However, GC disadvantages include significant processor time costs, and unpredictable process
delays when the GC routines engage to actually collect and consolidate (compact) free memory.
The performance impact can be reduced by provisioning larger pools of available memory, thereby
trading off memory for processing time. Basic GC approaches are also unsuitable in time-critical
applications required to meet strict timeliness constraints.

Exercise. Suppose a C pointer variable p is declared as a global variable in the main () entry
point, and later a function £ () assigns to p the address of a local (stack) variable of f (). Explain
why this may result in unpredictable program behavior after the function returns.

1.3 Data types and type checking

As we build towards defining memory errors and memory safety, and their relationship to type safety,
it helps to recall the main ideas of data types, type systems, and type checking.

Why do programming languages need data types and typing? We naturally associate data types
with objects; functions and operators (e.g., unary and binary arithmetic and logical operators) also
require inputs of expected types. Functions, expressions, and assignments of values to objects all
involve values from specific domains with expected structures, and similarly produce outputs with
expected characteristics; data types specify and convey these expectations.® Every programming
language has a type system that defines built-in types, and dictates rules governing what is required
and enforced related to these types; most also allow creation of user-defined types.

How to define data type in greater detail is harder. As important aspects, types convey details
about an object’s properties, structure, and semantics,’” and help in identifying mismatches between
operations and the objects that they expect as operands. Data types convey the operations or methods
allowed on data values, and information on how values are represented or formatted in storage (this
may be hidden from programmers in an attempt to simplify programming or hide platform-specific
details). Type mismatches that may have security implications are of special interest to us.

Based on a type system’s types and rules, type checking is the process of detecting domain
incompatibilities—improper or unexpected uses of objects—at compile time (static type checking),

4Kernighan & Ritchie [27, §8.7] give an example implementation of a simple heap storage allocator, with diagram.

SHertz and Berger [22] explored the effects of using 2—5 times as much memory.

SWhile the concepts discussed here generalize, we omit discussion of overloaded operators and polymorphic functions
(also called generic functions) designed to work properly for inputs whose types may vary across a pre-defined range.

7Recall that syntax relates to form, while semantics relates to meaning or use.



run time (dynamic type checking), or both. Not all incompatibilities can be detected at compile
time, as not all values are known. Out-of-bounds array accesses when element indexes are dynamic
inputs, and division by zero, are examples of errors that are not caught at compile time, while
examples that often can be are multiplication and exponentiation of string values and booleans.

Requiring a programmer to specify the data type of every single object and value is tedious,
and often redundant. Thus to varying degrees, programming languages relax the requirement of
explicit type declarations, some requiring few if any explicit declarations. The language processor
then uses type inference to assign a data type (hopefully as intended by the programmer) based on
context and the rules of the language. Of course, this might result in a mismatch with program-
mer’s expectations, and a syntactically correct program having semantic errors neither flagged by
the compiler nor caught by the run-time system. Thus there is a language design tradeoff: strictly
requiring type declarations may be viewed as burdening programmers, while being lax risks unde-
tected mismatches between programmer intent and a language processor’s actions.

Coercion (implicit type conversion). When the operands of an operation (including assign-
ment) or arguments of a function are incompatible by strict rules, a programming language could
simply declare a compilation error or run-time exception. However, another option is to (automat-
ically) generate code that converts one or more values to a value of a compatible type, in common
cases where this makes sense, e.g., addition of integers and floating point numbers. This is called
coercion (mentioned already in the context of evaluating C expressions, page 3).

Consider this “simple” arithmetic expression mixing an integer and floating point: (2 + 3.0).
How should it be evaluated? One could convert the integer to a float, and then do a floating point
add. (Keep in mind: hardware representations differ by data type, e.g., the integer might be in 16-bit
two’s complement, and the float a 64-bit double per IEEE 754.) A different option is to generate
code to convert the float to an integer. Note that these two options produce different results if the
float is not 3.0 but 3.4 and conversion to an integer implies truncation. Here, a natural choice is to
convert the integer “upward” to a float, using pre-defined conversion hierarchies.

Should it be allowed to add integers to strings? Here add could mean concatenation after con-
verting the integer to a string—or arithmetic addition after converting the string to the integer its
string characters may represent. For example, JavaScript interprets "1"+2 to mean concatenation
after implicit type conversion. Different design choices occur in different languages. (If a rule is not
known, a compiler’s output for a given example will show what error message or code is generated.)

We now make a few observations about type checking and coercion.

e Data typing and type checking are more complicated than they first appear, even for integers
and floats—as we have noted, C has numerous widths and types for integers alone.

e Languages that aggressively undertake implicit type conversions may lead to exploitable pro-
gramming errors (including integer-based vulnerabilities, page 14).

e Static type checking may result in compile-time errors, or in generating code for run-time co-
ercion or run-time type checking. If a compile-time check can rule out a type incompatibility,
then this single check both avoids a run-time test at each instance the relevant code line runs,
and catches errors during development versus during dynamic testing or post-deployment.



Static type declarations themselves also often help developers understand programs, e.g.,
knowing whether a variable is used as a boolean, or an array of int.

Exercise. Summarize C’s coercion rules for integral types, i.e., including char, boolean and enu-
merated types, but excluding floating point. (Hint: [27, §A.6] for C89, [45, Ch.4] for C99.)

1.3.1 Case study: C is weakly-typed

C is statically typed (variables are declared before use) and has static type-checking (expressions
and function parameters are type-checked at compile time). Related to this, C supports or allows:

e a wide range of coercions (automatic type conversions);
e raw pointers, pointer arithmetic, and converting pointers to one type to pointers to another;

e various code sequences noted by the specification to result in undefined behavior (compiler-
related tools may give warnings, but doing almost anything is compliant);

e no bounds-checking on memory accesses via pointers, although compiler-related tools may
offer warnings (array accesses amount to dereferencing offsets from pointers);

e bypassing the type system by the union construct, and manual type conversion, including
casting between pointer types and integers, and from a function pointer to another whose
function signature differs (e.g., in return value type, argument types, or number of arguments).

We highlight also two statements from Kernighan and Ritchie’s 1988 description of ANSI C.

A: Every non-void pointer points to an object of some type.

B: The programmer is responsible for tracking which type is currently stored in a union.
A is not guaranteed, if the intent is a valid object. B signals that C abdicates responsibility for
checking union variant types. C similarly abdicates on enforcing the data type of a pointer’s referent
(types can be changed by pointer casting, pointer arithmetic, and array indexing). So, while C is a
typed language, and requires that variables have type declarations before use, it is lax in ensuring
object uses are compatible with their type, or memory referenced by a pointer matches its type.

Based on such observations, C is said to be weakly-typed. Its design and language processors
do not reliably guarantee domain compatibility in the use of objects, and no run-time type-related
support addresses compile-time deficiencies. We say a bit more on being weakly-typed in §1.5.

1.4 Memory errors (categories and outcomes), and memory safety

Here we consider several types of security problems enabled by language features, with focus on C.

A wide variety of errors—called memory errors—involve improper memory access (read or
write), including due to dereferencing invalid pointers and failure to check that array accesses are
within bounds [48], [50]. Some result in the CPU (hardware) raising errors conditions, which
may be available for processes to carch (via exception handling code); exceptions such as access
violations or segmentation faults may terminate a process, or crash the operating system itself. For
exploitable code, a common adversary goal is to carry out a task (execute unauthorized code) before
or without an operating system crash, perhaps without terminating the exploited process itself.



Some exploitable errors combine several language features, as in the following exercise.

Exercise. A jump table, or array of function pointers indexed by an integer, is often used to organize
exception handlers. The C snippet below gives an example. Discuss how malicious program input
might manipulate such an indexed function pointer table.

functiontable[4] = {fna, fnb, fnc, fnd}; // array of function ptrs

1 = getexternalinput();

functiontable[i] (); // calling a function through a jump-table

Returning to memory errors, consider first a few possible outcomes of writing to an unintended
memory address, e.g., beyond the bounds of a referenced array, or an unexpected result from pointer
arithmetic. Perhaps the value being written is controlled by a malicious input to the program.

a) The value overwritten may be a code pointer, e.g., a stack return address or function pointer.
This will alter later execution paths when the code pointer is loaded into the CPU instruction
pointer (IP register). As a severe case, the IP may then point to attacker-specified code. This
is said to break the program’s control-flow integrity.

b) The memory overwritten may hold program data excluding code pointers (above case). This
includes data variables and pointers to them (data pointers). This breaks program data in-
tegrity. It may also indirectly alter execution paths that depend on the altered values (for ex-
ample, consider a sensitive boolean value corresponding to a variable isRoot or isTrusted).

¢) The memory overwritten will later be executed as code itself. This directly breaks program
code integrity. While the details are beyond our scope here, this is a common tactic using so-
called shellcode, where an attacker crafts special code as malicious program input, allowing,
as a severe case, execution of such special code of their choosing on your machine.

Consider next two outcomes of errors associated with read access, which may lead to information
leaks (disclosure of sensitive data).

d) Data is read from an uninitialized object, part of whose associated memory retains values left
(uncleared) from when the same memory was used for an earlier object, possibly exposing
that data externally. (C does not require initialization of automatic variables; static vars are set
to 0 or NULL. Reading from an uninitialized variable is said to result in undefined behavior.)

e) Data is read from perhaps any address within the process’ address space, the address being
unintended or unanticipated by a benign programmer.

Example. A severe case is the 2014 Heartbleed incident [9], where a function in the OpenSSL
cryptographic library failed to check array bounds. This allowed memory blocks of 64 Kbytes
at a time to be returned from vulnerable TLS servers to a malicious TLS client. This so-called
buffer overread error was in a routine supporting an extension of the TLS protocol (used in
HTTPS connections). In this way, the memory contents of at least hundreds of thousands of
web servers were subject to exposure, at a rate of 64 Kbytes per attacker HTTPS connection;
such server memory typically contains sensitive information including user passwords, TLS
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long-term private keys, and depending on the server, users’ personal identification informa-
tion, and perhaps banking or credit card information, medical records or tax records.

Distinct from outcomes (above), memory errors can be grouped into categories—we now consider

three.

1G)

1(ii)

The first is spatial safety errors (spatial refers to a memory address or location), including:

memory access (read or write) that involves a pointer to one object, but results in access to
memory outside of the range allocated for that object. In the case of a write access, this
corrupts a separate object. For example, the first object may be an array whose elements are
accessed using a base pointer and offset (index); the error equates to a failure to do bounds-
checking. As noted (page 4), in the well known case of a buffer overflow, bytes are written
continuously past the end of an array or memory buffer, spilling into adjacent object(s) at
higher memory addresses. In general, the erroneous access may be to as little as one byte, or
to a lower address (if the offset to a base pointer is negative).

dereferencing a wild pointer. We define a wild pointer as any pointer whose use would
result in undefined behavior per the language specification (e.g., in C, uninitialized and NULL
pointers, among others). NULL pointer dereferencing is known to be exploitable in some
cases (vs. simply causing an access violation). NULL, often represented 0x0. . 0, might map to
kernel memory through the virtual address translation implemented by the hardware platform.

The second category is temporal safety errors (femporal refers to time). These include two cases
of using a dangling pointer (a pointer to an object in memory that was already deallocated or freed):

2(31)

2(ii)

use-after-free error. This error involves dereferencing a dangling pointer. In this case, the
referent is now considered to be an invalid object, and using any reference to it is an error.
Example 1. The object referred to is in heap memory.

Example 2. Memory for a local variable is allocated on the stack call frame for a function in-
vocation, and the memory address of that variable is referred to after the function has returned
(i.e., after the memory allocated on the stack frame is automatically deallocated).

double-free error. This involves freeing an already-freed object (chunk), i.e., a second time.
Thus the deallocation function is passed a dangling pointer. As discussed (page 6), deallo-
cation puts a memory chunk back into the free pool; doing so twice may corrupt the storage
allocator’s internal data structures (if a chunk in the free pool is freed a second time), or may
create a separate dangling pointer (if the chunk was already re-allocated to a new object).

A third category of memory errors (also resulting in undefined behavior in C) involves:

3)

reading from uninitialized variables (discussed under information leaks, page 9). Here we
exclude dereferencing wild pointers, viewing that instead as a spatial error—but we include
the case of an uninitialized pointer whose value is read (e.g., to assign to a second variable)
but not dereferenced. (If and when the second variable is later dereferenced while holding a
wild pointer, we then as noted, view that as a spatial error.)

Note that aside from the third category, memory errors involve dereferencing or using an invalid
pointer (e.g., a dangling or wild pointer). This observation helps clarify how the lack of constraints
on C pointers contributes to memory errors.
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1.4.1 Memory safety (levels L1 to L4)

We can now define memory safety, or rather, four levels useful to differentiate classes of memory
errors that a language’s design and core support tools (compilers, run-times) may address.

L1: fundamental memory safety. Level 1 aims to eliminate spatial safety errors and temporal
safety errors. This addresses the first two memory error categories, and the most serious
security issues related to pointers. This might be supported by maintaining and checking
(low, high) memory bounds for each object before access, and likewise for an object validity
flag (i.e., whether its memory remains allocated and the object remains in scope).

L2: clean memory safety. Level 2 aims to eliminate both information leaks and undefined be-
havior related to uninitialized variables.

Further levels are associated with mitigating two other common classes of memory errors:

L3: memory leaks. Level 3 aims to eliminate memory leaks. These can crash programs or the
OS, and can be viewed as security-related in that they may enable denial-of-service attacks.

L4: data races. Level 4 aims to eliminate security issues and unpredictable outcomes due to data
races, which can arise in the case of concurrent reads and writes to shared memory, e.g., if one
execution thread changes a data value while another is using it. This and related concurrency
issues fall in the broader context of thread safety.?

Other categories of memory-related errors exist. For example, two that overlap L1 and L2 involve
exploitable format strings (e.g., user-defined or user-controllable formats in C’s printf family of
formatted-output functions); and variadic functions, taking a variable number of arguments [48].
Another level beyond L1/L.2 might avoid cleartext secret keys or passwords in memory (some Sys-
tems offer support to store these encrypted while in memory, aside from at instants of actual use).

We can use memory safety levels L1-L4 to assess different languages, asin §1.6 and §1.7. From
our discussion, it is easy to see that C has deficiencies in all four. To be more precise, we should
distinguish between C’s specification and implementations. For example, the C spec declares vari-
ous instances of memory errors to result in “undefined behavior”, without taking responsibility for
ensuring that all memory accesses are proper (for this reason, C may be called memory-unsafe);
the degree to which these memory errors result in security vulnerabilities may vary greatly across
compilers and runtime environments. Related to this, memory errors may be viewed as violations
of the expectations set by a specification about how programs should interact with memory [43].

Homework. Read the CyBOK chapter on Software Security [43]. Summarize its discussion of
memory errors, and compare to the discussion herein.

8For more on concurrency issues in Java and related non-atomic check-and-use races, see the Homework on page 17.
Features to help address some concurrency issues in C were added in the 2011 revision (C11).



12

1.5 Type safety and type confusion

We now discuss type confusion and type safety (type-safe languages).

Type confusion occurs during program execution when the program has a reference of one type
to an object in memory with a different type. This could be due to an implementation error in a tool,
or a semantic error (confused programmer). Type confusion often leads to unexpected results.

Recall that we said that C is weakly-typed (page 8). This term commonly appears in two con-
texts. (1) For a typed language such as C, weakly-typed may suggest that the language is not fully
type-checked to rule out undefined behavior [8]. (2) For an untyped language such as assembly lan-
guages and interpreted or script languages (e.g., JavaScript), weakly-typed may refer to the language
being “loose” with types, e.g., objects of one inferred type being eagerly coerced to or combined
with objects of different types (recall page 7). Note that despite being weakly-typed in the second
sense, JavaScript is nonetheless memory-safe in the L1 sense.

Weakly-typed languages in both senses can lead to security problems. Security-wise, we pre-
fer a language whose design, processors, and run-time support strive to ensure that variables and
expressions have types consistent with operations they are used in, and generally prevent memory
assigned to values of one type being used as another type, except through explicit conversions.

A type system’s design should also use distinct types for objects with distinct semantic proper-
ties. Thus pointers to data (data pointers) should have different types than function pointers, and
integers should be distinct from pointers—e.g., because a data pointer plays an addressing role (lo-
cating and accessing data), whereas regular integers are used in arithmetic expressions. As noted
earlier, data types help ensure that runtime operations involve operands of the expected structure.

In weakly-typed languages, instances of type confusion are typically unintended (and if syntac-
tically allowed, may go undetected). In contrast, when a programmer intentionally uses the same
region of memory at different times for objects of different types, this is called type punning. (A
pun is a play on words, where a word has two meanings.) For example, C union types (untagged
unions) enable type punning; union types effectively bypass C’s type system (cf. page 8). As the
ISO C standard states (ISO/IEC 9899:2018, p.59):9

If the member used to read the contents of a union object is not the same as the member
last used to store a value in the object, the appropriate part of the object representation
of the value is reinterpreted as an object representation in the new type.

This may result in misinterpreting the value, or reading out more bytes from memory than stored
into a shorter union member.

Next, we discuss the term type-safe language, sometimes shortened to safe language. Charac-
terizations of this term by experts include the following [8, 42].1°

e A safe language guarantees the integrity of the abstractions that it provides. This sets the
expectation that abstractions defined through the language are enforced at run time (e.g.,
boundaries of objects, allowed methods to access array elements).

9Kernighan [27, pp.147—148] notes C unions are similar to Pascal variant records. Cf. COMP2401 notes, p90.ch2.
10The term strongly-typed is used interchangeably with fype-safe by some but not all experts; we thus avoid it here.
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o A safe language has a specification that fully defines program behavior, ruling out undefined
behavior. The language takes responsibility for ensuring that programs behave predictably
(vs. making programmers responsible).

o A safe language precludes untrapped errors at run time. The language promises that any error
not detected statically will be trapped immediately upon occurrence at run time, and that no
undetected run-time errors can occur (e.g., which might cause unexpected behavior later).

o Informally, type safety promises that: runtime operations don’t silently go wrong.

While the above are characteristics only, precise technical definitions of type safety are given in
the literature on type systems (e.g., [42]), and typically model or support memory safety properties
desired in practice. Type safety in running systems often relies on both compile-time and run-time
checks to find errors specifically targeted by the language and the goals of its type system.

Finally, a type-safe language is harder to design than a type-safe program, as a single program
may simply avoid programming pitfalls and problematic features in an unsafe language.

Casting vs. coercion. In C, a cast is a directive to change the compile-time type (type tag) that
a compiler associates with an object; this generates no code, nor changes value representations. In
contrast, coercions typically result in code generation to convert value representations. (Consider
what is needed to coerce a 16-bit integer to 32-bit integer, or to double float.) To use analogy, the
cast operation might be viewed as having a barn and then one day starting to call it a house, and
later a hotel, but without ever doing any renovations; type coercion involves internal renovations.
In this sense, a cast is a superficial labelling change, while coercion changes representation and
preferably stores the result (often of a different size) in a different location. Explicit function calls
that create new objects from old are distinct from superficially changing an object type.

Example. C is not type-safe for many reasons: unions, lack of bounds-checking, a cast operation
allowing direct conversion of integers to pointers and across pointers to different types of objects.

Example [48]. Vulnerability due to overflow that can be abused to overwrite security-related data.
struct S {char name[15]; bool isRoot; };
struct S svar; char buf[l16];
memcpy (svar.name, buf, sizeof(buf)); // form: memcpy(dst, src, nbytes)

Example [48]. Information leak via part of an object remaining uninitialized.
struct S {int data[2]; };
struct S *sptr = (struct S *)malloc(sizeof (struct S));
sptr->data[0] = 0; // part of the struct remains uninitialized
send_to_hostx (sptr, sizeof (struct S)); // hostx may be external/untrusted

Example. Languages with type safety properties: https://en.wikipedia.org/wiki/Type_safety
Exercise. Explain how each of the three categories of memory error violates common typing goals.

Exercise. Consider the statement: coercion is more closely related to type checking than to type
safety. Do you agree? Discuss and explain.

Exercise. (a) Explain C++ static_cast and dynamic_cast. (b) Discuss C++ reinterpret_cast.


https://en.wikipedia.org/wiki/Type_safety
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1.6 Relating language choice and software security

Garbage collection is used by most languages that offer memory safety guarantees [42], as a com-
mon means to avoid errors related to manual memory management, including memory leaks, spatial
errors and temporal errors. As should now be clear, the language used to write a program has a huge
impact on the resulting software security—as some languages eliminate entire categories of errors.

However, language choice alone is not a full solution to avoiding memory errors related to sys-
tems languages like C++ or C. These are often also called compiled or native languages, in contrast
to high-level languages that run in managed environments (e.g., virtual machines, interpreters) [49].
The challenge is that “memory-safe” high-level languages may themselves rely on supporting com-
ponents or run-time libraries written in native languages—e.g., to interface to hardware, or for per-
formance or historical reasons (legacy code, backwards compatibility). On the positive side: some
categories of simple memory vulnerabilities are becoming harder to exploit in newer products, due
to not only development tools that help avoid them, but also effective run-time defenses.'!

Languages themselves also cannot eliminate all security problems related to software. As one
example, definitions of memory safety and type safety are silent on language-related categories of
errors such as integer overflows and underflows (next paragraph). As another, neither memory safety
nor type safety address security issues related to lack of input validation—e.g., preventing a char
string <script> tag, embedded in user input to a web discussion forum, from being executed as
JavaScript.!? Language-based software security is also orthogonal to social engineering (“download
and install this cool software [please ignore the malware hidden within it]”).

Integer overflows. Integer overflows and underflows are known to indirectly enable a variety of
exploits (next paragraph). In C, for a 16-bit unsigned int x holding value 2'® — 1 = 65535, x+1
yields 0. We commonly call this an integer overflow, but C officially states that integers declared
unsigned “obey the laws of arithmetic modulo 2" where n is the number of bits in the representation,
and thus arithmetic on unsigned quantities can never overflow” (i.e., no error is flagged, and the
mod 2" result is considered correct). On the other hand, for a signed char (8 bits) with value 127,
adding 1 yields —128 on most implementations (oh my!), but officially the behavior is undefined.
Many C programs do indeed rely on the standardized mod 2" behavior for unsigned integers.

Integer overflow/underflow, and consequences of coercions (e.g., integer width conversions that
result in truncations and extensions), often lead to a broader category of errors called integer-based
vulnerabilities. These include a range of issues that while not themselves memory errors, can
indirectly contribute to them via integer-based errors that impact, e.g., branching conditions, loop
counters, or array access indexes. Surprises often result from mixing signed and unsigned integers
in C—thus the general advice: avoid mixing signed and unsigned data types.

Example. Comparing signed and unsigned int values results in promotion (a coercion, page 3)
of the signed int to an unsigned of same width; this converts negative values to positive, often
unexpectedly. Compilers may or may not warn about this. For concreteness, consider the C code:

T As of 2019, Microsoft reported that stack buffer overflows had almost disappeared among their vulnerabilities [32].

12This type of input validation may be viewed as a higher-level type checking issue above programming languages.
Cifuentes and Bierman [11] discuss the failure of mainstream programming languages to provide features that protect
against this and related injection errors and other major categories of software vulnerabilities.
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if (namelen < 64) // if namelen is int, this is a signed comparison
strncpy (dstbuf, srcbuf, namelen);
Here the intent is that srcbuf holds a filename of length namelen. Suppose both are external in-
puts under attacker control, and a negative namelen is somehow provided. The if test will pass,
and strncpy will be called. But because it takes an unsigned int as third parameter, the compiler
implicitly coerces namelen to unsigned, making it a large positive. A buffer overflow results.

Language continuum. If we drew a software security continuum comparing popular languages
by number of language features that support (or undermine) security, C and C++ would be on the
(insecure) left end, positioned only slightly right of assembly languages and Unix shell scripting.
On the (secure) right end would be Python, Java, and Rust among other modern languages.

Exercise. (a) Draw a continuum as noted above, placing the following languages on it, in a linear
order that you believe is justifiable: assembly language, C, C++, Java and shell scripting. Then give
your justification. (b) Extend part (a) by adding two additional languages of your choice.

Exercise. Discuss how performance overhead and cognitive load on developers impact the practical
adoption of programming language abstractions that aim to improve security. (Hint: [11, §3].)

Exercise. (a) Write your own C program to find the lowest (or most negative) and highest values
representable by each of the 5 integer types noted on page 2, each in three cases: no modifier,
signed modifier, unsigned modifier. Summarize in a table. (b) Find and specify the hardware
platform that your program executed on (the answers vary across platforms). (c) For each of the
15 cases, extend your program (and table) to show results on adding the constant 1 to the largest
representable value, and on subtracting 1 from the lowest representable value.

Project. Most of our discussion has implicitly assumed compiled languages, but languages such
as Python are interpreted (often called scripting languages). (a) What is the difference between a
compiler and an interpreter? (b) Explain what it means to be a dynamically-typed programming
language. (c) Summarize Python’s memory safety and type safety properties, and the major classes
of security-related errors that its features rule out.

Project. This question asks for a summary comparison of security-related features of programming
languages, using a table as a road map and summary. (a) In a 2x2 table, label three rows as: C, C++,
Java. Then label four columns as our four levels of memory safety: L1 to L4. In each of the 12
cells, include a notation (e.g., empty, half, full) giving a qualitative rating on whether the language
delivers the associated level or protection, and briefly explain each rating. (b) Do the same for 3
further languages selected from: JavaScript, Python, Java, C#, Go, Swift, Rust.

1.6.1 A closer look at Java

We now look at Java as a specific language example, with focus on security-related aspects including
data typing and memory safety. Although beyond our scope here, we note that Java is distinguished
in that its programs are compiled to bytecode, which is then loaded and run on a JVM (page 17).
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Java was designed to allow substantial type checking at compile time, but some checks must be
done dynamically, e.g., for objects whose types are not statically known. Thus while being statically
typed (in the sense that variables must be declared before use, similar to C), Java is not entirely a
statically-checked language.

Java’s approach of using references (next paragraph) rather than raw pointers shares properties
with many other high-level languages that use garbage collection (page 5), as it does.

References in Java. A Java variable for a non-primitive object does not directly store a value.
Instead, the storage location bound to the variable contains information that enables access to an
object value on the heap. For example, rec = new Record () allows access via rec.firstfield,
but no memory address can be derived from variable rec. This rules out programmatic manipulation
of addresses; the abstraction hides address details from programmers. The internal implementation
of a Java reference to objects (e.g., growable strings or vectors) nonetheless involves a pointer to the
value (as well as metadata that enables validity checks). But Java’s design eliminates C’s explicit
pointer dereference (*) and address (&) operators.

Java allows setting a reference to empty (rec = null), implying no object present. The value
bound is then a semantic value denoting null. In this case, trying to access rec.firstfield throws
an exception on the attempt to dereference a null reference—called NullPointerException for
historical reasons. Thus Java’s implementation of a reference does not simply try to follow a raw
pointer as would be done in C, but instead involves semantic checks (including bounds-checking).

If a and b are variables for objects of the same type in Java, thenb = a does not result in a copy
of object a being created for b, but rather, b becomes a reference to the same object as a. Now a and
b are aliases for the same object, and modifying the value of one changes both. (We will see later
how Rust avoids this issue.)

Notes relative to C, C++, Rust. While C raw pointers provide a concrete means to access a
value, and in that sense refer to a value, they are quite distinct from Java references. So-called
smart pointers in C++ support some features of Java references (e.g., metadata allowing run-time
bounds-checking on array accesses), but are perhaps better viewed as wrapped pointers more akin
to Rust’s smart pointers (§1.7.1). Features associated with C++ and Rust smart pointers also support
memory management, i.e., freeing memory (recall that neither language is garbage-collected).

Type-casting. In Java, casting creates a reference to an object having a type compatible with the
original (the original object is unchanged). Here to be compatible requires an existing relationship in
Java’s object inheritance hierarchy. Valid casts include explicit downcasts from a parent superclass
type to a child subclass,'> and upcasts from a child class to its parent class (supertype). Primitives
can be downcast (narrowcast) to narrower types, e.g., int to short, or float to int; the expression

(int) doublefloatx could be assigned to an int variable, narrowing to a value of 10 if variable
doublefloatx had value 10.8. The opposite, a widecast, is done implicitly (automatically) by the
compiler when needed; however narrowing requires an explicit cast (to avoid error messages).

Overall, type conversions for Java non-primitives (objects) have tight constraints, but mirror
those for primitives (implicit/coercion, explicit/casting). Recall the class (type) hierarchy for Java’s
numeric (arithmetic) primitive data types, from top down: double, float, long, int, short, byte.

13Recall that extend is used to define a subclass (child) from a base class (parent), to provide specialized properties.
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While some casting errors can be statically detected, compatibility checks are done at run time
if a type is unknown at compile time. Run-time cast errors result in a ClassCastException being
thrown. Run-time type information (below) is thus needed for type-checking dynamic casts—and for
expressions involving the binary operator instanceof, which is often used to avoid this exception.
For example, (obj instanceof class) returns a boolean, allowing control-flow decisions based
on a run-time test of an object’s type against a statically known type (class).

Java run-time type information [55]. Recall from first year courses that defining a Java class
creates a new Java type, which variables can be declared to have, thereby granting access to methods
within the class. On compilation, the resulting class file contains information loaded later by the
Java Virtual Machine (JVM). From this the JVM builds a dictionary of run-time type information,
and creates an object of class java.lang.Class for each type loaded (providing class metadata
and methods). To use this type information in support of runtime type-checking (such as for dy-
namic casts), object instances in the JVM are associated with the dictionary type information for
the object’s class. This might be done by a pointer from the object instance to the dictionary type
information. In contrast, note that traditional C maintains no type information at run time.

Memory safety in Java. Java is generally said to be memory safe. Our L1 is largely'* delivered
by Java’s design of references (no program-based access to explicit addresses), type checking and
casting rules, avoiding temporal errors by garbage collection and spatial errors by checking object
bounds through compile-time and (when not ruled out as safe) run-time bounds-checks. L2 is
achieved by flagging use of uninitialized local variables as a compile-time error, and assigning
default values to uninitialized class variables (and fields therein): O or false for primitive types and
NULL for objects (non-primitives including String). For L3, Java’s use of garbage collection can
substantially reduce memory leaks. While Java remains susceptible to programming errors related
to integer overflow (page 14), its language specification does define that the resulting behavior must
be as expected from two’s complement arithmetic—whereas C officially only states that program
behavior from overflow of anything other than unsigned integral types is undefined.

Homework. Read further details on how Java type-checking works, and an example of type confu-
sion (which typically relies on implementation errors in supporting infrastructure), from McGraw
and Felten’s 1999 book [31, §2.10 and §5.7] at http://www.securingjava.com/.

Homework. This explores Java support to prevent data races (1L4), towards thread-safety. Read
Chapter 12 (Threads and Multiprocessing) in Eck’s openly accessible book [13]. (a) Define race
condition. (b) Describe how exclusive access to an object (through mutual exclusion as provided
by a lock) can avoid data races. (c) Describe the syntax and use of Java synchronized statements
and synchronized methods. (d) Explain why synchronized access, if not done carefully, can result
in another problem called deadlock (begin by defining this term).

Exercise. As noted above, Java’s design aims to avoid information leaks by requiring that local vari-
ables be initialized, and assigning default values to class variables that are otherwise uninitialized.
However, a separate question is: do Java garbage collectors typically zeroize free pool memory? For

1411 memory errors remain possible in Java (and other languages) through a general exposure to code used in run-time
libraries (e.g., libc) and the supporting environment, possibly including in implementation of standard Java classes.
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example, if a password or secret key object was in heap memory, and is freed (possibly compacted
during garbage collection), will the secret still reside in memory? Explore, explain and discuss.

1.7 Rust introduction and motivation

Awareness of C’s memory safety failures, and the security implications, continues to grow. The Rust
programming language is the strongest serious contender as a systems-level alternative to C, i.e., a
lower-level language suitable for operating systems and browsers and interfacing to hardware. Here
we briefly introduce a selection of Rust’s security-related design features, and encourage pursuit of
further details in a separate course.

While well known to security experts for over 35 years—even before the 1988 Internet worm
incident—the importance of security in programming languages is now reaching wider audiences.
Recent efforts to deliver this message include Gaynor’s short 2019 piece encouraging VPs of Engi-
neering to choose languages other than C/C++ [18], a high-level overview of memory safety from
the US National Security Agency in November 2022 [34], and a January 2023 report [21] summa-
rizing a discussion sponsored by Consumer Reports on how to encourage adoption of memory-safe
languages. Along the same lines, arguments were made in 2021 for using Rust in the Linux ker-
nel [53],!3 as the Rust for Linux project gained momentum.'® Arguments for favoring Rust and
abandoning C in introductory OS courses date back to 2013 [14].

1.7.1 Rust overview: ownership, smart pointers, and memory safety

Here we provide a selective tour of Rust design features that support security, and related syntax
(C-like at core). Almost from the start, Rust developers must be aware of the location of memory
associated with an object (heap, stack, or a data segment). Heap memory is of special concern, as
heap objects internally involve raw pointers pointing to values. As we will see, Rust’s design avoids
a single object (at any one time) being pointed to by more than one pointer having the capability to
modify the object’s value. Such write-capable aliases are historically a root cause of major security
vulnerabilities in C, and aliases in general complicate static analysis (e.g., by compilers) to detect a
variety of programming errors and dangerous practices. Rust’s design enables such detailed static
analysis, and provides significant features for handling errors at run time—together addressing many
of the memory errors that we have discussed.

Mutability and moving. By default, the value of a Rust variable cannot be changed once
assigned. To do so requires an explicit declaration of the variable as mutable (keyword: mut):

1: let mut 1 = 7; /I we say this binds the integer value 7 to variable 1
2:1 =1+ 1; // update allowed, because the variable is mutable
3:let j = 1; /I type inference used (type declaration optional here in Rust)

After line 1, i is said to own!” this instance of the value 7. At line 3, a copy of value 8 is made and
bound to variable j. Both i and j have value 8, stored as separate copies on the run-time stack.

In contrast to i, j, consider Rust variables u, v of type String. If u had string value "STRing1l",
then let v = u would not result in a copy of the string being made—because dynamic strings are

158ee also Filho [15] and Anderson [3].
1https://en.wikipedia.org/wiki/Rust_for_Linux
17Ownership is a design concept used in other languages including C++.
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stored in heap memory, and by default Rust does not copy heap data (which is called deep copying).
Instead, value "STRingl" is said to be moved from u to v, transferring ownership of the value to v.
The value is no longer accessible through u (attempted access yields a compiler error).

Thus from the beginning, we see that different rules apply for heap-allocated objects (such as
dynamic strings) than for simple objects of known size at compile time (e.g., an integer), which are
easily and efficiently copied and typically use stack memory, which can be freed by stack pops.

The rules on owning and moving values apply to all assignments—not only explicit assignment
statements, but also function calls, both when variables as instances of actual arguments are con-
verted to formal parameters, and in passing return values back to calling functions. These, and
evaluation of expressions, are all areas to watch closely, as instances where values are bound to
variables. The importance of rules around assignment of values should not surprise us, as that is
where the action is, e.g., type conversions, opportunities for type confusion, and creation of aliases.

Passing a variable of type St ring to a function moves the string value (and its ownership) to the
scope of the function. However, passing a primitive-type variable (such as i:u32, unsigned 32-bit)
to a function does not move ownership of its value; instead, a copy is made, based on the design
decision that a u32 (and other fixed-size data types) can be shallow-copied using a known, constant
amount of stack memory.

Ownership rule #1. Each value has a single owner object at any one time. The owner is the
only entity with authority to alter the value (i.e., a single owner has write privileges).

Scope rule #1. When an object goes out of scope, associated dynamic memory is freed. This is
done automatically by the compiler inserting code to deallocate memory (via a destructor function).

As a baseline, the scope of a non-global object is the function or block it is in; ownership can
be transferred out of a block through a return value. Rust tightens an object’s scope (lifetime) to
its minimum span of actual use within a block (e.g., rather than the end of a block or function); in
some cases this avoids otherwise violating Ownership rule #2, further below. Beyond an object’s
lifetime, neither the object nor its value is valid for access; compiler errors (on attempts to access
invalid objects) clarify valid spans.

A variable’s scope may be refined by blocks delimited by braces ({ }) and by explicit annotation
(using optional scope labels in variable declarations). While the scoping rules at first appear to add
time and complexity burdens on programmers, they enable detailed compile time type checking that
helps prevent memory errors and related security vulnerabilities. The win is long-term, in the form
of fewer bugs, as a result of the safety guarantees that the compiler can deliver.

Shadowing. The let keyword declares a new variable. A variable identifier can be reused in the
same scope (possibly with different type and mutability) by again using let; the keyword reminds
us that it is a new declaration. The old instance of the variable name and its value become invalid;
they are no longer accessible, and are said to be shadowed by the new instance and value.

References and borrowing. The syntax &i denotes a reference to variable i (not its value).
The reference can be used, e.g., to assign to another variable or as a pass-by-reference argument to
a function (vs. passing a copy of the value, pass-by-value). As an example:

let b: &132 = &a; /I &132 denotes b’s type as: reference to a 32-bit integer
Unlike C’s raw pointers, Rust aims to guarantee that throughout the lifetime of a reference, it always
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refers (points) to valid values of a given type. References to non-primitive types are not raw pointers,
but fat or smart pointers (these and dealing with NULL pointers are discussed shortly).
Like other variables, references are immutable unless declared mut. To illustrate, consider a
variable playerdata whose type is a st ruct with an integer field birthyear:
0: struct Year {birthyear: ul6,} /1 struct definition, one field only

1: let playerdata = Year {birthyear: 2000}; //initialized field

2: let p = &playerdata;

3: p.birthyear = 2001; // causes compile error
The error is fixed by declaring p to be a mutable reference (smut), and also playerdata to be
mutable—making explicit, to both compiler and developer, the intention to modify data:

la: let mut playerdata = Year {birthyear: 2000};

2a: let p = &mut playerdata;
An & reference allows reading but not writing (analogy: it is improper to write in a borrowed book).
In Rust, & is called the borrow operator (for shared read access), and an & reference is said to borrow
a value; in contrast, a mutable borrow, &mut, also allows write access (but no shared reads), and
moves a value’s ownership. A borrow’s read access privilege ends (is returned) when the variable’s
lifetime (scope) ends. This is tracked by a component of the compiler called the borrow checker,
and supports enforcement of our second ownership rule:

Ownership rule #2. Rust allows either one single mutable reference to a value (and no im-
mutable references in this case), or multiple immutable references (with read-only access).

Invalid accesses. Some Rust data types are fixed-length once declared (e.g., array and tuple
types). Others are variable-length, e.g., String, and vector type Vec<T> for growable collections
of a fixed basic type T (say, u32, for 32-bit unsigned ints). Accessing an invalid collection element,
e.g., the ninth element of a vector that has only elements 0..7, is caught as an error. For example, a
vector element access may be attempted by: &myvec[8], or myvec.get (8). The first would trigger
a run-time panic error (program crash). The second would return a semantic value None, enabling
programmatic error-handling. Notably, in neither case do (L1 spatial) memory errors occur.

Option types and NULL pointers. To help eliminate NULL pointers in regular code, Rust
supports a generic type, Option<T>, where T is a type parameter. For references to objects x of
type T, Option<T> takes values:

e Some (x), for the non-NULL case, or
e None, for the NULL case (the absence of a value).

Proper code explicitly handles both cases, replacing ad hoc (or missing) NULL pointer checks in
C code. In the case of Some (x), the value x (said to be wrapped) can itself be accessed using
.unwrap (). C programmers and novice Rustaceans may initially view this as tedious; the tradeoff
is a short-term cost to avoid later costs of fixing hidden bugs and their consequences.

The Option type also appears in one of the built-in method categories available for custom
handling of integer overflow. (Arithmetic overflow results in defined behavior in Rust, but this does
not eliminate related programming errors.) By default, integer overflow triggers a run-time panic in
debug builds, and wrap-around (arithmetic modulo 2") in release builds [6]. If this is not as desired,
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the defaults can be overridden by using built-in integer operation methods: (1) checked overflow
returns Some (x) if a result x is representable within the type’s range, else None; (2) saturation
returns a result x pinned to the maximum or minimum range value closest to the correct result;
and (3) wrap-around overflow is as per the default, or a variation can furthermore indicate TRUE if
wrapping actually occurred (a result tuple is comprised of the value, and a boolean flag).

Homework. For a better understanding of the use of the Opt ion<T> construct in Rust, read the
explanation and code examples in (§32: Option and Result) of David MacLeod’s online book [29]:
https://dhghomon.github.io/easy_rust/Chapter_31.html

String. The String type noted above is an example of a Rust smart pointer (as is Vec<T>).
String is implemented as a built-in (C-like) struct (see Fig.2). One field is a protected18 raw
pointer to a value in heap memory, a second supports bounds-checking (1en, the size currently in
use), and a third helps manage dynamic growth of a string (capacity, the maximum size per mem-
ory currently allocated to this object). Rust String objects are well-supported by this combination
of pointer (to string value data) plus metadata used to deliver guarantees; in contrast, C strings are
programmer-built using a raw pointer to a first char and a hope that the following sequence of bytes
is terminated by a NULL char before the end of the memory allocated for the string.

(string value)

s Reference mystring Object dex /7alne
. : . : index /valu
(type: &String) (type: String) o1 [s]
field field 1
ptr ptr| [ «] 2
len| | 6] 3
capacity g

Figure 2: Rust smart pointer for String object mystring with value “string”. The figure shows
the result of a call fn_on_str (¢émystring), for a function with signature fn_on_str(s: &String).
A reference to the object of type String is passed, and populates the formal parameter s.

String traits. The String type has two so-called traits relevant to our interests. Traits provide
functionality available for a given type (functions operating on values of that type). The Deref
trait allows dereferencing the smart pointer (using x). The Drop trait enables a function specifying
customized clean-up actions when an object goes out of scope; the compiler automatically inserts
code to call this function, and default code to deallocate (free up) heap memory. This lightens the
programmer’s burden and avoids programmer errors leading to memory leaks, or releasing memory
twice—double-frees. The Drop trait thus supports implementation of Scope rule #1.

Rust’s combination of compile time static analysis and automated insertion of code to reclaim
heap memory amounts to a third approach to dynamic memory management, distinct from tra-
ditional garbage collection, and manual programmer allocation plus deallocation of heap memory.

&str (string slice). Rust’s string slice, denoted &str, is another smart pointer data type. It is
used to reference a substring (possibly the entirety) of either a dynamic string (St ring) or a constant
string (constant strings are immutable and have type str, but no inherent metadata). Objects of

8By protected we mean not subject to alteration (e.g., by pointer arithmetic) in (safe) Rust code. However, blocks
denoted by the unsafe keyword open up a special compiler mode that relaxes some constraints, allowing developers to
carry out operations not normally permitted—including potentially dangerous ones such as dereferencing raw pointers.
The cost is the loss of some safety guarantees, such as pointers always pointing to valid objects and being non-NULL.
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type &str have a pointer (to the first character of the substring value) and a len field, but not the
capacity field found in the String struct of Fig.2.

Box pointers. The Box<T> pointer type is the simplest Rust smart pointer. It results in a fixed-
size object allocated on the run-time stack, holding simply a pointer to a value of type T, allocated
from heap memory (rather than stack). A common use is to avoid inefficient deep copying of large
data structures, when the value is to be moved to a new owner (the new owner object can simply be
given a pointer to the heap value). See Fig.3.

Smart pointer on stack Object on heap (type: T)
(type: Box<T>) field (value
e
Y
z

Figure 3: Box<T> pointer. As with other smart pointers in Rust, it has Drop and Deref traits.

Reference-counting pointers. The Rc<T> type is a further example of smart pointers. It
allows a data value to have multiple owners, but all are read-only, to avoid data races (page 11). A
count is kept of how many references point to the data value; if the count is zero, the value becomes
invalid and is cleaned up.!® The Re<T> type also has a Drop trait, of use to update reference counts.

Memory safety and unsafe Rust. Code blocks denoted by the unsafe keyword open up a
special compiler mode that relaxes some constraints, allowing developers to carry out operations not
normally permitted in Rust—including potentially dangerous pointer arithmetic, and dereferencing
of raw pointers. The price is thus the loss of some safety guarantees, such as pointers always being
non-NULL and pointing to valid objects. Rust’s hope (and culture) is that programmers strictly
scrutinize and minimize use of unsafe blocks. This localizes and significantly reduces the volume
of code at higher risk of memory vulnerabilities, but we should remember that the difficulty of
finding security flaws by ‘scrutinizing’ is what motivated using Rust versus C in the first place.

Excluding unsafe blocks, most security issues involving invalid pointers are eliminated by
Rust’s features, such as ownership and borrowing rules enforced by the borrow checker and static
type checking system; smart pointers; and Drop traits supporting automated memory deallocation.
These and scope/lifetime rules allow tracking of object validity and verification that all references
(pointers) are valid. In particular, dangling references are flagged as compile time errors.

Regarding our memory safety levels L1-L4, spatial and temporal memory errors (L.1) are largely
eliminated by the above features. For L2, reading from uninitialized variables is flagged as a
compile-time error, concerns about wild pointers and invalid heap objects are addressed by Rust’s
guarantees that all references are validated before use, and the Option data type mitigates NULL
pointer errors. On L3, Rust’s approach to dynamic memory management, including support of
Drop traits and reference-counting pointers, helps reduce memory leaks by facilitating compiler-
supported memory deallocation. Rust does not fully eliminate memory errors, due to unsafe code,
including run-time libraries that may use unsafe blocks, and components not written in Rust.

Finally, data races (LL4) are eliminated in safe Rust by its enforcement of Ownership rule #2,
combined with features supporting multi-threaded programs such as syntax allowing the movement
and tracking of object ownership across threads. Unsurprisingly, other race conditions related to

19Those familiar with Unix file system inodes will recognize this strategy.



23

thread synchronization remain (e.g., deadlock®). Overall, Rust (excluding blocks marked unsafe)
is viewed as type-safe and memory-safe.

While Rust is a big step forward in memory safety for systems languages, security issues remain.
One category stems from the reality that while most binaries rely on libraries from a variety of
source languages and tool chains, security guarantees are not composable across such components.
Rust delivers guarantees that rely on compile-time analysis, as well as optimizations via eliminating
apparently redundant runtime checks—but this combination has been shown to enable use of safe
Rust code to exploit non-Rust code in mixed binaries, e.g., combining output from C/C++, and Rust
compiler tool chains that have differing approaches to delivering memory safety [33], [37].

Homework. Read “Introduction to Memory Unsafety for VPs of Engineering” [18]. Summarize its
main technical points, similarities to, and differences with our memory safety discussion herein.

Homework. To better understand ownership, references, borrowing, and how strings are represented
in Rust, read Chapter 4 of Klabnik and Nicols [28] at https://doc.rust-lang.org/book/ and
work through its examples. (You need not install Rust locally to work through the examples.)

Homework. (a) Using the Rust Playground at https://play.rust-lang.org/, get a feel for Rust
by selecting and modifying a few examples from the online book Easy Rust [29]. (b) Explore the
resources at Rust By Example: https://doc.rust-lang.org/rust-by-example/

Homework. Review the following page discussing undefined behavior in unsafe Rust blocks:
https://doc.rust-lang.org/reference/behavior-considered-undefined.html

Exercise. With the aid of a summary table, compare and briefly explain the differences in major
security-related language features of Rust and C (e.g., type systems, approach to dynamic memory
management, syntax for casting and pointer arithmetic, features supporting memory safety).

Conclusion. Longterm, it remains to be seen whether Rust will displace C and its cousins,
or ongoing hardening of C via tools and runtime support (software and hardware) will eventually
mitigate enough classes of vulnerabilities to weaken the motivation to broadly adopt Rust.

Rust is known to have a steep learning curve (relative to C), especially for first-time program-
mers [30], [17]. On the other hand, there is a big difference between learning enough C syntax to
write simple programs, and gaining sufficient experience to avoid writing code with hidden security
vulnerabilities. This observation has led to suggestions that while it takes time to become a produc-
tive Rust developer, it takes longer to learn C well enough to avoid writing dangerous programs.

20This, discussion of concurrency, and thread safety are beyond our scope. See [28, §16: Fearless Concurrency].
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Bibliographic notes. Tennent [51] gives a concise introduction to data typing; for type systems
specifically, see Cardelli [8] for insightful exposition, and Pierce [42] for authoritative book-length
treatment. Zorn [60] and Hertz [22] discuss garbage collection. Eck [13] gives a clear introduction
to Java including safety properties. McGraw and Felten [31] give an overview of Java security circa
1999, including type confusion and type checking, the JVM and bytecode verifier; see Holzinger
et al. [24] for a long-term look at Java security vulnerabilities. Song et al. [48] give a taxonomy of
memory errors in C, and survey dynamic tools that find C security vulnerabilities. Fluet [16] offers
insights on teaching Rust. For open access introductory Rust books see Klabnik and Nichols [28],
or MacLeod [29] (in simple English with examples using Rust Playground [46]); Blandy et al. [6]
provide a more advanced treatment in the insightful style of Kernighan and Ritchie’s C book [27].
For C, see also Prinz and Crawford [45]. For recent work on memory errors related to stack objects,
see Huang [25]. For background on data races, see Savage et al. [47].
The references below include additional resources relied on or related to these notes.
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