
A White-Box DES Implementation
for DRM Applications?

S. Chow1, P. Eisen1, H. Johnson1, P.C. van Oorschot2

1 Cloakware Corporation, Ottawa, Canada
2 Carleton University, Ottawa, Canada

(This research was carried out at Cloakware Corp.)
{stanley.chow, phil.eisen, harold.johnson}@cloakware.com,

vanoorschot@scs.carleton.ca

Abstract. For applications such as digital rights management (drm)
solutions employing cryptographic implementations in software, white-
box cryptography (or more formally: a cryptographic implementation
designed to withstand the white-box attack context) is more appropriate
than traditional black-box cryptography. In the white-box context, the
attacker has total visibility into software implementation and execution,
and our objective is to prevent the extraction of secret keys from the
program. We present methods to make key extraction difficult in the
white-box context, with focus on symmetric block ciphers implemented
by substitution boxes and linear transformations. A des implementation
(useful also for triple-des) is presented as a concrete example.

1 Introduction

In typical software digital rights management (drm) implementations, crypto-
graphic algorithms are part of the security solution. However, the traditional
cryptographic model — employing a strong known algorithm, and relying on
the secrecy of the cryptographic key — is inappropriate surprisingly often, since
the platforms on which many drm applications execute are subject to the control
of a potentially hostile end-user. This is the challenge we seek to address.

A traditional threat model used in black-box symmetric-key cryptography is
the adaptive chosen plaintext attack model. It assumes the attacker does not
know the encryption key, but knows the algorithm, controls the plaintexts en-
crypted (their number and content), and has access to the resulting ciphertexts.
However, the dynamic encryption operation is hidden — the attacker has no
visibility into its execution.

We make steps towards providing software cryptographic solutions suitable in
the more realistic (for drm applications) white-box attack context: the attacker
is assumed to have all the advantages of an adaptive chosen-text attack, plus full
access to the encrypting software and control of the execution environment. This
includes arbitrary trace execution, examining sub-results and keys in memory,
? Version: Oct 10, 2002. Working Draft - pre-conf-record for ACM DRM-2 workshop.

2 S. Chow, P. Eisen, H. Johnson, P.C. van Oorschot

performing arbitrary static analyses on the software, and altering results of sub-
computation (e.g. via breakpoints) for perturbation analysis.

Our main goal is to make key extraction difficult. While an attacker con-
trolling the execution environment can clearly make use of the software itself
(e.g. for decryption) without explicitly extracting the key, forcing an attacker to
use the installed instance at hand is often of value to drm systems providers. How
strong an implementation can be made against white-box threats is unknown.
We presently have no security proofs for our methods. Nonetheless, regardless
of the security of our particular proposal, we believe the general approach of-
fers useful levels of security in the form of additional protection suitable in the
commercial world, forcing an attacker to expend additional effort (compared to
conventional black-box implementations). Our goal is similar to Aucsmith and
Graunke’s split encryption/decryption [1]; the solutions differ.

White-box solutions are inherently (and currently, quite significantly) bulkier
and slower than black-box cryptography. These drawbacks are offset by ad-
vantages justifying white-box solutions in certain applications. Software-only
white-box key-hiding components may be cost-effectively installed and updated
periodically (cf. Jakobsson and Reiter [8]), whereas smart cards and hardware
alternatives can’t be transmitted electronically. Hardware solutions also cannot
protect encryption within mobile code. While white-box implementations are
clearly not appropriate for all cryptographic applications (see [4]), over time, we
expect increases in processing power, memory capacity and transmission band-
width, along with decreasing costs, to ameliorate the efficiency concerns.

In black-box cryptography, differences in implementation details among func-
tionally equivalent instances are generally irrelevant with respect to security
implications. In contrast, for white-box cryptography, changing implementation
details becomes a primary means for providing security. (This is also true, to
a lesser extent, for cryptographic solutions implemented on smart cards and
environments subject to so-called side-channel attacks.)

In this paper, we focus on general techniques that are useful in producing
White-Box implementations of Feistel ciphers. We use des (e.g. see [11]) to
provide a detailed example of hiding a key in the software. des-like ciphers
are challenging in the White-Box context since each round leaves half the bits
unchanged and the expansions and permutations boxes are very simple (and
known). We propose techniques to handle these problems.

We largely ignore space and time requirements in the present paper, noting
only that white-box implementations have been successfully used in commercial
practice. In the present paper we restrict attention to the embedded (fixed) key
case; dynamic-key white-box cryptography is the subject of ongoing research.
The motivation for using des is twofold: (1) des needs only linear transforma-
tions and substitution boxes, simplifying our discussion; and (2) our technique
readily extends to triple-des which remains popular. We outline a white-box im-
plementation for aes [5] elsewhere — see Chow et al. [4], to which we also refer
for further discussion of the goals of white-box cryptography, related literature,

A White-Box DES Implementation 3

and why theoretical results such as that of Barak et al. [2] are not roadblocks to
practical solutions.

Following terminology and notation in §2, §3 outlines basic white-box con-
struction techniques. §4 presents a blocking method for building encoded net-
works. §5 provides an example white-box des implementation, with a recom-
mended variant discussed in §5.3. Concluding remarks are found in §6.

2 Terminology and Notation

We follow the terminology of [4]. The main concept is the encoding of a transfor-
mation, we use this extensively in this paper — we consider a substitution-box
lookup to be a transformation; we also consider the whole des to be a transfor-
mation. We use input/output encodings to protect all these transforms.

Definition 1 (encoding) Let X be a transformation from m to n bits. Choose
an m-bit bijection F and an n-bit bijection G. Call X ′ = G◦X ◦F−1 an encoded
version of X. F is an input encoding and G is an output encoding.

In many places, the transformations have wide inputs and/or outputs (in
the des construction, some are 96 bits input and output), which means the
implementation can get very large. To avoid huge tables, we can construct an
encoding as the concatenation of smaller bijections. Consider bijections Fi of
size ni, where n1 + n2 + . . . + nk = n. Let ‖ denote vector concatenation.

Definition 2 (concatenated encoding) The function concatenation F1‖F2‖
. . . ‖Fk is the bijection F such that, for any n-bit vector b = (b1, b2, . . . , bn),
F (b) = F1(b1,. . ., bn1)‖F2(bn1+1,. . ., bn1+n2)‖ . . . ‖Fk(bn1+...+nk−1+1,. . ., bn). For
such a bijection F , plainly F−1 = F−1

1 ‖F−1
2 ‖ . . . ‖F−1

k .

Generally, output of a transformation will become the input to another subse-
quent transformation, which means the output encoding of the first must match
the input encoding of the second.

Definition 3 (networked encoding) A networked encoding for computing Y
◦X (i.e. transformation X followed by transformation Y) is an encoding of the
form

Y ′ ◦X ′ = (H ◦ Y ◦G−1) ◦ (G ◦X ◦ F−1) = H ◦ (Y ◦X) ◦ F−1 .

In the subsequent sections, it is often useful to keep track of the sizes of the
inputs and outputs. We use the following notations.

P ′ denotes an encoded implementation derived from the function P . n
mP de-

notes P , emphasizing that it maps m-vectors to n-vectors. For a matrix M , n
mM

denotes explicitly that M has m columns and n rows. (Interpreting application
of M to a vector as function application, this notation is the same as above,
though there is not necessarily a matrix representation M for every arbitrary
function P .)

4 S. Chow, P. Eisen, H. Johnson, P.C. van Oorschot

k
kI is the identity function on k-vectors. n

mE (a mnemonic for an entropy-
transference function) is any function from m-vectors to n-vectors such that, if
m ≤ n, the mapping loses no bits of information, and if m > n, it loses at most
n−m bits.

〈e1, e2, e3, . . . , ek〉 is a k-vector with elements ei; it will be evident from
context whether the elements are bits. x‖y is the concatenation of vectors x
and y. vi is the ith element. vi··j is the sub-vector containing elements i through
j. kv denotes explicitly that v has k elements. ke is any vector with k elements
(mnemonically: an entropy-vector). ⊕ denotes bitwise xor.

at (mnemonic: affine transformation) denotes a vector-to-vector transforma-
tion function P which can be defined for all me by n

mP (me) = n
mMme + nd, or

P (e) = Me + d, where M is a constant matrix and d is a constant displacement
vector. We consider ats over gf(2). Note that if A and B are ats, then so are
A‖B and A ◦B (where defined).

3 Producing Encoded Implementations

As is well known, des consists of “permutations”, S-Box lookups and xor oper-
ations. We will follow our approach of applying encodings to each of these steps.
For S-Box lookups and xor operations, encoding each operation (along with its
input and output) seem to produce good security. For the various permutations,
the problem is more difficult.

These permutations are, by nature, very simple; and it is difficult to hide the
information being manipulated. We address this by changing the domain from
permutations to linear algebra so that we have more tools at our disposal. We
start by expressing each of the des permutations and the bitwise xor operations
as ats. Clearly, the resultant ats are still very simple and do not hide information
well, but subsequent use of non-linear encoding (see 4) will make such hiding
much more effective.

3.1 Some techniques

In general, we are working towards an implementation consisting entirely of
substitution boxes, none of which implement ats. Several intermediate methods
are needed to transform a normal cipher implementation to such a form. We
describe such intermediate methods below. We will use a subset of these in our
des example.

Partial Evaluation If part of our input to P is known at implementation
creation time, we can simply put in the known values to P ′ and pre-evaluate all
constant expressions. For example, in the present case where the key is known
in advance, we can pre-evaluate all the operations involving the key. In the case
of des this essentially means we replace the standard S-Boxes with key-specific
S-Boxes.

A White-Box DES Implementation 5

Mixing Bijection A mixing bijection is a bijective at which attempts to maxi-
mize the dependency of each output bit on all input bits. (Clearly, it is invertible
and the inverse is also an at.)

In des, for example, the permutations, represented as ats, have very sparse
matrices (one or two 1-bits per row or column). In order to diffuse information
over more bits, we can represent such a permutation P by J ◦ K, where K is
a mixing bijection and J = PK−1, thereby replacing a sparse matrix with two
non-sparse ones (which is advantageous in subsequent de-linearizing encoding
steps).

I/O-Blocked Encoding An arbitrary n
mP , where m and n are large, cannot

simply be encoded using two arbitrary bijective encodings as P ′ = G ◦ P ◦ F−1

using a substitution-box representation, since the size of a substitution-box varies
exponentially with the number of input bits.

We can produce practically implementable encodings for such a P by dividing
its input into j blocks of a bits each, and its output into k blocks of b bits each, so
that m = ja and n = kb. Let m

mJ and n
nK be two mixing bijections (see above).

We choose (arbitrary) coding bijections for each block of the input and out-
put: a

aF1, . . . , a
aFj and b

bG1, . . . , b
bGk. We then define FP = (F1‖ · · · ‖Fj) ◦ J and

GP = (G1‖ · · · ‖Gk) ◦K. Then P ′ = GP ◦ P ◦ F−1
P as usual.

(We still have the problem of how wide-input ats are to be represented by
networks of substitution boxes. Methods for this are described in §4.)

This permits us to use networked encoding (def. 3) with a ‘wide I/O’ linear
function in encoded form, since, prior to encoding, as a preliminary step, we
only need to deal with J and K (i.e., we replace P with K ◦ P ◦ J−1), which
can be done using the smaller blocking factors of the F ′i s and G′is which we add
during encoding. That is, if the input to P is provided by an at X, and the
output from P is used by an at Y , we would use J ◦X and Y ◦K−1 instead.
Then the input and output coding of the parts can ignore J and K — they have
already been handled — and deal only with the concatenated non-linear partial
I/O encodings F1‖ · · · ‖Fj and G1‖ · · · ‖Gk, which conform to smaller blocking
factors easily handled by substitution boxes. This easily extends to non-uniform
I/O blocked encoding (where blocks vary in size).

Combined Function Encoding For functions P and Q that happen to be
evaluated together, we could choose an encoding of P‖Q such as G◦(P‖Q)◦F−1.
Essentially, we combine P and Q into a single function, then encode the combined
input and output. The encoding mixes P ’s input and output entropy with Q’s,
making it harder for an attacker to separate and determine the components P
and Q. Note that this differs from concatenated encoding (def. 2) in how the
encoding is applied. Here, the encoding applies to all components as a single
unit.

By-Pass Encoding In general, we want the implementation of each transform
to have extra entropy at both the input and output, so that it is more difficult to

6 S. Chow, P. Eisen, H. Johnson, P.C. van Oorschot

identify the transform. For example, for a transform n
mP , we carry a extra bits

of entropy at the input, and b extra bits of entropy at the output, where a ≥ b,
we can encode n+b

m+aP ′ as G ◦ (P‖ b
aE) ◦ F−1. We call b

aE the by-pass component
of P ′. (If b

aE has the specific form a
aI, so that a = b, we call it identity by-pass.)

Split-Path Encoding For a function n
mP , we may use an encoding that is

really a concatanation of two separate encodings. That is, we define n+k
m Q(me) =

P (me)‖ k
mR(me) for all me, for some fixed function R. The effect is that, if P is

lossy, Q may lose less information (or no information). We sometimes use this
method to achieve local security (see §3.2.)

Output Splitting This technique is useful for disguising outputs where input
information can be well hidden. This does not appear to be the case for des:
for implementations of des, output splitting is not recommended since it cannot
provide much security.

Where the technique is appropriate, we may encode a function P as k ≥ 2
functions, P1, P2, . . . , Pk, where the encoded implementation for each part can
mix in additional entropy as described above, and where the output of all of the
encoded Pi’s is needed to determine the original output of P .

For example, given a function n
mP , we can choose k = 2, define n

mP1 to be a
randomly selected fixed n

mE, and define n
mP2(me) = P (me)⊕ P1(me) for all me.

At this point, we can compute the P output from the xor of the outputs of
the two Pi’s. However, after we then independently encode the Pi’s, the output
of P ′1 and P ′2 is not combinable via an at into information about P ’s output.

3.2 Substitution Boxes and Local Security

We can represent any function n
mP by a substitution box (S-Box): an array of

2m entries, each of n bits. To compute P (x), find the array entry indexed by the
binary magnitude x. The exponential growth in S-Box size with its input width
limits S-Boxes to the representation of narrow input functions.

When the underlying P is bijective, the encoded S-Box for P ′ is locally secure
in the sense that it is not possible to extract any useful information by examining
the encoded S-Box. The reason is that given a S-Box for P ′, every possible
bijective P fits (just as in an One-Time Pad, every possible plaintext can result
in every possible ciphertext). Of course, this just means that an attack must be
non-local.

The lossy case is not locally secure. When a slightly lossy encoded function is
represented as an S-Box, some information about the function beyond its input
and output widths can be found by examining its S-Box. While it still requires
non-local attacks to completely unravel such a lossy box, it often leaks enough
information to allow attacks such as the statistical bucketing attack (see §5.4).

A White-Box DES Implementation 7

4 Wide-Input Encoded ATs: Building Encoded Networks

Clearly, if we want to construct a S-Box with wide-input, say 32 bits or even
96 bits, we will quickly use immense amounts of storage. This means we cannot
represent a wide-input encoded at by an S-Box. We can, however, construct
networks of S-Boxes to implement a wide-input encoded at. The following con-
struction handles ats in considerable generality, including compositions of ats,
and for a wide variety of ats of the form n

mA encoded as n
mA′. The form of the

network can remain invariant except for variations in the bit patterns within its
S-Boxes.

For an at A, we simply partition the matrix and vectors into blocks, giving
us well-known formulas using the blocks from the partition which subdivide the
computation of A. We can then use (smaller) S-Boxes to encode the functions
defined by the blocks, and combine the result into a network, using the methods
in §3.1 above, so that the resulting network is an encoding of A.

Consider an at A, defined by n
mA(me) = n

mM me + nd for all me. We choose
partition counts m# and n# and sequences 〈m1, . . . , mm#〉 and 〈n1, . . . , nn#〉,
such that

∑m#
1 mi = m and

∑n#
1 ni = n. That is, the former sequence (the m-

partition) is an additive partition of m, and the latter sequence (the n-partition)
is an additive partition of n.

The m-partition partitions the inputs and the columns of M ; the n-partition
partitions d and the outputs. Hence the i, jth block in partitioned M contains
mi columns and nj rows, the ith partition of the input contains mi elements,
and the jth partition of d or the output contains nj elements.

At this point, it is straightforward to encode the components (of the network
forming A) to obtain an encoded network, by the methods of §3.1, and then
representing it as a network of S-Boxes (see §3.2.) In such a network,none of
the subcomputations is linear: each is encoded and represented as a non-linear
S-Box.

A naive version of this consists of a forest of n# trees of binary ‘vector add’
S-Boxes, with m#(m# − 1) ‘vector add’ nodes per tree. At the leaves are m#

unary ‘constant vector multiply’ nodes, and at the root is either a binary ‘vector
add’ node (if there is no displacement) or a unary ‘constant vector add’ node (if
there is a displacement).

However, we can eliminate the unary ‘constant vector add’ and ‘constant
vector multiply’ nodes entirely. We simply compose them into their adjacent
binary ‘vector add’ nodes, thereby saving some space by eliminating their S-
Boxes.

A potential weakness of this entire approach is that the blocking of A may
produce blocks, such as zero blocks, which convert to S-Boxes whose output
contains none, or little, of their input information. This narrows the search space
for an attacker seeking to determine the underlying at from the content and
behavior of the network. However, so far as we have yet determined, such blocked
implementations remain combinatorially quite difficult to crack, especially if we
apply the following proposal.

8 S. Chow, P. Eisen, H. Johnson, P.C. van Oorschot

To address the above potential weakness, instead of encoding n
mA, find trans-

forms n
mA1 and m

mA2, such that A2 is a mixing bijection (see §3.1), and A1 =
A◦A−1

2 . Encode the two functions separately into networks of S-Boxes, and con-
nect the outputs of the A′2 representation to the inputs of the A′1 representation,
thus creating a representation of A′1 ◦A′2 = A′.

While the above proposal helps, it is not easy, in general, to eliminate m×n
blocks which lose more bits of input information than the minimum indicated
by m and n. For example, if we partition a matrix kn

knM into k × k blocks, we
cannot guarantee that all of the k × k blocks are non-singular, even if the rank
of M is greater than k. Hence if M is non-singular, a partition of M into square
blocks may contain some singular (lossy) blocks.

Therefore, some information about an encoded at may leak in its represen-
tation as a blocked and de-linearized network of S-Boxes when this blocking
method is used.

5 A White-Box DES Implementation Example

We now construct an embedded, fixed-key des implementation. We will start
with a simple construction with weaknesses, both in security and efficiency. We
discuss how to address these in §5.3.

5.1 Replacing the DES SBs

des is performed in 16 rounds, each employing the same eight des S-Boxes
(dsbs), S1, . . .S8, and the same ats, sandwiched between initial and final ats
(the initial and final permutations). Each dsb is an instance of 4

6E (see e.g. [11]).

In Figure 1(a), we see an unrolling of two typical des rounds. The round
structure implements a Feistel network with a by-pass left-side data-path (Lr−1,
Lr, Lr+1 in the figure) and an active right-side data-path (everything else in the
figure). Kr is the round subkey of round r.

???Check change fig 1b to be unrolled to match fig 1a??? The encoded im-
plementation will look like Figure 1(b), where each round is represented by 12
T boxes. Between rounds, the left and right sides are combined into a single 96
bit representation and we uses a single rM2 transform to to subsume the P-Box,
xor, side flip, and E-box. (See The Transfer Functions in §5.2 for a more
detailed description.)

We also need M1 to do an initial expansion of the input from 64 bits to the
internal 96 bits form and M3 for the final shrink of the output.

Eliminating the Overt Key by Partial Evaluation In each round, a dsb’s
input is the xor of ‘unpredictable’ information (i.e. data), and ‘predictable’ infor-
mation, determined by the algorithm and the key. We can merge the ‘predictable’
information and the dsbs into new S-Boxes that are dependent on the key and
round.

A White-Box DES Implementation 9

L r−1 rR −1

L r rR

L r+1 rR +1

TK
−1r

T
r
K

De−Linearization and Encoding
(b) Modified DES Before

Expansion

S1 S8
...

rK

P−Box

Expansion

S1 S8
...

r−1K

P−Box
96

8

T
r
K 1

8

8

T
r
K 2

8

8

T
r
K 3

8

8

8

r
K T12

. . .

M
r−1

2

M
r−1

2

96

96

8

8

K
T12

r−1

8

8

K
T3

r−1

8

8

K
T2

r−1

8

8

K
T1

r−1

(a) Two Rounds of DES

}

}
}

. . .

96

Fig. 1. Original and Modified DES

10 S. Chow, P. Eisen, H. Johnson, P.C. van Oorschot

Let us therefore produce new S-Boxes identified as r
KSi, where K is the

encryption key, r is the round number, and i is the corresponding dsb number,
such that, for any given input, r

KSi yields the same result as Si would produce in
round r if the des key were K, but the xors of the inputs of the original dsbs have
been eliminated (see partial evaluation in §3.1). Each of the 16 × 8 = 128
r
KSi’s is still in 4

6E form of 6 input bits and 4 output bits.
At this point, the overt key K has disappeared from the algorithm: it is

represented in the contents of the r
KSi’s. This permits us to remove the xors

(“⊕”) with the inputs to S1, . . . ,S8 shown in Figure 1(a).

Preparing the Modified DSBs for Local Security In grey-box (smart card)
implementations of des the dsbs have proven to be effective sites for statistical
attacks. To make such attacks more difficult for our white-box implementation,
we would like to end up with locally secure (see §3.2) S-Boxes. This means we
need to replace the lossy S-Boxes with something that is bijective. We convert
the lossy r

KSi’s into 8
8E form by means of split-path encoding (see §3.1):

r
KTi(8e) = r

KSi(8e1··6)‖ R(8e)

for all 8e, for the fixed key K, for round r = 1, . . . , 16, for S-Box number
i = 1, . . . , 8, where we define R(8e) = 〈 8e1, 8e6, 8e7, 8e8 〉 for all 8e. This is an
application of split-path encoding

The plan is that the first six bits of the input of a r
KTi will be the 6-bit input

to dsb i in round r. We then add two extra input bits. The left 4-bit half of
the output of a r

KTi is the output of dsb i in round r, and the right 4-bit half
contains the first and last input bits of dsb i in round r followed by the two
extra input bits. That is, the right half of the output contains copies of four of
the input bits.

To see that each r
KTi is a bijection, we note that the function Fa,b,c,d defined

for any constant bits a, b, c, d by Fa,b,c,d(4e) = r
KTi(〈a〉‖4e‖〈b, c, d〉) is a bijec-

tion. (Every row of every dsb contains a permutation of 〈0, . . . , 15〉, with the
row selected by the bits corresponding to a, b above. The xor with the relevant
bits of the key K effectively re-orders this permutation into a new permutation.
The output of Fa,b,c,d is therefore a bijection mapping the 4e according to a 1-to-
1 mapping of the input space determined by a permutation. Since r

KTi simply
copies the bits corresponding to a, b, c, d to the output, r

KTi preserves all of its
input entropy; i.e., it is a bijection.)

Providing 64 bits of By-Pass Capacity In our construction, we want to
hide the difference between the left and right sides of the Feistel data-path, so
each rM2 expects more than just the 32 bits of S-Box outputs, both the left and
(unchanged) right sides are needed. We refer to this as needing 64 bit of by-pass.

As converted above, each r
KTi carries eight bits to the next rM2: 4 bits of

S-Box output, 2 bits from the right side and 2 bits that we can choose to be
from the left. This means eight T boxes will only carry 16 bits from the left and

A White-Box DES Implementation 11

16 bits from the right. This means the by-pass capacity of the r
KTi’s is too small

by 32 bits.
So we add four more S-Boxes for each round, designated as r

KT9, . . . ,rK T12.
Each is a bijective at of 8 bits to 8 bits. These extra S-Boxes are at’s to make it
easier to access the bypassed bits for subsequent processing. (Subsequent steps
will de-linearize every S-Box, so use of ats for these by-pass paths need not
compromise security.) These new S-Boxes provide the remaining 32 bits: 16 bits
of right-side by-pass capacity, and 16 bits of left-side by-pass capacity.

5.2 Connecting and Encoding the New SBs to Implement DES

The overall data-flow structure of our des implementation immediately prior
to de-linearization of ats and encoding of S-Boxes (see §3.1, §3.2), is shown in
Figure 1(b). It would look just the same after de-linearization and encoding,
except that each Mi would be replaced by a corresponding M′

i and each r
KTi

would be replaced by a corresponding r
KT′i. Except for the addition of these “ ′ ”

characters, the figure would be identical.

Data-Flow and Algorithm Before de-linearization and encoding, each Mi

is representable as a matrix, with forms 96
64M1, 96

96M2, and 64
96M3, respectively.

(We briefly discuss the role of each one in §5.1 and in more detail below in The
Transfer Functions.)

In Figure 1(b), italic numbers such as 8 and 64 denote the length of the
vectors traversing the data path to their left. Arrows represent data-paths and
indicate their direction of data-flow.

The appearance of rows of r
KTi’s in order by i in Figure 1(b) does not indicate

any ordering of their appearance in the implementation: the intervening M2

transformations can handle any such re-ordering.

The Transfer Functions In constructing M1, M2’s, and M3, we must deal
with the sparseness of the matrices for the ats used in standard des. The bit-
reorganizations, such as the Expansion and P-box transforms appearing in
Figure 1(a), are all 0-bits except for one or two 1-bits in each row and column.
The xor operations (“⊕” in Figure 1(a)) are similarly sparse.

Therefore, we use the second method proposed for handling sparseness in §4:
doubling the implementations into two blocked implementations, with the initial
portion of each pair being a mixing bijection. We will regard this as part of
the encoding process, and discuss the nature of the Mi’s prior to this ‘anti-
sparseness’ treatment.

The following constructions all involve only various combinations, compo-
sitions, simple reorganizations, and concatenations of ats, and are therefore
straightforward.

M1 combines the following: (1) the initial permutation of des, (2) the Ex-
pansion (see Figure 1(a)), modified to deliver its output bits to the first six in-
puts of each r

KTi, combined with (3) the delivery of the 32 left-side data-path bits

12 S. Chow, P. Eisen, H. Johnson, P.C. van Oorschot

to be passed through the by-pass provided by inputs 7 and 8 of r
KT1, . . . ,rK T8

and 16 bits of by-pass provided at randomly chosen positions in the four ‘dum-
mies’, r

KT9, . . . ,rK T12, all in randomly chosen order.
M2 for each round combines the following: (1) the P-box transform (see

Figure 1(a)), (2) the xor of the left-side data with the P-box output, (3) ex-
traction of the original input of the right-side data-path, (4) the Expansion, as
in M1, (5) the left-side by-pass, as in M1.

M3 combines the following: (1) ignoring the inputs provided for simultaneous
by-pass, (2) the left-side by-pass, as in M1, (3) inversion of the Expansion,
ignoring half of each redundant bit pair, (4) swapping the left-side and right-
side data (des effectively swaps the left and right halves after the last round),
and (5) the final permutation.

Blocking and Encoding Details We recommend using 4× 4 blocking for the
Mi’s. As a result of the optimization noted in §4, this means that the entire
implementation consists entirely of networked 8 × 4 (‘vector add’) and 8 × 8
(r
KT′i) S-Boxes.

Aside from M1’s input coding and M3’s output coding, both of which are
simply 64

64I (appropriately blocked), all S-Boxes are input- and output-coded
using the method of §3.1 in order to match the 4-bit blocking factor required for
each input by the binary ‘vector add’ S-Boxes.

5.3 Recommended Variants

The above section completes a naked variant of white-box des. The recommended
variant applies input and output encodings to the whole des operations. That is,
we modify the scheme shown in Figure 1(b), so that M1 is replaced by M1 ◦M0

and M3 is replaced by M4◦M3, where the M0 and M4 ats are mixing bijections.
Each of M1 ◦M0 and M4 ◦M3 is, of course, a single at. When it is encoded in
4-bit blocks, it becomes non-linear.

One issue that arises is whether this recommended variant of des (or other ci-
phers) is still an implementation of the standard algorithm. Although it employs
an encoded input and output, we can pre- and post-process the input to this
computation by the inverses of the pre- and post-encodings, to effectively cancel
both. One might refer to this as operating on de-encoded intext and outtext. The
de-encoding process can be done in any one or a combination of several places,
for example: the software immediately surrounding the cryptographic computa-
tion; more distant surrounding software; or even software executing on a separate
node (with obvious coordination required). The pre- and post-encoding itself can
be folded into the component operations of the standard algorithm, e.g., des,
as explained under I/O-Blocked Encoding per §3.1. Taking into account the
de-encodings, the overall result is again equivalent to the standard algorithm.

The overall result is a data transformation which embeds des. By embed-
ding the standard algorithm within a larger computation we retain the (black-
box) strength of the original algorithm within this embedded portion (which

A White-Box DES Implementation 13

does implement the standard algorithm). Furthermore the encompassing com-
putation provides greater resistance to white-box attacks. By using pre- and
post-encodings that are bijections, we have in effect composed 3 bijections.

White-Box ‘Whitening’ It is sometimes recommended to use ‘pre- and
post whitening’ in encryption or decryption, as in Rivest’s desX [9]. We note
that the recommended variant computes some cipher, based on the cipher from
which it was derived, but the variant is quite an in-obvious one. In effect, it can
serve as a form of pre- and post-whitening, and allows us to derive innumerable
new ciphers from a base cipher. Essentially all cryptographic attacks depend on
some notion of the search space of functions which the cipher might compute.
The white-box approach increases the search space.

White-Box Asymmetry and Water-Mark The effect of using the rec-
ommended variant is to convert a symmetric cipher into a one-way engine: pos-
session of the means to encrypt in no way implies the capability to decrypt,
and vice versa. This means that we can give out very specific communication
capabilities to control communication patterns by giving out specific encryption
and decryption engines to particular parties. Every such engine is also effectively
water-marked by the function it computes, and it is possible to identify a piece
of information by the fact that a particular decryption engine decrypts it to a
known form. There are many variations on this theme.

5.4 Attacks on Example Implementation

The attacker cannot extract information from the r
KT′i’s themselves: they are

locally secure (see §3.2). All attacks must be global in the sense of having to
look at multiple S-Boxes and somehow correlate the information. We know of
no attacks on the recommended variants.

By far the best place to attack the Naked Variant of our implementation
seems to be at points where information from the first and last rounds is avail-
able. In the first round (round 1), the initial input is known (the M1 input is
not coded), and in the last round (round 16), the final output is known (the M3

output is not coded). Both known attacks exploit this weak point.

The Jacob Attack on the Naked Variant The recent attack in [7] is a
clever dfa-like attack [3]. This particular attack induces a controlled fault by
taking advantage of the unchanged data in the Feistel structure, thus bypassing
much of the protection afforded by the encodings; but it requires that the input
(or output) be naked (i.e., unencoded), and requires simultaneous access to a
key-matched pair of encrypt and decrypt programs, a situation unlikely with
an actual drm application using white-box des. It is not obvious how to relax
either of these requirements. It is also not clear how this attack can apply to
ciphers that are not Feistel-like.

Statistical Bucketing Attack on Naked Variant This attack is somewhat
similar to the dpa attacks [10]. In the dpa attacks, we guess keys and use differ-
ence of power profiles to confirm or deny our guesses. In our Statistical Bucketing

14 S. Chow, P. Eisen, H. Johnson, P.C. van Oorschot

attack, we also guess keys, but we confirm or deny our guesses by checking if
buckets are disjoint.

Attacks should be focussed on the first (1st) and final (16th) rounds. Cracking
either round 1 or round 16 provides 48 key bits; the remaining 8 bits of the
56-bit des key can then be found by brute-force search on the 256 remaining
possibilities using a reference des implementation. For ease of explanation, we
will only talk about attacking round 1 of the encryption case.

Consider S-Box 1Si in round 1 of standard des, its 6 bits of input come
directly from the input plaintext, and is affected by 6 bits of round 1 sub-key; its
output bits go to different dsb s in round 2 (with an intervening xor operation).
We focus on one of these output bits, which we denote b. 2Sj will refer to (one
of) the round 2 dsb which is affected by b. That is, we pick 1Si in round 1 which
produces bit b, which is then consumed by 2Sj in round 2. Potentially, bit b can
go to 2 different S-Boxes in round 2, either one will do.

We make a guess on the 6 bits of sub-key affecting 1Si and run through the
64 inputs to it and construct 64 corresponding plaintexts. The plaintexts need
to feed the correct bits into 1Si as well as the xor operation involving b. For
convenience, we will hold the left side to all zeros. This effectively nullifies the
xor operations. The other 26 bits in the plaintexts should be chosen randomly
for each plaintext. Using any reference implementation of des, we divide these
64 plaintexts into two buckets, I0, I1, which have the property that if our key
guess is correct, bit b will have a value of 0 for the encryption of each plaintext
in the I0 set; similarly, for each plaintext in the I1 set, if our guess is correct, b
will have a value of 1.

Now we take these two buckets of plaintexts and run them through the
encoded implementation. Since the implementation is naked, we can easily track
the data-flow to discover 2Tzj

that encodes 2Sj . We will examine the input to
2Tzj to confirm or deny our guess. The encryption of the texts in I0 (resp. I1) will
lead to a set of inputs I ′0 (resp. I ′1) to 2Tzj

. The important point is that if our key
guess is correct, I ′0 and I ′1 must necessarily be disjoint sets. Any overlap indicates
that our guess is wrong. If no overlap occurs, our key guess may or may not be
correct: this may happen simply by chance. (The likelihood of this happening
is minimized when the aforementioned 26 bits of right hand side plaintext are
chosen randomly.) To ensure the effectiveness of our technique, we would like
the probability that no collision (an element occurring in both I ′0 and I ′1) occurs
in the event of an incorrect key guess to be at most 2−6. Experimentally, this
occurs when |I0| = |I1| ≈ 27 — 54 chosen plaintexts in all — so the 64 plaintexts
mentioned above are normally adequate.

The above description works on one S-Box at a time. We can work on the 8 S-
Boxes of a round in parallel, as follows. Due to the structure of the permutations
of des, output bits {3, 7, 11, 15, 18, 24, 28, 30} have the property that each bit
comes from a unique S-Box and goes to a unique S-Box in the following round.
By tracking these bits, we can search for the sub-key affecting each round 1 dsb
in parallel (this requires a clever choice of elements for I0 and I1, because of the
overlap in the inputs to the round 1 dsb s). Experimentation shows that fewer

A White-Box DES Implementation 15

than 27 plaintexts are necessary in total to identify a very small set of candidates
for the 48-bit round 1 subkey. The remaining 8 bits of key can subsequently be
determined by exhaustive search.

This gives a cracking complexity of 128 (chosen plaintexts) × 64 (number of 6
bit sub-sub-keys) + 256 (remaining 8 bits of key) ≈ 213 encryptions. This attack
has been implemented, and it successfully finds the key in under 10 seconds.

5.5 Notes on Cardinality of Transformations

For a given m and n, there are 2mn+n m-input, n-output ats, but we are pri-
marily interested in those which discard minimal, or nearly minimal, input in-
formation — not much more than m−n bits (cf. §3.2). If m = n, then there are
2n

∏n−1
i=0 (2n− 2i) bijective ats, since there are

∏n−1
i=0 (2n− 2i) nonsingular n×n

matrices [6]. It is the latter figure which is of greater significance, since we will
often use ats to reconfigure information, and changing the displacement vector,
d, of an at, affects only the sense of the output vector elements, and not how
the at redistributes input information to the elements of its output vector.

We note that while the number of bijective ats is a tiny fraction of all bijec-
tions of the form n

nP (there being 2n! of them), the absolute number of bijective
ats nonetheless is very large for large n. This ensures a large selection space of
bijective ats which we use below, e.g. for pre- and post-encodings.

Comments on Security of the Recommended Variant While we are aware
of no effective attack on the recommended variant, we also have no security
proofs. The assumed difficulty of cracking the individual encodings leads us to
believe the attack complexity will be high. The weakest point appears to be
the block-encoded wide-input ats. However, it is not merely a matter of finding
weak 4 × 4 blocks (ones where an output’s entropy is reduced to 3 bits, say,
where there are only 38,976 possible non-linear encodings). The first problem is:
the output will often depend on multiple such blocks, which will then require
some power of 38,976 tries. Of course, as previously noted, we may guess part
of such encodings. However, we must still deal with the second, and much more
difficult, problem, which is: once the attacker has a guess at a set of encodings,
partial or otherwise, for certain S-Boxes, how can it be verified? Unless there is
some way to verify a guess, it appears such an attack cannot be effective.

Whether the recommended variant herein is reasonably strong or not remains
to be seen. However, even if the answer is negative for this particular variant,
we believe the general approach remains promising, due to the many variations
possible from the various approaches discussed.

6 Concluding Remarks

For des-like algorithms, we have presented building blocks for constructing im-
plementations which increase resistance to white-box attacks, and as an example

16 S. Chow, P. Eisen, H. Johnson, P.C. van Oorschot

proposed a white-box des implementation. The greatest drawbacks to our ap-
proach are size and speed, and as is common in new cryptographic proposals,
the lack of both security metrics and proofs. Our techniques (though not using
des itself) are in use in commercial products, and we expect to see increased
use of white-box cryptography in drm applications as their deployment in hos-
tile environments (including the threat of end-users) drives the requirement for
stronger protection mechanisms within cryptographic implementations. While
the current paper addresses fixed-key symmetric algorithms, ongoing research
includes extensions of white-box ideas to the dynamic-key case, and to public-
key algorithms such as rsa.

References

1. D. Aucsmith and G. Graunke, Tamper-Resistant Methods and Apparatus,
U.S. Patent No. 5,892,899, 1999.

2. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, K. Yang,
On the (Im)possibility of Obfuscating Programs, pp. 1-18 in: Advances in Cryptology
— Crypto 2001 (lncs 2139), Springer-Verlag, 2001.

3. Eli Biham, Adi Shamir, Differential Fault Analysis of Secret Key Cryptosys-
tems, pp. 513-525, Advances in Cryptology — Crypto ’97 (lncs 1294), Springer-
Verlag, 1997. Revised : Technion - Computer Science Department - Technical Report
CS0910-revised, 1997.

4. S. Chow, P. Eisen, H. Johnson and P.C. van Oorschot, White-Box Cryptography and
an AES Implementation, Proceedings of the Ninth Workshop on Selected Areas in
Cryptography (SAC 2002), August 15-16, 2002 (Springer-Verlag lncs, to appear).

5. J. Daemen and V. Rijmen, The Design of Rijndael: AES — The Advanced Encryp-
tion Standard, Springer-Verlag, 2001.

6. Leonard E. Dickson, Linear Groups, with an Exposition of Galois Field Theory,
p. 77, Dover Publications, New York, 1958.

7. M. Jacob, D. Boneh, E. Felten, Attacking an obfuscated cipher by injecting faults,
proceedings of 2nd ACM workshop on Digital Rights Management — ACM CCS-9
Workshop DRM 2002 (Springer-Verlag lncs to appear).

8. M. Jakobsson and M.K. Reiter, Discouraging Software Piracy Using Software Aging,
pp.1-12 in: Security and Privacy in Digital Rights Management — ACM CCS-8
Workshop DRM 2001 (lncs 2320), Springer-Verlag, 2002.

9. J. Kilian and P. Rogaway, How to protect DES against exhaustive key search, pp.252-
267 in: Advances in Cryptology — crypto ’96, Springer-Verlag lncs, 1996.

10. Paul Kocher, Joshua Jaffe, Benjamin Jun, Differential Power Analysis, pp. 388-
397, Advances in Cryptology — crypto ’99 (lncs 1666), Springer-Verlag, 1999.

11. A.J. Menezes, P.C. van Oorschot and S.A. Vanstone, Handbook of Applied Cryptog-
raphy, pp. 250-259, CRC Press, 2001 (5th printing with corrections). Down-loadable
from http://www.cacr.math.uwaterloo.ca/hac/

