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Abstract—Brute force and dictionary attacks on password-only remote login services are now widespread and ever increasing.
Enabling convenient login for legitimate users while preventing such attacks is a difficult problem. Automated Turing Tests (ATTs)
continue to be an effective, easy-to-deploy approach to identify automated malicious login attempts with reasonable cost of
inconvenience to users. In this paper we discuss the inadequacy of existing and proposed login protocols designed to address large-
scale online dictionary attacks (e.g., from a botnet of hundreds of thousands of nodes). We propose a new Password Guessing
Resistant Protocol (PGRP), derived upon revisiting prior proposals designed to restrict such attacks. While PGRP limits the total
number of login attempts from unknown remote hosts to as low as a single attempt per username, legitimate users in most cases (e.g.,
when attempts are made from known, frequently-used machines) can make several failed login attempts before being challenged with
an ATT. We analyze the performance of PGRP with two real-world datasets and find it more promising than existing proposals.
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1 INTRODUCTION

Online guessing attacks on password-based systems are
inevitable and commonly observed against web appli-
cations and SSH logins. In a recent report, SANS [20]
identified password guessing attacks on websites as
a top cyber security risk. As an example of SSH
password-guessing attacks, one experimental Linux hon-
eypot setup has been reported [18] to suffer on aver-
age 2,805 SSH malicious login attempts per computer
per day (see also [8]). Interestingly, SSH servers that
disallow standard password authentication may also
suffer guessing attacks, e.g., through the exploitation of
a lesser known/used SSH server configuration called
keyboard interactive authentication [19]. However, online
attacks have some inherent disadvantages compared to
offline attacks: attacking machines must engage in an
interactive protocol, thus allowing easier detection; and
in most cases, attackers can try only limited number
of guesses from a single machine before being locked-
out, delayed, or challenged to answer Automated Tur-
ing Tests (ATTs, e.g., CAPTCHAs [24]). Consequently,
attackers often must employ a large number of machines
to avoid detection or lock-out. On the other hand, as
users generally choose common and relatively weak
passwords (thus allowing effective password dictionar-
ies [13], [25]), and attackers currently control large bot-
nets (e.g., Conficker [15]), online attacks are much easier
than before.

One effective defense against automated online pass-
word guessing attacks is to restrict the number of failed
trials without ATTs to a very small number (e.g., three),
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limiting automated programs (or bots) as used by at-
tackers to three free password guesses for a targeted
account, even if different machines from a botnet are
used. However, this inconveniences the legitimate user
who then must answer an ATT on the next login attempt.

Several other techniques are deployed in practice,
including: allowing login attempts without ATTs from
a different machine, when a certain number of failed
attempts occur from a given machine; allowing more
attempts without ATTs after a timeout period; and time-
limited account locking. Many existing techniques and
proposals involve ATTs, with the underlying assumption
that these challenges are sufficiently difficult for bots
and easy for most people. However, users increasingly
dislike ATTs as these are perceived as an (unnecessary)
extra step; see Yan and Ahmad [28] for usability issues
related to commonly used CAPTCHAs. Due to success-
ful attacks which break ATTs without human solvers
(e.g., [27], [22]), ATTs perceived to be more difficult
for bots are being deployed. As a consequence of this
arms-race, present-day ATTs are becoming increasingly
difficult for human users [3], fueling a growing tension
between security and usability of ATTs. Therefore, we
focus on reducing user annoyance by challenging users
with fewer ATTs, while at the same time subjecting bot
logins to more ATTs, to drive up the economic cost to
attackers [11].

Two well-known proposals for limiting online guess-
ing attacks using ATTs are Pinkas and Sander [17] (herein
denoted PS), and van Oorschot and Stubblebine [23]
(herein denoted VS). For convenience, a review of these
protocols is given in Appendix A. The PS proposal
reduces the number of ATTs sent to legitimate users,
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but at some meaningful loss of security; for example,
in an example setup (with p = 0.05, the fraction of
incorrect login attempts requiring an ATT) PS allows
attackers to eliminate 95% of the password space without
answering any ATTs. The VS proposal reduces this but
at a significant cost to usability; for example, VS may
require all users to answer ATTs in certain circumstances
(see Appendix A). The proposal in the present paper,
called Password Guessing Resistant Protocol (PGRP),
significantly improves the security-usability trade-off,
and can be more generally deployed beyond browser-
based authentication.

PGRP builds on these two previous proposals. In
particular, to limit attackers in control of a large botnet
(e.g., comprising hundreds of thousands of bots), PGRP
enforces ATTs after a few (e.g., three) failed login at-
tempts are made from unknown machines. On the other
hand, PGRP allows a high number (e.g., 30) of failed
attempts from known machines without answering any
ATTs. We define known machines as those from which
a successful login has occurred within a fixed period of
time. These are identified by their IP addresses saved on
the login server as a white-list, or (as in PS [17]) cookies
stored on client machines. A white-listed IP address
and/or client cookie expire after a certain time.

PGRP accommodates both graphical user interfaces
(e.g., browser-based logins) and character-based inter-
faces (e.g., SSH logins), while the previous protocols
deal exclusively with the former, requiring the use of
browser cookies. PGRP uses either cookies or IP ad-
dresses, or both for tracking legitimate users. Tracking
users through their IP addresses also allows PGRP to
increase the number of ATTs for password guessing
attacks and meanwhile to decrease the number of ATTs
for legitimate login attempts. Although NATs and web
proxies may (slightly) reduce the utility of IP address
information, in practice, the use of IP addresses for client
identification appears feasible [4]. In recent years, the
trend of logging in to online accounts through multiple
personal devices (e.g., PCs, laptops, smart-phones) is
growing. When used from a home environment, these
devices often share a single public IP address (i.e., a
simple NAT address) which makes IP-based history
tracking more user-friendly than cookies. For example,
cookies must be stored, albeit transparently to the user,
in all devices used for login.

Contributions.
1) STRICT BUT USER-FRIENDLY ATT-BASED SCHEME:

The proposed PGRP scheme is more restrictive
against attackers than commonly used counter-
measures and two earlier proposals [17], [23]. At the
same time, PGRP requires answering fewer ATTs for
all legitimate users, including those who occasion-
ally require multiple attempts to recall a password.

2) FIRST REPORTED EMPIRICAL ANALYSIS OF ATT-
BASED SCHEMES: We compare PGRP’s performance
and usability (e.g., the number of ATTs triggered,

ATTs sent to legitimate users) to previous such
schemes, using two datasets from a university envi-
ronment (SSH and web-email login data, covering
more than a year).

3) APPLICABILITY TO WEB AND TEXT LOGINS: PGRP
is not limited to web-only login (unlike proposals
solely relying on browser cookies), as it uses IP
address and/or other methods to identify a remote
machine in addition to optionally using cookies. By
using text-based ATTs (e.g., textcaptcha.com), SSH
login can be adapted to use PGRP.

Organization. Section 2 discusses related work on pre-
vention techniques for online dictionary attacks. Sec-
tion 3 presents the PGRP login protocol. Section 4 com-
pares PGRP with other ATT-based protocols in terms of
security (Section 4.1), usability (Section 4.2), and required
computational resources (Section 4.3). A summary of
limitations comparing these protocols is given in Sec-
tion 4.4. In Section 5, we evaluate PGRP and other ATT-
based protocols on two different remote login datasets
and analyze the results. Section 6 concludes. Appendix A
provides a review of the PS and VS protocols.

2 RELATED WORK

Although online password guessing attacks have been
known since the early days of the Internet, there is
little academic literature on prevention techniques. Ac-
count locking is a customary mechanism to prevent
an adversary from attempting multiple passwords for
a particular username. Although locking is generally
temporary, the adversary can mount a DoS attack by
making enough failed login attempts to lock a particular
account. Delaying server response after receiving user
credentials, whether the password is correct or incorrect,
prevents the adversary from attempting a large number
of passwords in a reasonable amount of time for a partic-
ular username. However, for adversaries with access to
a large number of machines (e.g., a botnet), this mecha-
nism is ineffective. Similarly, prevention techniques that
rely on requesting the user machine to perform extra
nontrivial computation prior to replying to the entered
credentials are not effective with such adversaries.

As discussed in Section 1, ATT challenges are used
in some login protocols to prevent automated programs
from brute force and dictionary attacks. Pinkas and
Sander [17] presented a login protocol (PS protocol)
based on ATTs to protect against online password guess-
ing attacks. It reduces the number of ATTs that legitimate
users must correctly answer so that a user with a valid
browser cookie (indicating that the user has previously
logged in successfully) will rarely be prompted to an-
swer an ATT. A deterministic function (AskATT ()) of
the entered user credentials is used to decide whether to
ask the user an ATT. To improve the security of the PS
protocol, van Oorschot and Stubblebine [23] suggested
a modified protocol in which ATTs are always required
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once the number of failed login attempts for a particular
username exceeds a threshold; other modifications were
introduced to reduce the effects of cookie theft.

For both PS and VS protocols, the decision function
AskATT () requires careful design. He and Han [9]
pointed out that a poor design of this function may
make the login protocol vulnerable to attacks such as the
“known function attack” (e.g., if a simple cryptographic
hash function of the username and the password is used
as AskATT ()) and “changed password attack” (i.e., an
adversary mounts a dictionary attack before and after
a password change event initiated by a valid user). The
authors proposed a secure non-deterministic keyed hash
function as AskATT () so that each username is asso-
ciated with one key that should be changed whenever
the corresponding password is changed. The proposed
function requires extra server-side storage per username
and at least one cryptographic hash operation per login
attempt.

3 PASSWORD GUESSING RESISTANT
PROTOCOL (PGRP)
In this section, we present the PGRP protocol, including
the goals and design choices.

3.1 Goals, Operational Assumptions and Overview

Protocol goals. Our objectives for PGRP include the
following:

1) The login protocol should make brute-force and dic-
tionary attacks ineffective even for adversaries with
access to large botnets (i.e., capable of launching the
attack from many remote hosts).

2) The protocol should not have any significant impact
on usability (user convenience). For example: for le-
gitimate users, any additional steps besides entering
login credentials should be minimal. Increasing the
security of the protocol must have minimal effect in
decreasing the login usability.

3) The protocol should be easy to deploy and scal-
able, requiring minimum computational resources
in terms of memory, processing time, and disk
space.

Assumptions. We assume that adversaries can solve a
small percentage of ATTs, e.g., through automated pro-
grams, brute force mechanisms, and low paid workers
(e.g., Amazon Mechanical Turk [1]). Incidents of attack-
ers using IP addresses of known machines and cookie
theft for targeted password guessing are also assumed to
be minimal. Traditional password-based authentication
is not suitable for any untrusted environment (e.g., a key-
logger may record all keystrokes, including passwords
in a system, and forward those to a remote attacker).
We do not prevent existing such attacks in untrusted
environments, and thus essentially assume any machines
that legitimate users use for login are trustworthy. The

data integrity of cookies must be protected (e.g., by a
MAC using a key known only to the login server [17]).

Overview. The general idea behind PGRP (see Algo-
rithm 1) is that except for the following two cases, all
remote hosts must correctly answer an ATT challenge
prior to being informed whether access is granted or the
login attempt is unsuccessful: (i) when the number of
failed login attempts for a given username is very small;
and (ii) when the remote host has successfully logged
in using the same username in the past (however, such
a host must pass an ATT challenge if it generates more
failed login attempts than a pre-specified threshold).

In contrast to previous protocols, PGRP uses either IP
addresses, cookies, or both to identify machines from
which users have been successfully authenticated. The
decision to require an ATT challenge upon receiving
incorrect credentials is based on the received cookie (if
any) and/or the remote host’s IP address. In addition,
if the number of failed login attempts for a specific
username is below a threshold, the user is not required
to answer an ATT challenge even if the login attempt is
from a new machine for the first time (whether the pro-
vided username-password pair is correct or incorrect).
Section 3.3 below discusses these differences in further
detail.

3.2 Data Structure and Function Description

Data structures. PGRP maintains three data structures:
1) W : A list of {source IP address, username} pairs

such that for each pair, a successful login from
the source IP address has been initiated for the
username previously.

2) FT : Each entry in this table represents the number
of failed login attempts for a valid username, un. A
maximum of k2 failed login attempts are recorded.
Accessing a non-existing index returns 0.

3) FS: Each entry in this table represents the number
of failed login attempts for each pair of (srcIP , un).
Here, srcIP is the IP address for a host in W or a
host with a valid cookie, and un is a valid username
attempted from srcIP . A maximum of k1 failed
login attempts are recorded; crossing this threshold
may mandate passing an ATT (e.g., depending on
FT [un]). An entry is set to 0 after a successful login
attempt. Accessing a non-existing index returns 0.

Each entry in W , FT , and FS has a “write-expiry”
interval such that the entry is deleted when the given
period of time (t1, t2, or t3) has lapsed since the last
time the entry was inserted or modified. There are
different ways to implement write-expiry intervals (e.g.,
hashbelt [14]). A simple approach is to store a timestamp
of the insertion time with each entry such that the
timestamp is updated whenever the entry is modified.
At anytime the entry is accessed, if the delta between
the access time and the entry timestamp is greater than
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Input:
t1 (def=30d), t2 (def=1d), t3 (def=1d), k1 (def=30), k2 (def=3)
// The keyword ‘def’ denotes the default parameter value and ‘d’ denotes day, k1, k2 ≥ 0

un, pw, cookie //username, password, and remote host’s browser cookie if any
W (global variable, expires after t1)1 //white list of IP addresses with successful login
FT (global variable, def=0, expires after t2) //table of number of failed logins per username
FS (global variable, def=0, expires after t3) //table of number of failed logins indexed by (srcIP,username)

for hosts in W or hosts with valid cookies

begin1
ReadCredential(un, pw, cookie) // login prompt to enter username/password pair2
if LoginCorrect(un, pw) then // username/password pair is correct3

if (((V alid(cookie, un,k1,true) ∨ ((srcIP, un) ∈W )) ∧ (FS[srcIP, un] < k1)) ∨ (FT [un] < k2)) then4
FS[srcIP, un] ⇐ 05
Add srcIP to W // add source IP address to the white list6
GrantAccess(un, cookie) // this function also sends the cookie if applicable7

else8
if (ATTChallenge() = Pass) then9

FS[srcIP, un] ⇐ 010
Add srcIP to W11
GrantAccess(un, cookie)12

else13
Message(‘The answer to the ATT challenge is incorrect’)14

else // username/password pair is incorrect15
if ((V alid(cookie, un,k1,false) ∨ ((srcIP, un) ∈W )) ∧ (FS[srcIP, un] < k1)) then16

FS[srcIP, un] ⇐ FS[srcIP, un] + 117
Message(‘The username or password is incorrect’)18

else if (V alidUsername(un) ∧ (FT [un] < k2)) then19
FT [un] ⇐ FT [un] + 120
Message(‘The username or password is incorrect’)21

else22
if (ATTChallenge() = Pass) then23

Message(‘The username or password is incorrect’)24
else25

Message(‘The answer to the ATT challenge is incorrect’)26

end27

Algorithm 1. PGRP: Password Guessing Resistant Protocol

the data structure write-expiry interval (i.e., t1, t2, or t3),
the entry is deleted.

Functions. PGRP uses the following functions (IN de-
notes input and OUT denotes output):

a) ReadCredential(OUT: un,pw,cookie): Shows a
login prompt to the user and returns the entered
username and password, and the cookie received
from the user’s browser (if any).

b) LoginCorrect(IN: un,pw; OUT: true/false):
If the provided username-password pair is valid,
the function returns true; otherwise, it returns false.

c) GrantAccess(IN: un,cookie): The function
sends the cookie to the user’s browser and then
enables access to the specified user account.

d) Message(IN: text): Shows a text message.
e) ATTChallenge(OUT: Pass/Fail): Challenges

the user with an ATT and returns “Pass” if the
answer is correct; otherwise, it returns “Fail”.

f) V alidUsername(IN: un; OUT: true/false):
If the provided username exists in the login system,

1. For an explanation of the use of expiry intervals, see Section 3.2
under “Data structures”.

the function returns true; otherwise, it returns false.
g) V alid(IN: cookie,un,k1,state; OUT:

cookie,true/false): First, the function checks
the validity of the cookie (if any) where it is
considered invalid in the following cases: (1)
the login username does not match the cookie
username; (2) the cookie is expired; or (3) the
cookie counter is equal to or greater than k1. The
function returns true only when a valid cookie
is received. If state = true (i.e., the entered user
credentials are correct, as in line 4 of Algorithm 1),
a new cookie is created (if cookies are supported
in the login system) including the following
information: username, expiry date, and a counter
of the number of failed login attempts (since the
last successful login; initialized to 0). Notice that if
state = true, the function does not send the created
cookie to the user’s browser. Rather, the cookie is
sent later by the GrantAccess() function. If state =
false (i.e., the entered user credentials are incorrect,
as in line 16 of Algorithm 1) and a valid cookie is
received, the cookie counter is incremented by one
and the cookie is sent back to the user’s browser.
No action is performed for all the other cases.
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3.3 Cookies vs. Source IP Addresses

Similar to the previous protocols, PGRP keeps track of
user machines from which successful logins have been
initiated previously. Browser cookies seem a good choice
for this purpose if the login server offers a web-based
interface. Typically, if no cookie is sent by the user
browser to the login server, the server sends a cookie
to the browser after a successful login to identify the
user on the next login attempt. However, if the user uses
multiple browsers or more than one OS on the same
machine, the login server will be unable to identify the
user in all cases. Cookies may also be deleted by users, or
automatically as enabled by the private browsing mode
of most modern browsers. Moreover, cookie theft (e.g.,
through session hijacking) might enable an adversary to
impersonate a user who has been successfully authenti-
cated in the past [7]. In addition, using cookies requires a
browser interface (which, e.g., is not applicable to SSH).

Alternatively, a user machine can be identified by the
source IP address. Relying on source IP addresses to
trace users may result in inaccurate identification for var-
ious reasons, including: (i) the same machine might be
assigned different IP addresses over time (e.g., through
the network DHCP server and dial-up Internet); and (ii)
a group of machines might be represented by a smaller
number or even a single Internet-addressable IP address
if a NAT mechanism is in place. However, most NATs
serve few hosts and DHCPs usually rotate IP addresses
on the order of several days [4] (also, techniques to
identify machines behind a NAT exist, e.g., [2], [10]).

Drawbacks of identifying a user by means of either
a browser cookie or a source IP address include: (i)
failing to identify a machine from which the user has
authenticated successfully in the past; and (ii) wrongly
identifying a machine the user has not authenticated
before. Case (i) decreases usability since the user might
be asked to answer an ATT challenge for both correct
and incorrect login credentials. On the other hand, case
(ii) affects security since some users/attackers may not
be asked to answer an ATT challenge even though they
have not logged in successfully from those machines
in the past. However, the probability of launching a
dictionary or brute force attack from these machines
appears to be low. First, for identification through cook-
ies, a directed attack to steal users’ cookies is required
by an adversary. Second, for identification through IP
addresses, the adversary must have access to a machine
in the same subnet as the user.

Consequently, we choose to use both browser cookies
and source IP address (or only one of them if the other is
not applicable) in PGRP to minimize user inconvenience
during the login process. Also, by using IP addresses
only, PGRP can be used in character-based login inter-
faces such as SSH. An SSH server can be adapted to use
PGRP using text-based ATTs (e.g., textcaptcha.com). For
example, a prototype of a text-based CAPTCHA for SSH
is available as a source code patch for OpenSSH [12].

The security implications of mistakenly treating a
machine as one that a user has previously successfully
logged in from is limited by a threshold such that
after a specific number of failed login attempts (k1 in
Algorithm 1), an ATT challenge is imposed. For iden-
tification through a source IP address, the condition
FS[srcIP, un] < k1 in line 4 (for correct credentials) and
in line 16 (for incorrect credentials) limits the number of
failed login attempts an identified user can make without
answering ATTs (see Algorithm 1). Also, as explained
in Section 3.2, the function V alid(cookie,un,k1,true) in
line 4 updates a counter in the received cookie in which
the cookie is considered invalid once this counter hits
or exceeds k1. This function is also called in line 16 to
check this counter in case of a failed login attempt.

3.4 Decision Function for Requesting ATTs
Below we discuss issues related to ATT challenges as
provided by the login server in Algorithm 1. The de-
cision to challenge the user with an ATT depends on
two factors: (i) whether the user has authenticated suc-
cessfully from the same machine previously; and (ii)
the total number of failed login attempts for a specific
user account. For definitions of W , FT , and FS, see
Section 3.2.
Username-password pair is valid. As in the condition in
line 4, upon entering a correct username-password pair,
the user will not be asked to answer an ATT challenge
in the following cases:

1) a valid cookie is received from the user machine
(i.e., the function V alid returns true) and the number
of failed login attempts from the user machine’s
IP address for that username, FS[srcIP, un], is less
than k1 over a time period determined by t3;

2) the user machine’s IP address is in the whitelist W
and the number of failed login attempts from this
IP address for that username, FS[srcIP, un], is less
than k1 over a time period determined by t3;

3) the number of failed login attempts from any ma-
chine for that username, FT [un], is below a thresh-
old k2 over a time period determined by t2.

The last case enables a user who tries to log in from
a new machine/IP address for the first time before
k2 is reached to proceed without an ATT. However, if
the number of failed login attempts for the username
exceeds the threshold k2 (default 3), this might indicate
a guessing attack and hence the user must pass an ATT
challenge.
Username-password pair is invalid. Upon entering an
incorrect username-password pair, the user will not be
asked to answer an ATT challenge in the following cases:

1) a valid cookie is received from the user machine
(i.e., the function V alid returns true) and the number
of failed login attempts from the user machine’s
IP address for that username, FS[srcIP, un], is less
than k1 (line 16) over a time period determined by
t3;
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Strawman PS VS [23] PGRP
Protocol [17] [17] Owner Non-owner Protocol

Q1 0 N − pN (1− p)b2 max(b1, (1− p)b2) k2

Q2 1
2
N 1

2
pN 1

2
(N − (1− p)b2) ≈ 1

2
N 1

2
(N −max(b1, (1− p)b2))

1
2
(N − k2)

Q3 0 0 0 b1/N k2/N

Q4 c/N c/pN ≤ min( c
p
, b2 + c)/N (b1 + c)/N (k2 + c)/N

TABLE 1
Comparative security analysis for single-account attacks. (Consider k2 = 3, p = 0.05, b1 = 5, and b2 = 5, for

concreteness; see Appendix A for a review of the PS and VS algorithms)

2) the user machine’s IP address is in the whitelist W
and the number of failed login attempts from this
IP address for that username, FS[srcIP, un], is less
than k1 (line 16) over a time period determined by
t3;

3) the username is valid and the number of failed login
attempts (from any machine) for that username,
FT [un], is below a threshold k2 (line 19) over a time
period determined by t2.

A failed login attempt from a user with a valid cookie
or in the whitelist W will not increase the total number of
failed login attempts in the FT table since it is expected
that legitimate users may potentially forget or mistype
their password (line 16-18). Nevertheless, if the user ma-
chine is identified by a cookie, a corresponding counter
of the failed login attempts in the cookie will be updated.
In addition, the FS entry indexed by the {source IP
address, username} pair will also be incremented (line
17). Once the cookie counter or the corresponding FS
entry hits or exceeds the threshold k1 (default value 30),
the user must correctly answer an ATT challenge.

Output messages. PGRP shows different messages in
case of incorrect {username, password} pair (lines 21
and 24) and incorrect answer to the given ATT challenge
(lines 14 and 26). While showing a human that the
entered {username, password} pair is incorrect, an auto-
mated program unwilling to answer the ATT challenge
cannot confirm whether it is the pair or the ATT that was
incorrect. However, while this is more convenient for
legitimate users, it gives more information to the attacker
about the answered ATTs. PGRP can be modified to
display only one message in lines 14, 21, 24, and 26 (e.g.,
“login fails” as in the PS and VS protocols) to prevent
such information leakage.

Why not to black-list offending IP addresses. We
choose not to create a blacklist for IP addresses making
many failed login attempts for the following reasons:
(i) this list may consume considerable memory; (ii) le-
gitimate users from blacklisted IP addresses could be
blocked (e.g., using compromised machines); and (iii)
hosts using dynamic IP addresses seem more attractive
targets (compared to hosts with static IP addresses) for
adversaries to launch their attacks from (e.g., spam-
mers [26]).

If the cookie mechanism is not available for the lo-
gin server, PGRP can operate by using only source
IP addresses to keep track of user machines. Security
and usability implications in this case are discussed in
Section 4.

4 COMPARISON WITH OTHER ATT-BASED
PROTOCOLS

In this section, we analyze the security, usability, and
required system resources of PGRP as compared to a
strawman protocol and the PS and VS protocols (see
Algorithm 2, 3, and 4 in Appendix A for a review of these
protocols). This section also provides a comparative
summary of major limitations in each protocol.

4.1 Security Analysis

Following the previous analysis of PS [17], assume a
fixed password space of cardinality N , assume pass-
words are equi-probable, and that the delay between
when the {username, password} pair is entered and
the ATT challenge is presented to the user is identical
whether or not the credentials are correct. Also assume
that cookie theft, and adversaries using legitimate users’
IP addresses2 occur rarely.

4.1.1 Single-Account Attacks
In a single account attack, a specific user account is
targeted. Following the security analysis of VS [23] in
this case, we consider the following questions:
• Q1: What is the expected number of passwords that

an adversary can eliminate from the password space
without answering any ATT challenge?

• Q2: What is the expected number of ATT challenges
an adversary must answer to correctly guess a pass-
word?

• Q3: What is the probability of a confirmed correct
guess for an adversary unwilling to answer any
ATT?

• Q4: What is the probability of a confirmed correct
guess for an adversary willing to answer c ATTs?

2. For example, in case of dynamic IP addresses, an attacker machine
may be assigned an IP address previously used by a targeted user’s
machine.
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Strawman PS VS [23] PGRP
Protocol [17] [17] Owner Non-owner Protocol

Q1 0 0 0 mb1/N mk2/N

Q2 c/N c/pN ≤ min( c
p
, b2 + c)/N (mb1 + c)/N (mk2 + c)/N

TABLE 2
Comparative security analysis for multi-account attacks

Table 1 compares PGRP with the PS and VS protocols.
For simplicity, we use only the case c ≥ 2 in Q4 for the VS
protocol. The answer to Q1 depends on the threshold k2.
The adversary can eliminate only k2 passwords without
answering ATTs. Likewise, for Q2, the expected number
of ATTs the adversary must answer to correctly guess a
password is one-half of the remaining passwords of the
password space after subtracting the number of login
attempts that do not require ATTs. Using a small value
for k2 yields 1

2 (N − k2) ≈ 1
2N . For Q3, given that k2 is

intended to be small (e.g., 3), the probability of guessing
a password for a single-account attack without answer-
ing any ATT is very small (e.g, for 8-char case-sensitive
alphabetical passwords chosen randomly, N = 528 and
p(guessing the right password) = 2/528). For Q4, the
adversary has only k2 free attempts after which ATTs
must be answered. Therefore, he can guess a total of
k2 + c passwords with a probability of (k2 + c)/N to find
a correct password.

This analysis shows that PGRP provides improved
security over PS and VS with respect to all four ques-
tions, and identical security compared to the strawman
protocol for k2 = 0.

4.1.2 Multi-Account Attacks
In contrast to a directed attack on a single account, an
adversary could attempt to break into multiple accounts
at the same time. In fact, this is the current trend of
brute force and dictionary attacks [20]. In this case,
the adversary usually has access to a large number
of machines (e.g., compromised machines in a botnet)
and initiates the attack from many sources at the same
time. This typically gives the adversary a greater chance
of compromising user accounts than targeting a single
account.

We compare previous protocols and PGRP by answer-
ing the following questions in Table 2:
• Q1: What is the probability that an adversary know-

ing m usernames can correctly guess a password
without answering any ATT challenge?

• Q2: What is the probability of a confirmed correct
guess for an adversary knowing m usernames and
willing to answer c ATTs?

Considering Q1 in Table 2, PS appears more secure
for multi-account attacks than VS and PGRP. However,
it may be unrealistic to assume that an adversary with
access to a large botnet is unable to break a small
percentage of ATTs [27], [22] (which leads us to Q2).

For Q2, the probability in PGRP depends on the num-
ber of usernames the adversary knows and k2. While

PGRP is comparable to the VS protocol in multi-account
attacks, PS seems slightly better than PGRP but only
for login systems with a large number of users as in
equation (1).

m · k2 + c

N
>

c

p ·N

m >
c

k2
(
1
p
− 1) (1)

To consider a concrete example, for any password
length, k2 = 3, p = 0.05, and an adversary willing to
answer c = 220 ATTs: m > 1/3 (220/0.05 − 220); i.e.,
when m > 222 users, PS is better than PGRP in Q2.

In the PGRP protocol, an adversary may be able to
guess a subset of the valid usernames which is undesir-
able in certain cases [6]. In line 19 of Algorithm 1, the
FT list is not updated if the username is invalid, thus
an ATT will be requested for each login attempt with an
invalid username. Therefore, the adversary could gener-
ate a list of valid usernames as follows: if an attempted
username requires an ATT for the first login attempt, the
username is considered invalid; otherwise, the username
is valid. However, the adversary will overlook valid
usernames that have at least k2 failed attempts. While the
condition V alidUsername(un) in line 19 can be omitted
to overcome this drawback, the number of entries in
the list FT will be now proportional to the number
of all attempted usernames (whether valid or invalid)
by users/attackers within a time period determined by
t2 (see Section 3.2 under “Data structures”). We choose
to keep the condition V alidUsername(un) in line 19
to restrict the maximum size of FT to the number of
valid usernames, even when guessing attacks involving
a large number of usernames (both valid and invalid)
are launched.

4.2 Usability Comments on ATT Challenges
Our main security goal is to restrict an attacker who is in
control of a large botnet from launching online single-
account or multi-account password dictionary attacks.
In terms of usability, we want to reduce the number
of ATTs sent to legitimate users as much as possible.
A user receives ATTs when the total number of failed
attempts exceeds threshold k2, and the login attempt is
initiated from (i) an unknown machine (i.e., no valid
cookies or white-listed IP addresses), or (ii) a known
machine from which the user has already failed k1 times.
This happens for both cases of correct and incorrect
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username-password pairs, assuming the provided user-
name is valid. Below we discuss different login scenarios
and the extra effort as required from users by PGRP.
The analysis below indicates that only limited usability
impact may be expected from our proposal; the same
can also be inferred from our real-world data analysis,
e.g., the number of ATTs sent to legitimate users (see
Section 5). However, we have not yet carried out any
formal user testing. For notation and parameters as used
in the following, see Algorithm 1. For definitions of W ,
FT , and FS, see “Data structures” in Section 3.2.

First time login from an unknown machine. If a valid
username-password pair is provided from an unknown
machine (i.e., one from which no successful login has
occurred within a designated period), no ATTs are re-
quired if the total fail count from unknown machines is
below k2 (within a time period determined by t2). This
threshold may be exceeded as follows: (i) the user may
provide incorrect passwords from that machine k2 times;
(ii) attackers may have attempted k2 failed passwords
(from unknown machines); or (iii) a combination of (i)
and (ii). Once a user successfully logs in, the machine’s
IP address is added to the known list (W ).

Subsequent login from a known machine. ATTs are sent
to a known machine (i.e., one from which a successful
login has occurred within a designated period) only
when k1 is hit or crossed (see line 4 in Algorithm 1)
for that machine and the user account is possibly under
attack (i.e., k2 failed attempts also occurred on the ac-
count’s username from unknown machines). By setting
k1 to be relatively large (e.g., k1 = 30), legitimate users
may make a reasonable number of password mistakes
without experiencing any ATTs.

Valid password is provided. Users may be understand-
ably annoyed if they provide a valid password, and yet
are asked to answer an ATT. When a valid password
is provided by the user, no ATT challenges are sent
if the attempt comes from a known machine which
has not been used for more than k1 − 1 failed login
attempts within a time period determined by t3. If the
user hits or crosses the threshold k1, still no ATTs are sent
if the number of failed login attempts from unknown
machines remains below k2. Thus, users must pass ATT
challenges only when they attempt login from unknown
machines and the number of failed attempts from un-
known machines has hit or crossed k2 (possibly due
to an ongoing attack). We believe this is an uncommon
occurrence, as was apparent from our collected data.

Invalid password. This may be a common occurrence for
several reasons: (i) if users need multiple attempts to re-
call the correct password; (ii) if users cycle-through mul-
tiple passwords due to multi-password interference [5];
and (iii) typing errors including activating the caps-
lock key, sometimes aggravated by on-screen masking
of password characters (see e.g., Nielsen’s blog [16]).
From each known machine, a user is allowed up to k1

attempts, before challenged with ATTs; i.e., if the user
has logged in from n known machines (within a time
period determined by t3), then in total n·k1+k2 attempts
are allowed without ATTs. While high values of k1 (30
by default) provide convenient login for legitimate users
in common use-cases, we do not recommend very high
values (e.g., k1 = 10000) as that may aid guessing attacks
when a cookie is stolen or a dynamic white-listed IP
address is assigned to an attacker’s machine (i.e., a bot).
Note that in VS [23], an adversary can make a certain
number of failed connection attempts (the threshold b2

in Algorithm 4) for all (or as many as possible) users of
system, with the result that any failed login attempt from
a legitimate user will face an ATT challenge. In PGRP,
user convenience is unaffected by an attacker’s actions,
as long as there are not more than k1 − 1 unsuccessful
login attempts from known machines.

Invalid username. When a user tries login with a non-
existent username (e.g., typing errors), an ATT challenge
is given. Irrespective of the password or ATT answer, the
login fails. This feature restricts attackers from learning
valid usernames (except the usernames obtained via
brute force attacks as explained in Section 4.1.2), and
improves protocol performance in terms of memory
usage (i.e., no entries in protocol data structures W , FT ,
or FS). However, from a usability point of view, this
is not ideal. We expect that this type of error would
be limited in practice (in part because usernames, in
contrast to passwords, are echoed on a display).

4.3 System Resources
No lists are maintained in the PS protocol (see Algo-
rithm 3), thus no extra memory overhead is imposed on
the login server. In the VS protocol (see Algorithm 4),
only FT is maintained. The number of entries in this
list grows linearly with unique usernames (both valid
and invalid) used in failed login attempts. An attacker
may try to exhaust a login server’s memory by failed
login attempts for many usernames. For any cookie-
based login protocol, the login server may also need
to store information regarding each generated cookie to
ameliorate cookie theft attacks [23]. Note that neither
the PS nor VS protocol uses IP addresses. The most
expensive server operation in PS, VS, and PGRP is
generating an ATT.

In PGRP, three tables must be maintained. First, the
whitelist, W is expected to grow linearly with the num-
ber of users. At any given time, W contains a list of
{source IP address, username} pairs that have been
successfully authenticated in the last t1 units of time.
Second, the number of entries in FT increases by one
whenever a remote host makes a failed login attempt
using a valid username, if the username is not already
in FT , and the remote host’s IP address is not in W (or
has no valid cookie). Therefore, unlike the VS protocol,
the total number of valid usernames in the login server
puts an upper bound on the number of entries in FT
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PS [17] VS [23] PGRP
Se

cu
ri

ty Passwords eliminated from the password space of cardinality N (1− p)N (1− p)b2 k2

Password space elimination by an adversary with a valid cookie N N k1

Cookie theft Yes Yes Yes

U
sa

bi
li

ty

Probability of ATT for an incorrect password from known machine p p
0 (attempts < k1)
1 (attempts ≥ k1)

Failed login attempts attack to force ATTs for legitimate users No Yes No
ATTs for a correct password from unknown machine Yes In owner mode if attempts ≥ k2

Cookies drawbacks (multiple browsers/machines, deleted cookies) Yes Yes No

D
ep

lo
ya

bi
li

ty AskATT function required Yes Yes No
Protocol is suitable for browsers only Yes Yes No
Protocol state grows linearly with the number of users No Yes Yes
Protocol state grows linearly with usernames in failed attempts No Yes No

TABLE 3
Comparison of protocol limitations (limitations are in bold face)

since a failed login attempt for a non-existing username
does not affect this table.

A new entry is added to FS only when a valid
{username, password} pair is provided from an IP ad-
dress not used before for this username. Therefore, the
number of entries in FS is proportional to the number of
IP addresses legitimate users successfully authenticated
from. Increasing t3 increases the number of entries in FS
since the table entries last longer. The number of entries
in FS is expected to be close to the number of active
users within the last t3 units of time (as also shown in
the analysis of two real-world datasets in Section 5).

4.4 Limitations
Table 3 summarizes major shortcomings in the PS, VS,
and PGRP protocols. Under each protocol, the text is
highlighted in bold face if the corresponding entry is
a limitation. The first limitation in the security row
represents Q1 as discussed in Section 4.1.1. The second
limitation is about password space elimination for an
adversary with a valid cookie or who can use an IP
address from which a username has been successfully
authenticated in the past. Neither the PS nor VS pro-
tocol restricts the number of failed login attempts for
such adversaries. Cookie theft is a possible attack that
can be mounted against all these protocols, but can be
mitigated by updating a counter in the cookie for the
maximum number of failed login attempts [17]. The VS
protocol stores cookies only on trustworthy machines (as
discussed in Appendix A), to reduce exposure to cookie
theft.

As outlined in Table 3, the first limitation in the
usability row is about subsequent login from a known
machine, as discussed in Section 4.2. Only PGRP allows
legitimate users to try a relatively large number of wrong
passwords (k1 = 30 default) without passing ATTs. In the
second usability limitation, only the VS protocol allows
an adversary to make enough failed login attempts for

the valid usernames so that legitimate users must then
pass ATTs first. The third usability limitation is about
ATT challenges for a user who successfully logs in from
an unknown machine for the first time (as discussed
in Section 4.2). Usability drawbacks of cookies are dis-
cussed in Section 3.3. By using either IP addresses or
both cookies and IP addresses for tracking legitimate
users, PGRP is the only protocol that avoids usability
drawbacks of using cookies.

As discussed in Section 2, the design of the determinis-
tic function AskATT() in both PS and VS protocols could
have security and deployability drawbacks. Given that
the design of both PS and VS protocols considers only
cookies to identify machines, only PGRP is designed for
both login systems that are web-based and those that
are not web-based (e.g., SSH and FTP). The last two
limitations in the deployability row are as discussed in
Section 4.3.

5 EMPIRICAL EVALUATION

In this section we provide the details of our test setup,
empirical results, and analysis of PGRP on two different
datasets. PGRP results are also compared to those ob-
tained from testing the PS and VS protocols on the same
datasets.

5.1 Datasets
We used two datasets from an operational university
network environment. Each dataset logs events of a
particular remote login service, over a one-year period
each.

SSH Server Log. The first dataset was a log file for
an SSH server serving about 44 user accounts. The SSH
server recorded details of each authentication event, in-
cluding: date, time, authentication status (success, failed,
or invalid username), username, source IP address, and
source port. Log files were for the period of January 4,
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2009 to January 22, 2010 (thus, slightly over one year).
Table 4 shows that the majority of the login events
(95%) are for invalid usernames suggesting that most
login attempts are due to SSH guessing attacks. Note
that attack login attempts involving valid usernames are
not distinguishable from incorrect logins by legitimate
users since there is no indication whether the source is
malicious or benign. However, there were only few failed
login attempts for valid usernames either over short
bursts or over the whole log capture period. The number
of invalid usernames that appear to be mis-typed valid
usernames represents less than 1%.

Email Server Log (Web Interface). The second dataset
consisted of log files of a Horde IMP email client3 for the
period of January 15, 2009 to January 25, 2010. The Horde
email platform is connected to an IMAP email server in
a university environment. For each authentication event,
a log entry contained: date, time, authentication status
(success, failed, or invalid username), username, and
source IP address. Although the number of registered
user accounts in this server is 1758, only 147 accounts
were accessed. Compared to the SSH log, Table 4 shows
that malicious login attempts are far less prevalent, at
only about 1%. Login attempts with valid usernames
generated by guessing attacks are, as above, not distin-
guishable. We were unable to determine the percentage
of misspelled valid usernames since the log file data
including the usernames was anonymized.

Number of: SSH log Email log

a) Login events 90,190 48,375
i) with valid usernames 5% 99%
ii) with invalid usernames 95% 1%

b) Valid usernames entered 26 147
c) Invalid usernames entered 13,654 130

TABLE 4
Login events from SSH (Jan. 4, 2009 to Jan. 22, 2010) and

Horde email servers (Jan. 15, 2009 to Jan. 25, 2010)

5.2 Simulation Method and Assumptions
We performed a series of experiments with a Python-
based implementation of PGRP with different settings
of the configuration variables (k1, k2, t1, t2, and t3).
The login events in each dataset are ordered according
to date (older entries first). Each event is processed by
PGRP as if it runs in real-time, with protocol tables up-
dated according to the events. Since entries in the tables
W , FT , and FS have write-expiry intervals,4 they get
updated at each login event according to the date/time
of the current event (i.e., the current time of the protocol
is the time of the login event being processed).

We assume that users always answer ATT challenges
correctly. While some users will fail in answering some

3. Horde IMP is an open source PHP-based Webmail client for IMAP;
see http://www.horde.org/imp/.

4. For an explanation of the use of expiry intervals, see Section 3.2
under “Data structures”.

ATTs in practice (see, e.g., [3]), the percentage of failed
ATTs depends on the mechanism used to generate the
ATTs, the chosen challenge degree of difficulty (if con-
figurable), and the type of the service and its users.
The number of generated ATTs by the server can be
updated accordingly; for example, if the probability of
answering an ATT correctly is p, then the total number
of generated ATTs must be multiplied by a factor of
1/p. Since no browser cookie mechanism was imple-
mented in our tests, in either services of the datasets,
the function V alid(cookie, un, k1, status) always returns
false. In the absence of a browser cookie mechanism,
a machine from which a user has previously logged in
successfully would not be identified by the login system
if the machine uses a different IP address that is not in W
(see Section 3.3 for further discussion). Such legitimate
users will be challenged with ATTs in this case.

For a comparative analysis, we also implemented the
PS and VS protocols under the same assumptions. The
cookie mechanism in these protocols is replaced by IP
address tracking of user machines since cookies are
not used in either datasets. The probability p of the
deterministic function (see Appendix A) is set to 0.05
(suggested by Pinkas and Sander [17]), 0.30, and 0.60 in
each experiment. For VS, b1 and b2 (see Appendix A)
are both set to 5 (van Oorschot and Stubblebine [23]
suggested 10 as an upper bound for both b1 and b2).

5.3 Analysis of Results
In Table 5 we list the protocol parameter settings of
8 experiments. For both SSH and email datasets, the
total number of ATTs that would be served over the log
period, and the maximum number of entries in the W ,
FT , and FS tables are reported.

In the first five experiments, we change the parameter
k2 from 0 to 4. k2 bounds the number of failed login
attempts after which an ATT challenge will be triggered
for the following login attempt. Note that the total num-
ber of ATTs served over the log period decreases slightly
with a larger k2 for both datasets. Other parameters have
minor effects on the number of ATTs served.

The number of entries in W in the email dataset is
larger than the SSH dataset since there are more email
users. Note that although the number of failed login
attempts is larger in the SSH dataset, the number of
entries in FT is smaller than the email dataset because
the number of usernames is less in the SSH dataset with
very few common usernames (e.g., common first or last
names that can be used in brute force attacks). Given
that the protocol requires an ATT for each failed login
attempt from a source not in W (and with no valid
cookie) when k2 is set to 0, the FT table is empty in
the first experiment for both datasets (as the second
condition in line 19 in Algorithm 1 is always false).
Increasing t3 increases the number of entries in FS since
the table entries last longer as in the seventh experiment.

Tables 6 and 7 show the results of the PS, VS, and
PGRP protocols for the SSH and email datasets re-
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Exp. Protocol Settings Number of ATTs Entries in W Entries in FT Entries in FS
no. k1 k2 t1 t2 t3 SSH Email SSH Email SSH Email SSH Email

1 30 0 30 1 1 86,118 6,232 70 524 0 0 12 56
2 30 1 30 1 1 85,669 1,002 70 524 1 1 12 56
3 30 2 30 1 1 85,592 728 70 524 6 9 12 56
4 30 3 30 1 1 85,552 646 70 524 6 9 12 56
5 30 4 30 1 1 85,540 617 70 524 6 9 12 56
6 10 3 30 1 1 85,552 668 70 524 6 9 12 56
7 30 3 30 2 2 85,554 656 70 524 6 9 16 79
8 30 3 10 1 1 85,552 678 41 219 6 9 12 56

TABLE 5
Number of ATTs triggered and number of entries in W , FT , and FS for PGRP (non-default parameters are shaded; for each

experiment, changes in results from the previous experiment are in bold face)

Successful Login Failed Login
number of: number of:

a) attempts b) unique c) attempts using d) unique valid e) attempts using
usernames valid usernames usernames invalid usernames

Protocol Settings w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o
ATT ATT ATT ATT ATT ATT ATT ATT ATT ATT

PS [17]
p = 0.05 0 563 0 20 3,930 81,528
p = 0.30 346 3,823 24 23 146 417 4 16 19,015 66,443
p = 0.60 557 6 18 2 79,408 6,050

VS [23]
p = 0.05 418 145 12 20 50,806 34,652
p = 0.30 346 3,823 24 23 444 119 14 16 59,543 25,915
p = 0.60 557 6 18 2 82,160 3,298

PGRP

k2 = 0 412 3,757 24 23 248 315 16 14

85,458 0

k2 = 1 50 4,119 13 24 161 402 13 20
k2 = 2 20 4,149 7 24 114 449 11 20
k2 = 3 3 4,166 3 24 91 472 5 20
k2 = 4 1 4,168 1 24 81 482 3 20
k1 = 10 3 4,166 3 24 91 472 5 20
t2 = 2, t3 = 2 5 4,164 3 24 91 472 5 20
t1 = 10 3 4,166 3 24 91 472 5 20

TABLE 6
Experimental results for the SSH dataset (best results are shaded)

spectively. Configuration variables not listed in the set-
tings columns for PGRP are the default values (as in
Algorithm 1). Test results are analyzed from different
perspectives below.

a) The number of successful login attempts. The larger
the ratio of successful login attempts without answer-
ing ATTs to total successful login attempts, the more
convenient the login experience for the user. For the
default parameters of PGRP (i.e., k2 = 3 in Tables 6
and 7 and other parameters as given in Algorithm 1),
the ratio is 4, 166/(4, 166+3) = 0.999 for the SSH dataset
and 46, 201/(46, 201 + 26) = 0.999 for the email dataset.
The ratio decreases slightly as k2 is decreased in both
datasets. No other parameters significantly affect this
ratio. All the experiments have a ratio over 99% except
when k2 is 0 for the email dataset (89%). Both PS and
VS protocols have a ratio of 3823/(3823+346) = 91% for
the SSH dataset and 90% for the email dataset.

b) The number of unique usernames in successful
logins. For PGRP default parameters, the number of
unique usernames in successful logins that involved
answering ATTs (in the SSH dataset) is 3. Thus, the
majority of valid users were not challenged with any

ATT. For the other dataset, 11 valid usernames (out
of 147) faced an ATT challenge. Almost all usernames
were used in successful logins without answering ATTs
in both datasets. k2 and t2 are the only parameters
that affected the results. For both datasets, most SSH
users were asked to answer ATTs in both the PS and
VS protocols; therefore, PGRP offers a more convenient
login for legitimate users.

c) The number of failed login attempts with valid
usernames. Failed login attempts with valid usernames
could be from either malicious or benign sources. In
the first experiment on PGRP (k2 = 0), there are 315
failed attempts not involving ATTs in the SSH dataset
and 1,199 in the email dataset. Given that the source IP
addresses of all these attempts are in W , these failed
attempts are considered benign. In general, the lower
the number of attempts with ATTs the better for user
convenience. For PGRP default parameter settings, 16%
(91/(472 + 91)) of the failed attempts (with valid user-
names) involved ATT challenges in the SSH dataset and
3% (46/(1, 528 + 46)) in the email dataset. Even if we
assume that all failed attempts (with ATTs) are made by
legitimate users, PGRP results are better compared to
74% (418/(418 + 145)) for the SSH dataset and 61% for
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Successful Login Failed Login
number of: number of:

a) attempts b) unique c) attempts using d) unique valid e) attempts using
usernames valid usernames usernames invalid usernames

Protocol Settings w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o
ATT ATT ATT ATT ATT ATT ATT ATT ATT ATT

PS [17]
p = 0.05 166 1,408 7 101 24 550
p = 0.30 4,609 4,1618 134 102 442 1,132 29 79 85 489
p = 0.60 1,524 50 98 10 543 31

VS [23]
p = 0.05 961 613 41 101 291 283
p = 0.30 4,609 41,618 134 102 1,103 471 55 79 350 224
p = 0.60 1,528 46 100 10 545 29

PGRP

k2 = 0 5,283 40,944 134 100 375 1,199 88 71

574 0

k2 = 1 279 45,948 69 127 149 1,425 47 108
k2 = 2 81 46,146 32 132 73 1,501 18 108
k2 = 3 26 46,201 11 134 46 1,528 11 108
k2 = 4 9 46,218 5 134 34 1,540 6 108
k1 = 10 29 46,198 13 134 65 1,509 13 108
t2 = 2, t3 = 2 36 46,191 11 134 46 1,528 11 108
t1 = 10 34 46,193 13 134 70 1,504 13 108

TABLE 7
Experimental results for the email dataset (best results are shaded)

the email dataset in the VS best case (for p = 0.05). PS
offers slightly better results, however, this is only when
p = 0.05 which also reduces the number of required
ATTs for password guessing attempts (i.e., with invalid
usernames as in the last column in Tables 6 and 7).

d) The number of unique valid usernames in failed
login attempts. In both datasets, setting k2 ≥ 1 in PGRP
causes a significant decrease in the number of unique
valid usernames that face ATT challenges in failed login
attempts. Other parameters have no significant effect in
this manner. For k2 = 3 (default value), in both datasets
the number of affected usernames (i.e., the number of
legitimate users that are asked to answer ATTs for failed
login attempts) is comparable to PS results but less than
VS; therefore, PGRP offers a more convenient login for
legitimate users.

e) The number of failed login attempts with invalid
usernames. Any login attempt with invalid username
triggers an ATT in PGRP (i.e., no failed login attempt
with invalid usernames avoids an ATT). Indeed, all
attempts with invalid usernames trigger ATTs in both
datasets. In contrast, for the SSH dataset, only 0.046% in
PS and 0.59% in VS trigger ATTs for p = 0.05 (0.04% and
0.51% in the email dataset).

Summary of comparison. The trade-off between user
convenience (item (c) above) and login security with
respect to password guessing (item (e)) in both PS and
VS protocols is evident from the above discussion; i.e.,
increasing the number of ATTs to limit password guess-
ing attempts also increases the number of ATTs legiti-
mate users must answer. Such a trade-off is significantly
limited with PGRP. Moreover, the number of legitimate
login attempts that trigger ATTs (and the number of
affected users) is significantly lower in PGRP than both
PS and VS. On the other hand, in PGRP, more ATTs
must be answered in password guessing attacks; if g
is the number of password guessing attempts for m

usernames, PGRP requires answering ATT challenges
for at least g − k2m password guessing attempts. Our
datasets represent two very different scenarios: the SSH
server received almost 95% invalid login attempts, and
the email server received only 1% of such attempts (see
Table 4). Yet, as the above analysis indicates, PGRP is
significantly better (for both security and usability) than
previous ATT-based protocols in both cases, and it can
be deployed without affecting the login experience of
legitimate users.

6 CONCLUDING REMARKS

Online password guessing attacks on password-only
systems have been observed for decades (see e.g., [21]).
Present-day attackers targeting such systems are em-
powered by having control of thousand to million-
node botnets. In previous ATT-based login protocols,
there exists a security-usability trade-off with respect to
the number of free failed login attempts (i.e., with no
ATTs) versus user login convenience (e.g., less ATTs and
other requirements). In contrast, PGRP is more restrictive
against brute force and dictionary attacks while safely
allowing a large number of free failed attempts for legit-
imate users. Our empirical experiments on two datasets
(of one-year duration) gathered from operational net-
work environments show that while PGRP is apparently
more effective in preventing password guessing attacks
(without answering ATT challenges), it also offers more
convenient login experience, e.g., fewer ATT challenges
for legitimate users even if no cookies are available.
However, we reiterate that no user-testing of PGRP has
been conducted so far.

PGRP appears suitable for organizations of both small
and large number of user accounts. The required system
resources (e.g., memory space) are linearly proportional
to the number of users in a system. PGRP can also be
used with remote login services where cookies are not
applicable (e.g., SSH and FTP).
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begin1
if ATTChallenge() = Pass then2

ReadCredential(un, pw) // login prompt to enter username/password pair3
if LoginCorrect(un, pw) then // username/password pair is correct4

Access is granted to the account5
else6

Message(‘The username or password is incorrect’)7

else8
Message(‘ATT answer is incorrect’)9

end10

Algorithm 2. Secure but inconvenient login protocol [17]

begin1
ReadCredential(un, pw, cookie) // login prompt to enter username/password pair2
if LoginCorrect(un, pw) then // username/password pair is correct3

if Valid(cookie, un) then // cookie unexpired and matches username4
GrantAccess(un) // access is granted to the account5

else // no cookie or the cookie is invalid6
if ATTChallenge() = Pass then GrantAccess(un) // access is granted to the account7
else Message(‘login fails’)8

else // username/password pair is incorrect9
if AskATT(un, pw) = True then10

if ATTChallenge() = Pass then Message(‘login fails’)11
else Message(‘login fails’)12

else13
Message(‘login fails’)14

end15

Algorithm 3. PS protocol, adapted from Pinkas and Sander [17]

APPENDIX A
BACKGROUND ON PREVIOUS
ATT-BASED PROTOCOLS

Pinkas and Sander [17] introduced the topic with a
strawman login protocol (see pseudo-code in Algo-
rithm 2) that requires answering an ATT challenge first
before entering the {username, password} pair. Failing
to answer the ATT correctly prevents the user from
proceeding further. This protocol requires the adversary
to pass an ATT challenge for each password guessing
attempt, in order to gain information about correctness
of the guess.

While this simple protocol is effective against online
dictionary attacks assuming that the used ATTs are
secure, legitimate users must also pass an ATT challenge
for every login attempt. Therefore, this protocol affects
user convenience substantially, and requires the login
server to generate an ATT challenge for every login
attempt.

Pinkas and Sander [17] then made their actual pro-
posal, a login protocol that reduces the number of ATTs
legitimate users are required to pass; see pseudo-code in
Algorithm 3 (PS protocol). The protocol stores a browser
cookie on the machine of users who had previously
logged in successfully. The cookie is tied to the username

of the last successful login attempt.
Once the user requests the login server URL, the

user’s browser sends the cookie (if any) back to the
server. The protocol then requests the user to enter a
{username, password} pair. If the pair is correct and a
valid cookie (i.e., an unexpired cookie indicating that
a successful login for the username was made from
the same browser) is received from the browser then
the user is granted access. If the pair is correct but no
valid cookie is received, then an ATT challenge must be
answered before account access is granted. Otherwise,
if the {username, password} pair is incorrect then ac-
cording to a function AskATT (username, password), an
ATT challenge might be required before informing the
user that the {username, password} pair is incorrect.

AskATT (username, password) must be a determinis-
tic function of the entered {username, password} pair
such that for a specific pair, an ATT challenge is either
always requested, or never (this function is denoted
AskATT (un, pw) in Algorithm 3). That is, for a password
space of size N , pN of the possible passwords require
ATTs (e.g., if p = 0.05, 0.05 × N of the password space
for a given username require ATTs).

With this protocol, legitimate users must pass ATT
challenges in the following cases: (i) when the user logs
in from a machine for the first time; and (ii) when
the user’s {username, password} pair is incorrect and
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Input:
FT (global variable, def=0, expires after t2) //table of number of failed logins per username

begin1
ReadCredential(un, pw, cookie) // login prompt to enter username/password pair2
if LoginCorrect(un, pw) then // username/password pair is correct3

if Valid(cookie, un) then // cookie unexpired and matches username4
Access is granted to the account5

else // no cookie or the cookie is invalid6
if (OwnerMode(un)) OR (FT[un] ≥ b1) then7

if ATTChallenge() = Pass then GrantAccess(un) // access is granted to the account8
else Message(‘login fails’)9

else10
GrantAccess(un) // access is granted to the account11

else // username/password pair is incorrect12
if (AskATT(un, pw) = True) OR (FT[un] ≥ b2) then13

if ATTChallenge() = Pass then Message(‘login fails’)14
else Message(‘login fails’)15

else16
Message(‘login fails’)17

end18

Algorithm 4. VS protocol, adapted from van Oorschot and Stubblebine [23]

AskATT () triggers an ATT. On the other hand, an
automated program needs to correctly answer an ATT
for each password guessing attempt except one case:
when the {username, password} pair is incorrect and
a deterministic function AskATT () did not request an
ATT.

In addition to the correct password, this protocol
requires ATTs for a fraction p of the incorrect passwords.
Therefore, an adversary can confirm that (1−p)(N−1) ≈
N − pN of the passwords in the password space N
are incorrect without answering any ATT challenge. The
expected number of ATTs an adversary must correctly
answer to guess a password correctly is 1

2pN . Thus, if
the adversary is willing to answer c ATTs, the probability
of finding a correct password is c/pN .

For better defence against online dictionary attacks,
the function AskATT () should request ATTs for the ma-
jority of the possible passwords in the overall password
space (e.g., p > 0.75). However, the probability that a
legitimate user is given an ATT challenge upon entering
an incorrect password will also increase, creating a trade-
off between password security and user convenience.
In fact, setting p = 1 makes this protocol similar to
the strawman protocol, except for successful logins with
valid cookies where no ATT is required.

Van Oorschot and Stubblebine [23] proposed mod-
ifications to the previous protocol (see Algorithm 4;
VS protocol) which track failed logins per username to
impose ATT challenges after exceeding a configurable
threshold of failures (threshold b1 for correct {username,
password} pair and threshold b2 for incorrect pair; see
Algorithm 4). Hence, for an incorrect {username, pass-
word} pair, the decision to request an ATT not only
depends on the function AskATT () but also on the

number of failed login attempts for the username (line
13 in Algorithm 4).

In addition, upon entering correct credentials in the
absence of a valid cookie, the user is asked whether the
machine in use is trustworthy and if the user uses it
regularly. The cookie is stored in the user’s machine only
if the user responds yes to the question. This approach
aims to reduce the possibility of cookie theft since a
negative answer is expected if the user logs in from a
public machine. The user account is set to be in non-
owner mode for a specified time window when a login is
successful without receiving a valid cookie from the user
machine; otherwise the account is set to owner mode.

The number of incorrect passwords that an adversary
can eliminate without passing any ATT challenge is
decreased to about (1 − p)b2. Moreover, the adversary
is expected to need to correctly answer about N/2 ATTs
in order to guess a password correctly as opposed to
1
2pN in the PS protocol. While this VS protocol addresses
the security drawback of the PS [17] algorithm, the
legitimate user always faces an ATT challenge once the
threshold b2 is exceeded. This feature enables adversaries
to affect user login convenience, by initiating ≥ b2 failed
login attempts for each targeted username, forcing ATT
challenges for the subsequent login attempts.
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