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Chapter 12

Wireless LAN Security: 802.11 and Wi-Fi

This chapter considers wireless local area network (WLAN) security. The focus is WLANs
based on the IEEE 802.11 standard, and related subsets marketed under the Wi-Fi brand by
an industry association to facilitate product interoperability. This provides a rich oppor-
tunity to explore and analyze the security implications of specific design choices actually
made in a major fielded system—avoiding any claims that “no one would ever have made
those choices in practice” and long lists of “what if” or “suppose that” alternatives. Wire-
less access introduces both new security challenges, and an opportunity to apply standard
security tools and mechanisms to wireless LANs as a particular use case. Our study will
also illustrate that building real-life systems involves a large number of low-level security-
relevant decisions—and that design mistakes are made even by international committees,
and in widely deployed products from large multi-national corporations.

12.1 Background: 802.11 WLAN architecture and overview

Ethernet is a dominant family of networking technologies for wired LANs (local area
networks); the standard governing it is IEEE 802.3. Loosely speaking, the analogous
technology and standard for WLANs are Wi-Fi and IEEE 802.11. From a network stack
viewpoint (Chapter 10), both Wi-Fi and Ethernet provide an interface insulating higher
layers from the implementation details of the data link and physical layers.

Mobile devices such as laptop computers commonly access network resources by con-
necting to an access point over a wireless medium in specific radio frequency (RF) ranges.
The access point itself is typically connected to a physically wired local network, thereby
providing Internet connectivity. Aside from connecting to a cellular network, many mo-
bile phones can connect by WLAN to an access point—to access Internet services more
cost-effectively (if mobile phone cellular service is billed on a usage basis), or more reli-
ably if cellular reception is poor (e.g., indoors).

PRIMARY 802.11 COMPONENTS. The main components of a WLAN (Fig. 12.1) are
the wireless endpoint or mobile station (STA), access point (AP), and authentication server
(AS). An AP creates logical connections between STA devices and a distribution system
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Figure 12.1: Three main components of a WLAN: mobile station (STA), access point (AP),
and authentication server (AS). Using the 802.1X model, the AP includes an authenticator,
which communicates with the AS (often known as a RADIUS server).

(DS), usually wired to the rest of the network, providing forwarding and routing services.
The AS may be built into the AP in simple designs (e.g., for home networks), often using
no more than a username-password list (we discuss more advanced authentication later).

INFRASTRUCTURE MODE. Our main focus and the common use of an 802.11 WLAN

is what is called infrastructure mode. This involves one or more APs. An AP establishes
a wireless connection with a STA, logically connecting it to the DS (or perhaps to another
STA). The AP’s authenticator sub-component allows the STA to access the DS via an
access control mechanism (shown later in Fig. 12.4) relying on an approval decision from
the AS. An AP plus one or more STAs in this mode is called a basic service set (BSS); two
or more BSSs connected by a DS form an extended service set (ESS).

‡AD HOC MODE. A different 802.11 network configuration—now without any AP—
is ad hoc mode. Endpoints (STAs) connect directly to each other, forming what is called
an independent basic service set (IBSS), with no connection to a DS or other network.

FRAME TYPES IN 802.11. IEEE 802.11 specifies three types of frames (Fig. 12.2):

1. data frames (highest level). Satisfying the end-goal of WLANs, these carry upper-
layer protocol data for the far-end destination, and also (upper-layer) authentication
messages. Early 802.11 protection mechanisms focused largely on data frames.

2. management frames. These include messages related to beacons, probes, associations
and related (low-level non-cryptographic) authentication. They support new STA-AP

connections, and handovers between APs as mobile devices move into/out of range.
3. control frames (lowest level). These frames are related to accessing the wireless media,

and facilitate management frames and data frames. We say little more about them.

MAC	header

Frame
control
16	bits 32	bits

PV TP SBTP E.	.	.

							PV:	protocol	version	(2	bits)
					TP:	frame	type	(2	bits)
SBTP:	frame	subtype	(4	bits)
								E:	WEP-encrypted	(1	bit)

Frame	body

CRCother	fields	including
48-bit	MAC	addresses

Data	or	Message
(MAC	protocol	data	unit,	PDU)

Figure 12.2: 802.11 MAC frame format. Frame type (TP) may be: control, management,
or data frame. MAC frames are the payload of the physical layer, whose own header
information (not shown) includes a Physical Layer Convergence Protocol (PLCP) pream-
ble allowing recognition of 802.11 frames, and other information such as an explicit byte
count or transmission period in µs specifying the payload length before the trailing CRC.
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Radio spectrum bands allocated for Wi-Fi (e.g., contiguous frequency ranges around
2.4 GHz and 5 GHz) are subdivided into narrower ranges called channels. A channel
is selected by or configured into the AP.

SSIDS ARE NOT SECRETS. A service set identifier (SSID) is an alphanumeric WLAN

name, up to 32 characters. This is distinct from the BSSID (ID for a BSS), an AP’s 48-bit
MAC address. An SSID may also serve as ESSID (ID for an ESS). Some early 802.11
systems treated SSIDs as secrets, allowing a device to access an AP if it knew the SSID;
this fails as an access control mechanism, because SSIDs are visible as plaintext in man-
agement frames. A rogue AP may spoof an SSID simply by asserting the text string.

MULTICAST ADDRESSES AND INFRASTRUCTURE MODE. An 802.11 frame in-
cludes 48-bit source and destination media access control (MAC) addresses, user data,
and a cyclic redundancy code (CRC) checksum designed to detect transmission errors.
A unicast destination address specifies a single recipient; a multicast destination address
specifies a group of recipients, with special case of a designated broadcast address denot-
ing all LAN devices. In 802.11 infrastructure mode, the AP may send multicast messages;
a STA wishing to do so communicates this to the AP, which can send the multicast on the
STA’s behalf. Our interest is in WLAN security (not addressing), but broadcast messages
are important in security: they are encrypted under a group key shared by all local (WLAN)
devices, and group key management (page 366) is important in the security architecture.

ASSOCIATION, BEACONS AND PROBES. For a wireless device (STA) to use an AP

in its signal range, a (layer 2) link-level connection or association must first be set up.
The steps for a STA to associate with an AP are as follows (as summarized in Table 12.1).

1. The STA sends probe messages soliciting information from all APs within range. APs
already advertise their presence by transmitting periodic beacon frames (e.g., every
100 ms) with network information including SSID and supported capabilities (e.g.,
data rates, security options), and to synchronize network timing. Probes elicit such
information sooner.

2. The STA selects an AP with suitable capabilities, and begins a low-level authentication
sequence using management frames. Two options were provided in the original 802.11
standard (1999): Shared Key and Open System. Shared Key authentication is now
deprecated.1 Open System (also called null authentication) omits actual authentication
at this stage—instead, in a pro forma exchange, the STA simply sends an authenticate-
request frame, and the AP returns an authenticate-response (accepted) frame. Stepping
through this apparent bit of nonsense moves the formal protocol state to “802.11-
authenticated”, as needed for a STA to proceed with association, next.

3. The STA begins an association-request sequence, ending in the 802.11 state associated,
provided that the capabilities (including security) of the AP and STA are compatible.
Depending on configured criteria, the STA might automatically associate with an AP

from a pre-specified list, from among APs previously used, by strongest AP signal, or
the user may be prompted to make a manual selection from a list of advertised SSIDs.

1It is worse (page 353) than no authentication at all; a student might suspect that it was designed by an
attacker. Further core 802.11 authentication options added in later revisions include SAE (page 368).
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4. Finally, for an AP to accept data frames, an associated STA must succeed in an upper-
layer 802.1X authentication method with the authenticator (explained later, Fig. 12.4).

802.11 802.1X
New action State authenticated associated authenticated

Start state (fresh start) 0 � � �
Low-level authentication succeeded 1 �X � �
Association succeeded 2 �X �X �
802.1X authentication succeeded 3 �X �X �X†

Table 12.1: 802.11 connection state transitions. Upper-layer 802.1X authentication of
state 3 is distinct from the 802.11 MAC layer (e.g., null) authentication of state 1. †Open
networks (without encryption, authentication) allow network access without this stage.

AP SECURITY POLICY. An Information Element field in beacons and probe re-
sponses specifies the AP’s security policy and available options, e.g., whether the AP uses
an external AS or pre-shared keys (Section 12.3), and supported security algorithms (Sec-
tion 12.8). The STA’s association request must choose an offered security suite for each of
broadcast (group) and unicast security, determining what will be used for this connection.

12.2 WLAN threats and mitigations

With this basic understanding of WLANs as context, we now consider wireless LAN threats
and mitigations. Our interest is in generic issues and recurring error patterns; but to make
clear that the concerns raised are not purely academic, we use examples of exploited
vulnerabilities in fielded 802.11 products. We discuss some flaws even where later de-
signs eliminate them, because the threats themselves do not disappear once one standards
group or product team gains awareness—our community advances when we retain knowl-
edge and make it accessible to newcomers joining the field, otherwise unaware of painful
historical lessons. Case studies help us avoid repeating past mistakes. In later sections
(12.4–12.6) we examine more specific choices made in the initial design of 802.11, to
get a deeper sense of what can go wrong when security systems are designed by non-
experts. To be clear, we do not pursue a security analysis of recently fielded commercial
systems, nor a training course for technicians to configure specific products, but rather
aim to understand fundamental security issues in the design of wireless systems.

WIRELESS SECURITY: LINK VS. END-TO-END. A common wish related to wire-
less networks is that they be as secure as wired networks. However, because the wireless
scenario introduces new risks (as we will discuss), achieving this wish requires signifi-
cant extra effort. It should also be noted up front that a WLAN itself is foremost about
the (layer 2) link between a device and an access point, not end-to-end communications.
Thus when an AP decrypts and forwards received data, any protection associated with the
wireless link is removed as the link ends (at the AP), leaving plaintext data—the default on
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Figure 12.3: (a) Rogue AP or WLAN middle-person attack. (b) WLAN session hijacking.
These attacks were common when early 802.11 became popular. Both attacks assert false
MAC addresses. In (a), the rogue AP could choose to connect to a real AP, LAN or far-end
server; using different channels facilitates separate connections.

traditional wired networks—unless a protocol above the link layer has secured the data.
ROGUE AP AND SESSION HIJACKING ATTACKS. To illustrate wireless risks, we be-

gin with rogue AP (middle-person) and wireless session hijacking attacks, which plagued
early 802.11 products; publicly available tools automated the attacks, allowing easy ex-
ploitation of weakly configured products. The attacks are easier than their wired counter-
parts, as they require no physical access to the target devices or network wires.

1. Rogue AP. This attack (Fig. 12.3a) is possible when there is no mutual authentication of
the AP to the STA. Without this, a STA has no assurance who is offering service, and relies
on an SSID that is simply asserted (a character string easily copied); any MAC address
used by a legitimate AP can also simply be asserted by an imposter. First consider the case
of no upper-layer authentication at all. The attacker (rogue AP) waits to see a connection
attempt from the STA, then offers service, asserting the true AP’s MAC address; if the
STA was already associated, the attacker can send it a disassociate frame to trigger a new
connection attempt.2 The attacker thereafter relays messages from the STA to the true AP,
asserting the STA’s MAC address to the AP. Second, for the case of unilateral 802.1X
authentication of the STA to the AP: as the STA carries out its end of the authentication
protocol, the rogue AP (without doing any verification whatsoever) simply sends the pro-
tocol message(s) indicating authentication success. The rogue AP then provides expected
network connectivity (assigning an IP address and configuration parameters).
The above assumes that data frames are not protected by session encryption and integrity.
Suppose they are, and now also mutual authentication is used. A rogue AP offering con-
nectivity to a STA may still be able to carry out a middle-person attack, simply relaying
(unaltered authentication messages and thereafter) encrypted frames to a legitimate AP—
but the rogue gains little by doing so, lacking keys to access plaintext. It could drop frames

2Integrity protection for some management frames including disassociate and deauthenticate frames was
introduced in 802.11w–2009 as an option. This became a requirement for WPA3 certification (Section 12.8).
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(inflicting denial of service), or alter frames on the fly (this will be detected), but other-
wise may just as well passively eavesdrop on the ciphertext. The mutual authentication
method here is assumed to be done properly (establishing a key then using it to derive new
keys for ongoing session encryption and integrity, as later discussed in Section 12.8).

2. Session hijacking. The attack of Fig. 12.3b is possible when no encryption is used. After
a legitimate STA completes 802.1X authentication with an AP, the attacker sends the STA

a disassociate management frame, asserting the AP’s MAC address. This triggers the STA

to disassociate, but the AP still believes it is associated (with 802.1X authentication state
intact). The AP remains ready to respond “normally”, continuing to exchange session
messages with the attacker, who falsely asserts the MAC address of the STA (victim).
Encryption stops an attacker, not knowing the key, from encrypting and decrypting.

‡Exercise (Session hijacking). (a) For historical dial-up sessions (page 370), hijack-
ing was a lower risk than for 802.11 connections—why? (Hint: [11, p.146]; a dial-up
password was the protection means.) (b) With 802.11, after the initial 802.1X authentica-
tion, how is ongoing protection provided? (Hint: wait for Section 12.3.)

WAR DRIVING (OVERVIEW). War driving refers to scanning radio channels in
search of in-range wireless networks.3 A narrow goal is to find an open network (i.e.,
one that grants service without requiring a password) in order to later use its services,
even if such use is not the owner’s intent. A broader goal is reconnaissance (Chapter
11): building a map of access points offering service in a predefined area,4 stereotypically
from a moving vehicle carrying a laptop with suitable software, GPS unit to record phys-
ical locations, and high-gain antenna. Omni-directional antennas are useful for mapping
neighborhoods, while directional antennas suit specific targets or long ranges (e.g., rather
than 50-100 m, up to 1 km or more). While war driving itself does not make use of data
services, active war driving (below) may send probes that trigger AP responses.

Example (NetStumbler active scanning). Circa 2004, the free (Windows-based) Net-
Stumbler tool was popular. It sent probes once per second, soliciting any SSID to respond,
and many APs are configured to do so. These frequent active probes were “noisy” (easily
detected), but nonetheless extracted metadata from APs such as hardware vendor, MAC
address, SSID, wireless channel number, signal strength, and whether encryption was
used—in which case further attack tools of the day, e.g., AirSnort, might be applied.

LEGALITY AND ETHICS. Definitions of and (severe) penalties for unauthorized net-
work access vary across jurisdictions, and change over time. Therefore, as with other
scanning and assessment activities (Chapter 11), best practice is to obtain written permis-
sion from the owners of target systems before embarking on any activities that may be
interpreted as unethical or illegal in relevant jurisdictions. Passive reception of radio sig-
nals may be viewed differently than active broadcast or unauthorized use of data services.

WIRELESS MONITORING AND MANIPULATION TOOLS. Both security analysts
and attackers may use powerful, widely available hardware and software tools for 802.11.

3The term derives from wardialing, the practice of dialing telephone numbers in an enumerative search
pattern, seeking computer modems (modulator-demodulators) that will accept connections.

4This motivates the alternative term access point mapping.
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Configurable drivers for wireless network interface cards (NICs) allow passive traffic
monitoring (wireless sniffing). Active manipulation tools allow frames to be altered, re-
played, and injected with arbitrary source MAC addresses. Recall that wired-LAN packet
analysis tools in promiscuous mode (Chapter 11) can collect all packets passing the inter-
face of a host’s NIC. The wireless counterpart collects traffic for a single AP (or multiple-
AP ESS) to which a wireless NIC is associated; here 100% of WLAN traffic is available
for a suitably powerful listener. A broader alternative is to set a wireless NIC into monitor
mode (RFMON mode), to passively collect all frames from all in-range SSIDs without
associating to any. Here, ESSIDs (if included) can be extracted from beacon frames, and
when ESSIDs are excluded from beacon frames, they may still appear in other frame
headers sent by a transmitting STA.

WAR DRIVING (TACTICS). A passive war driving tactic uses a wireless NIC in RF-
MON mode (above), capturing all frames from one channel (frequency) at a time; channel
hopping allows a specified set of channels to be monitored. The earlier NetStumbler ex-
ample, an active tactic, sends repeated probes and collects beacon data from responses.
A third tactic exploits the original 802.11 design feature of management frames not be-
ing authenticated: a disassociate or deauthenticate frame is sent, asserting the AP’s MAC
address (itself obtained by eavesdropping) as source. STAs then disassociate or deauthen-
ticate, and attempt to reassociate—allowing capture of frames with SSID and other data.

‡Exercise (Kismet, Aircrack). Describe the technical capabilities of the modern open-
source tools: (a) Kismet for passive 802.11 packet capture, analysis, and wireless monitor-
ing; and (b) Aircrack-ng, promoted for assessing 802.11 network security. (c) Summarize
Aircrack’s circa-2004 functionality, including KoreK’s chop-chop attack (hint: [24]).

WIRELESS DOS. Denial of service (DoS) is another threat to take into account, wher-
ever possible, in the design of wireless protocols. However, it is generally acknowledged
that in commercial (non-military) networks, (1) determined attackers can find ways to
disrupt wireless channels even without network access, e.g., by radio jamming; and (2)
often such attacks are easily detected, as their nature attracts attention. Stopping 100%
of such DoS attacks is thus unrealistic—too costly, if even possible. For related reasons,
some experts consider wireless DoS to be a service attack, not a security attack. Integrity
protection of management frames (footnote page 344) is not possible for frames sent prior
to establishment of session keying material; and if this protection is not enabled, as part
of a nuisance DoS or session hijacking attempt an eavesdropper observing traffic can in-
ject a disassociate or deauthenticate frame, to an AP or STA, to terminate an association
(spoofing necessary fields such as MAC address simply by assertion). For greater effect,
such a frame sent to an AP’s broadcast address may trigger all STAs to disassociate.

LOSS OF PHYSICAL BASIS FOR THREAT MODELS. Wireless connectivity alters
wired-network threat models and basic assumptions, and who we trust. In wired net-
works, in many cases we have confidence that service is provided by a trustworthy net-
work (though not always in airport hotels or foreign countries)—whereas in wireless,
rogue APs are a constant worry. As another example, in wireless networks such as Wi-Fi
hotspots in coffee shops, where one master key is shared by all WLAN users, fellow users
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can decrypt or modify your data;5 note that in wired corporate or home networks, we
more commonly assume (perhaps incorrectly) that our colleagues are not our opponents,
and that local network devices are to some extent trustworthy. With wireless networks,
attackers need not be physically on your premises to be in-range of radio service—we
thus lose physically based approaches for access control and trust, perimeter-based mech-
anisms, and approaches based on physically restricted zones; a division between insiders
(trusted, all on the same team) and outsiders (untrusted) is no longer reliable.

NEW AND HEIGHTENED RISKS. Advantages of wireless connectivity at broadband
speeds include convenience, and time and cost savings related to avoiding wiring. For
example, 802.11b and .11g already respectively offered, in 1999 and 2003, up to 11 and
54 Mbps (page 365). However, security risks also increase with wireless for reasons
including widely available tools allowing easy interception, manipulation and injection of
traffic (page 345). Table 12.2 summarizes attacks that are typically easier on wireless than
wired systems.

Notable attacks on wireless systems Mitigation (or notes)

A1. war driving (reconnaissance) hard to stop collection of metadata
A2. passive eavesdropping (on data content) encryption (payload data)
A3. unauthorized access to network services entity authentication (authorization)
A4. modification of data content data integrity mechanism
A5. injection of messages, including replay origin authentication; replay defenses
A6. rogue AP (wireless middle-person) authentication of the AP (mutual auth.)
A7. session hijacking (802.11 associations) authenticated encryption (payload data)
A8. wireless DoS integrity-protected management frames

Table 12.2: Attacks of concern in wireless systems. With wireless systems, physical
access is not needed to read or inject frames. Replay of WLAN data or management
frames is viewed as a type of message injection.

12.3 Security architecture: access control, EAP and RADIUS

The preliminary low-level authentication (Section 12.2) was intended as a layer 2 access
control mechanism. We now discuss access control in 802.11 further, leading to upper-
layer authentication protocols and the supporting frameworks of EAP and RADIUS. Recall
again that WLAN security protects data over the local link, here between STA and AP; any
link-layer protection disappears after the link’s far end (protection is not end-to-end).

SECURITY FRAMEWORK AND STAGES. We view 802.11 WLAN security in four
pieces. Here we provide an overview of the first two, while later sections discuss the latter
two—including the four-pass handshake, which derives the session keys.

1. 802.1X management and authentication framework. This includes EAP and RADIUS,

5As we will see (page 367), this is a general concern when using shared keys across a group of users.
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Figure 12.4: 802.1X dual-port access control model as used in a WLAN. An optional
EAP method between STA and AS generates a PMK, which is transferred from AS to AP

(and known by STA). Upon success of a PMK-based handshake between STA and AP, the
authenticator will enable port B. Before then, authentication-related traffic (formatted in
EAP messages) is all that is accepted from STA, for relay to AS (as EAP over RADIUS).

accommodating a wide variety of upper-layer authentication methods; and 802.1X ac-
cess control, to condition authorization of network services on authentication success.

2. Upper-layer authentication. Organizations desiring a centralized decision point use
an external authentication server (AS); simpler systems build modest AS functionality
into the authenticator in each AP (Fig. 12.4). An upper-layer authentication protocol
(EAP method) between STA and AS establishes a pairwise master key (PMK) as output.
This PMK is transferred from AS to the in-AP authenticator for use in a handshake
(next). When there is no external AS, authentication relies on a static pre-shared key
(PSK, page 350) known to both STA and AP, and used to derive a PMK in this case.

3. Four-pass handshake. Using this protocol, STA and AP each prove to the other that
they know the PMK. In addition, parameters are exchanged to allow derivation of fresh
(not replayed) session keys from the PMK. Details are given in Section 12.8.

4. Per-frame data encryption and authentication (integrity) on the STA–AP link. Each
frame can by design be decrypted independently of others, accommodating frame loss.

Note the pattern: a connection setup phase (security association), including negotiation of
security parameters and authenticated key establishment, provides keying material (ses-
sion keys) for ongoing protection (secure data transfer) of the ensuing session. This should
look familiar from TLS and SSH session establishment in earlier chapters.

DUAL-PORT ACCESS CONTROL. IEEE 802.1X outlines a model called port-based
access control.6 For each associated STA, an authenticator in the AP serves to:

1. support establishment of a pairwise master key (PMK) for use between STA and AP (the
AP receives the PMK from the AS, when an AS is used); and

2. control network access, by requiring a successful STA-AP handshake before granting a
STA network services beyond the AP.
For each STA that associates with it, the AP allocates two virtual ports: one controlled,
one uncontrolled (Fig. 12.4). The uncontrolled port (A) is always enabled, but limited: it
allows only authentication-related messages to be relayed between STA and AS. The con-
trolled port (B) begins disabled, preventing exchange of data frames with the rest of the

6This 802.1X model is also used for connections to wired Ethernet ports, where LAN services would be
granted. In both Ethernet and WLAN cases, the idea is that only authorized users are granted network access.
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network. All authentication methods use the following general pattern of messages, en-
capsulated in EAP messages (Fig. 12.5). STA sends to AP a message including an identity
assertion with optional supporting evidence. This is relayed from AP to AS. Additional
STA–AS messages are exchanged as needed. A successful outcome (EAP-Success), when
seen by the authenticator, triggers it to begin the next phase, a four-pass handshake be-
tween STA and AP (page 365). First however, the PMK (needed in the handshake) is se-
curely sent from AS to AP. If the handshake succeeds (confirming that STA and AP share
the PMK, and that this is the STA authenticated by the AS), the authenticator enables the
controlled port (giving STA network access).

MAC ADDRESS ALLOWLISTS. Some early WLAN products used MAC address al-
lowlists (e.g., in APs or databases accessible to them) as a proprietary link-layer access
control method. A device could access an AP (only) if its asserted MAC address was
listed—sometimes called MAC filtering. This came with inconveniences: adding new de-
vices to allowlists before services could be used, and managing common lists across APs
within a WLAN (increasingly problematic with scale). It added a modest level of security
(vs. Open authentication, above), but only against amateur attacks—because asserting
false MAC addresses is not hard, and passive observation of cleartext MACs in frames
reveals allowlisted addresses. (While open-source 802.11 devices drivers today typically
allow MAC addresses to be altered, early device drivers did not.)

‡NETWORKING TERMINOLOGY. The terminology “protocol A runs over B” (e.g.,
TCP over IP) may be understood from a network stack diagram (Fig. 12.5). What is higher
in the stack runs “over” what is below it. In terms of packet encapsulation, the higher
protocol is the payload of the lower—i.e., the message headers for the lower protocol
encapsulate the upper. An alternative view is as a set of concentric pipes or tubes, the
smallest in the center: the innermost tube is the top of the stack—fluid running in it is the
final payload, corresponding to data in the highest-level protocol in the stack diagram.

ROLE OF EAP. The Extensible Authentication Protocol (EAP)7 is a messaging frame-
work playing several roles in 802.11 authentication (Fig. 12.5), on the STA–AP link and
also on the AP–AS path if an AS is used. For an external AS, EAP supports a wide choice
of authentication methods, and allows repackaging and relaying of protocol messages
(independent of their specific details and message sequences) between STA and AS. This
supports execution of any selected EAP method (Section 12.8). For example, for EAP-TLS,
since STA and AS are not directly connected, the specific EAP-TLS protocol messages are
relayed between STA and AS by custom EAP packaging in two legs. The STA–AP leg
uses an encapsulation called EAP over LAN (EAPOL); the AP–AS leg uses EAP messages
over RADIUS (i.e., EAP is the payload of RADIUS). The individual authentication proto-
col selected is relied on for security and authenticated key establishment; EAP provides
transport. Once such a protocol succeeds, the AS transfers the PMK to the AP,8 for use
in the four-pass STA–AP handshake. If that succeeds, the authenticator (in the AP) finally
enables network services for the STA, via the port controller (Fig. 12.4).

7Section 12.9 summarizes EAP’s origin.
8The AP–AS channel must be secured by some means, beyond the scope of 802.11 and 802.1X.
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Figure 12.5: EAP and RADIUS roles in WLAN authentication. The authenticator function
in the AP relays messages between the STA and AS in two legs. Network protocol sub-
layers not shown are EAPOL (between EAP and 802.11), EAP-over-RADIUS and TLS-over-
EAP; such sub-layers are often needed when refitting old protocols for new purposes.

‡EAP AND EAPOL MESSAGES. EAP facilitates specific authentication protocols by
carrying their messages in generic EAP messages falling into two pairs {request, response}
and {success, failure}, specified by a code field. A further EAP type field identifies
the specific authentication protocol, with protocol-specific data included in a type-data
field. Our primary interest in EAPOL (EAP over LAN), used over the layer 2 wireless link
(Fig. 12.5), is to transport EAP messages using EAPOL-packet messages, and to carry
messages for the four-pass handshake in EAPOL-key messages. Similarly to EAP, EAPOL

itself is primarily a means for transport, rather than for security per se.
ROLE OF RADIUS. EAP messages are relayed from the AP-authenticator to the AS

using a protocol called RADIUS (Remote Access Dial-In User Service).9 Our other pri-
mary interest in RADIUS is its functionality that delivers a resulting PMK from AS to AP.
RADIUS itself runs over UDP, which provides network-layer services (e.g., routing to the
AS); note that network routing is not needed on the point-to-point STA-AP link. Four RA-
DIUS messages map directly onto (and carry) corresponding EAP messages, again grouped
in matched pairs: {access-request, access-challenge} and {access-accept, access-reject}.

PSK (PREDATING EAP). The early 802.11 design used an encryption design called
Wired Equivalent Privacy (WEP). It did not include an AS, relying instead on a static PSK

(no alternative). Here, a pre-shared secret from which a PSK is derived is configured man-
ually into both mobile devices (STA) and the AP. In theory the pre-shared secret may be
a random bitstring; in practice, it is often a user-chosen password of ASCII characters.10

The PSK was originally limited to 40 bits due to US export restrictions, but many manu-
facturers supported 104-bit secret keys early on. The use of a centralized authentication
server (AS) and automated key management supported by EAP and RADIUS came once
the need became apparent (next paragraph).

WHY STUDY WEP. Static PSKs and lack of key management support were among a
list of factors contributing to what turned out to be entirely inadequate security in the WEP

design of the original 802.11 standard (1999). The security architecture was dramatically
improved over 2002-2004 (with WPA and 802.11i, as detailed in Section 12.8). But we
recommend study of WEP for two reasons, with Sections 12.4–12.6 exploring the (flawed)

9Section 12.9 gives background on the acronym RADIUS, also used for RADIUS servers (in our case, AS).
10The distinction between a user password and a PSK derived from it is discussed on page 367.
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details of how it uses the RC4 stream cipher. First, knowing this history motivates the new
design, and helps us understand it. Second, in security, we learn best from mistakes and
attacks on earlier designs—and WEP is rich in this dimension.

12.4 RC4 stream cipher and its use in WEP

We first describe the RC4 stream cipher algorithm, and then its use in WEP.
RC4 BACKGROUND. RC4 uses a hidden state vector S that contains all values 0

through 255. During a key setup phase, the values are rearranged in a manner depen-
dent on the secret key, and again somewhat as each keystream byte is output. The vec-
tor always contains the same values, in some (hidden) ordering. The intended effect is
that each keystream output byte appears to be a “randomly” drawn value from [0..255],
so the keystream approximates a random sequence of bytes to anyone not knowing the
key. However, a party knowing the seed value can deterministically generate the same
bytestream—this allows decryption. As the pseudo-code below illustrates, RC4 is com-
pact, involves only simple byte operations, and is simple in appearance.

Function RC4doKeySetup(len,seed) % initialization (RC4 key setup)
(input) len: byte-length of seed % e.g., 5 <= len <= 32 (40-256 bits)
(input) seed: secret key % byte vector seed[0]..seed[len-1]

1 FOR (i := 0 to 255) { S[i] := i } % initialize byte i to i
2 j := 0 % each value S[i] is 8 bits
3 FOR (i := 0 to 255) {
4 j := j + S[i] + seed[i mod len] % j is also reduced modulo 256
5 swap byte values S[i] and S[j] } % key randomizes hidden-state vector S
6 i := 0, j := 0 % reset indices for next phase

After this initialization, plaintext is encrypted a byte at a time, using the next byte of
keystream output produced iteratively as follows. Here the persistent variables i and j,
used to index the 256-byte state vector S, are reduced (mod 256), e.g., 255+1 = 0.

Function RC4genNextKeystreamByte() % pseudo-random byte generation

7 i := i + 1 % unsigned byte addition (ignore carry bit)
8 j := j + S[i] % further randomize the hidden state
9 swap byte values S[i] and S[j]

10 t := S[ S[i] + S[j] ]
11 return(t) % t is next keystream byte

Thus if mi and ki are the next plaintext and keystream bytes (Fig. 12.6), the next ciphertext
byte is ci = mi⊕ ki. This is the usual Vernam stream cipher construction (Chapter 2). To
decrypt, an identical sequence of keystream bytes ki is generated, with each plaintext byte
recovered simply by XOR’ing ki to ci: mi

′ = ci⊕ ki = mi⊕ ki⊕ ki = mi since ki⊕ ki = 0.
WEP USE OF RC4. In WEP, a symmetric key K is shared by the APs and STAs on

a WLAN. In practice, K is often derived from a user-chosen password—and changed
infrequently due to the inconvenience of coordinating manual update of all devices and
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Figure 12.6: RC4 stream cipher as used in WEP. A cryptographer would warn against us-
ing a non-secret as a (non-mixed) part of a secret key, here the concatenated initialization
vector (IV) in the seed. This was one of the serious problems in WEP’s use of RC4, and
the only practical method provided to alter the keystream across MAC frames.

APs. Let the 802.11 data frame payload data, or MAC protocol data unit (PDU) in Fig.
12.7, be denoted M. Then immediately prior to and as part of WEP encryption, two values
are concatenated (“::”) before and after it, yielding IV D::M::ICV . Here IVD is 4 bytes,
not encrypted, and holds a 24-bit IV plus a fourth byte with a KeyID (e.g., supporting
group keys, page 366). The integrity-check value (ICV) is a 32-bit CRC over the data.
M::ICV is encrypted using the RC4 keystream (Fig. 12.6), with seed s = IV::K as the
secret key input. On receiving a WEP-encrypted frame, the receiver uses the cleartext IV
to reconstruct the RC4 seed, regenerates the RC4 keystream to allow decryption, decrypts,
recomputes the ICV from the decrypted PDU, and confirms the locally computed ICV
matches the decrypted ICV. If the match fails, the frame data is not made available.

RC4 KEY SIZE. 802.11 formally specified a 40-bit WEP key K. This was to comply
with later-abandoned US export rules in place to intentionally weaken security in exported
products. Nonetheless, many early products already supported 104-bit keys K, resulting
in WEP seeds (after extension by the 24-bit IV) being either 64 or 128 bits. The longer key
increases protection against exhaustive key search (from an expected search over 0.5×240

keys to 0.5×2104, a factor of 264). However for many eventual attacks on WEP—including

MAC	header

Frame
control

32	bits

CRCother	fields	including
48-bit	MAC	addresses

	Frame	body	extended	
8	bytes	for	WEP	(E=1): ICVPDUIVD

encrypted
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Vector	(IV)

32

24	bits	8

2-bit	key	number	(6	bits	pad)

Data	or	Message	(PDU)

000000

Frame	body

*

Figure 12.7: 802.11 format for WEP frames. WEP encapsulation (frame control bit E=1) is
allowed only if TP = data frame, or TP = management frame and SBTP = authentication.
The ICV in a WEP body is distinct from the frame’s CRC. PDUs are at least one byte.
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both the ICV failure and keystream stripping in Section 12.5—attack time is independent
of keysize, while for others it increases only modestly or linearly in key length, e.g., by a
factor of 2.6× in the FMS weak key attack (page 359).

12.5 WEP attacks: authentication, integrity, keystream reuse

We first describe a challenge-response protocol called Shared Key authentication in the
802.11–1999 standard, and an attack on it. For use prior to device association, this was the
alternative to (null or) Open System authentication. It is a useful pedagogical example of
how not to design a challenge-response protocol. Other failures discussed include WEP’s
data integrity mechanism, and design considerations related to IVs and keystreams.

SHARED KEY AUTHENTICATION. This protocol has four messages of fixed format.
All field values are also fixed, other than the challenge (random number).

1. STA→ AP: auth-request . . . . . . AP=2, SN=1, Info Element empty in Fig. 12.8
2. STA← AP: auth-challenge . . . . . .M is sent as a plaintext challenge of 128 bytes
3. STA→ AP: auth-response . . . . . . . . . . . . . . .C is returned as the encryption of M
4. STA← AP: auth-status . . . . . . . . . . . . . . . . . . . SC is returned as the status code

SC is success if, on decryption, the ICV is correct and the decryption of C matches M.
KEYSTREAM STRIPPING (ON PROTOCOL ABOVE). The attacker observes the ra-

dio channel to see M and C in messages 2 and 3. This allows keystream recovery because:
M⊕C =M⊕(M⊕S) = S, the keystream. This should be clear from Fig. 12.6, where low-
ercase mi and ci denote individual bytes; here the corresponding uppercase letters denote
128-bytes strings. For a (fixed) shared key K, while this does not recover K explicitly, it
recovers—by passive eavesdropping of the radio channel—the keystream (for the specific
IV used). This keystream can then be used to compute a response for any later challenge;
note that the choice of IV is left to the responder, and the attack simply reuses the IV. Since
use of Shared Key authentication thus discloses a (reusable) keystream to attackers, it is

Frame
control
2	bytes

TP SBTP E.	.	.						
			TP		=	management	frame
SBTP		=	authen.	protocol
				E			=	1	(WEP)

CRCother	header	fields
(MAC	addresses,	...)

Frame	body:	shared	key	authen�ca�on	

ICVIVD

encrypted

Protocol	Data	Unit	(PDU)

.	.	.

1	+	1	+	1282+2+2	bytes

challenge	text	(128	bytes)	Authen�ca�on	Frame:

			AP:	authen.	protocol	number
			SN:	authen.	transac�on	seq.	number
			SC:	status	code	(e.g.,	success)

AP SN SC D L

Info.	Element	for	challenge	text
D	=	16	(element	ID	)	
L		=	128	(challenge	length)

Case:	AP=2	(shared	key),	SN=3	(msg	3)

Figure 12.8: 802.11 frame for Shared Key authentication (message 3 of 4 messages).
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viewed as worse than Open System authentication. This explains the otherwise confusing
preference for Open authentication, and the deprecation of Shared Key authentication.

‡COMMENT ON DESIGN FLAW. The above attack is enabled by the 802.11 specifi-
cation allowing, i.e., not preventing, deliberate IV reuse—which here implies keystream
reuse. This flaw is not subtle—a basic rule for stream ciphers is that keystreams must
not be reused. The consequent requirement is that key management be arranged such that
keystream reuse cannot occur, or is extremely unlikely. (As Chapter 2 notes: if a key-
stream is truly random and not reused, the Vernam construction yields a one-time pad that
is unbreakable with respect to confidentiality. In practice, a shortcut used to efficiently
emulate a one-time pad is to use pseudo-random keystreams in place of truly random
keystreams—but the essential rule remains: never reuse keystreams.)

As a second flaw here, in cryptographic protocol design it is widely recognized as un-
safe to provide, or enable extraction of, plaintext-ciphertext pairs; for plaintext precisely as
presented (without alteration), known-plaintext attacks become chosen-plaintext attacks.
A common defensive heuristic in protocols is to reserve a plaintext field into which the
responding party inserts an unpredictable value (confounder) of its own choosing.

‡ADDITIONAL DETAIL ON ATTACK (AUTHENTICATION PROTOCOL). The at-
tacker knows that message 3 (Fig. 12.8) includes an encrypted 4-byte ICV immediately
after the challenge text in the frame body. How is the keystream corresponding to this
ICV itself recovered? An ICV does not appear in the cleartext message 2 (it is inserted
only in encrypted frames). But this value is easily computed from the cleartext, and the
known CRC algorithm. This allows recovery of the final 4 bytes of keystream (again
simply by XOR), providing the full keystream needed to successfully forge the encrypted
response for any later (different) challenge for fixed key K. Note that in such a response,
the attacker reuses the same IV, in order for the same keystream to be valid; the attacker
knows the necessary keystream, without knowing (or needing) the master key K itself.

KEYSTREAM REUSE: GENERAL CASE BEYOND WEP. The general issue of key-
stream reuse warrants further discussion, independent of WEP. Consider a byte-oriented
Vernam stream cipher, with encryption by exclusive-or (XOR) of the keystream to the
plaintext, and then again to the ciphertext to decrypt (Fig. 12.6). Suppose two messages
are encrypted with the same keystream—what is the danger? If the two ciphertext streams
are XOR’ed, the keystreams cancel out, leaving the XOR of the two plaintext strings:
P⊕P′. We mention two cases of interest.

Case 1: all or parts of P or P′ are known. This then allows immediate recovery of the
corresponding part of the other string by XOR (and then also recovery of the corresponding
part of the keystream).11 This case is not uncommon—many fixed-format messages, e.g.,
due to standard protocols, have constant fields, are known, or are easily predicted (e.g.,
a date field); plaintext P (corresponding to an encrypted message) may also be directly
available from the source. Case 2: redundancy in the plaintext messages allows well-
known statistical methods to recover the plaintext itself. As examples, ASCII-encoding

11As we have seen, in the case of 802.11 with WEP, reuse of a recovered keystream (for a fixed K and given
IV ) can be arranged by intentional reuse of the same IV, which is set by the frame originator.
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provides redundancy in characters, and natural languages are highly redundant.
INTEGRITY MECHANISM FAILURE (OVERVIEW). While the overall 802.11 frame

CRC detects transmission errors, WEP’s encryption of the ICV (Fig. 12.7), a CRC based
on message data but not any secret, was intended to detect malicious changes, i.e., for data
integrity in the data authentication sense. However, it was already known (page 369) that
encrypting an appended CRC fails at this. As we explain shortly, without knowing the
secret keystream, the data can be altered undetectably by also making suitable changes to
the ciphertext corresponding to the ICV. To gain an understanding of how the attack pro-
ceeds, we begin with an easy case: an attacker assumed to somehow know the underlying
plaintext (i.e., a known-plaintext scenario). We will compute a string to XOR onto the
ciphertext so as to insert any chosen message, with a correct (modified encrypted) ICV.

INTEGRITY MECHANISM FAILURE (DETAILS). Let M = m1m2 · · ·mt−1mt denote
the string of bytes composing the MAC frame data (PDU of Fig. 12.7), and Mr = f (M)
the 32-bit ICV value from CRC function f . Let the t +4 corresponding keystream bytes
(generated using RC4) be S = k1k2 · · ·kt−1kt with Sr denoting the last 4 bytes (to match
notation). Then the WEP ciphertext for this frame can be denoted

C :: Cr where C = M⊕S and Cr = Mr⊕Sr (12.1)

Let T be a substitute string (of identical length, for simplicity)12 that an attacker wishes
the recipient to recover on decryption (instead of M). The attacker will create a string D,
then XOR D onto C to alter C. What value for D will work so that the intended recipient
(unwittingly) recovers T rather than M? The value is simply: D = M⊕T (and critically,
this requires knowing neither S nor Sr). The recipient now receives not C but C⊕D, which
is C⊕ (M⊕T ) = (M⊕ S)⊕ (M⊕T ) = S⊕T . Now the usual WEP decryption XOR’s S
onto the received ciphertext, yielding (S⊕T )⊕S= T as desired. This simple attack works
because the result of XORing multiple items is unaffected by reordering terms.

However, we have yet to account for the ICV bytes, whose sole purpose is to detect
changes, and trigger an error if the ICV check fails (page 352). What 4-byte value Dr

should be XORed onto Cr, to avoid an ICV error? Analogously to the reasoning above, the
value is: Dr = f (M)⊕ f (T ), i.e., Mr⊕Tr, the XOR of CRC values from M and T . To see
this, note that if this Dr = Mr⊕Tr is XOR’d onto the ICV bytes of the original ciphertext,
since Cr = Mr⊕Sr from (12.1), the ICV bytes of the altered ciphertext become

Cr⊕Dr = (Mr⊕Sr)⊕ (Mr⊕Tr) = Sr⊕Tr (12.2)

Now when the unsuspecting recipient uses the normally generated final keystream bytes
Sr to XOR-decrypt the ICV, the result is Tr, which is f (T ), so the ICV check succeeds.
We now recognize that the ciphertext alterations used to change the original M:: f (M) to
T :: f (T ) can be viewed as a simple XOR-off of M:: f (M), and an XOR-on of T :: f (T ). Thus
WEP’s easily manipulated XOR-encryption fails also to protect the ICV value.

‡FULL ATTACK EXPLOITING CRC USED AS ICV. The attack as explained above
relies on known-plaintext—to compute D and Dr requires knowing the (entire) original

12With only minor modifications to the attack, any T shorter than M could also be used.
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plaintext M. However, the flaw is more serious due to the following generalized attack.
An attacker not knowing any of the original plaintext M, can make any desired XOR-
alteration D to M (perhaps informed by knowing parts of M or its underlying format),
by easily computing a compensating value Dr to XOR onto the ICV position to avoid
detection;13 for any D, this is simply Dr = f (D) where f is the CRC function used for the
ICV. The following exercise explores supporting details.

‡Exercise (Full attack exploiting CRC linearity). (a) Explain why the generalized
attack works, assuming the property: f (M⊕T ) = f (M)⊕ f (T ) (hint: [7]). (b) Explain
how polynomials over binary finite fields of the form GF(2t) are represented as bitstrings,
and how in this representation, addition of polynomials is the same as bitwise XOR (hint:
Example 2.231 [30, p.85]). (c) Look up and specify the degree-32 polynomial G(x) used
by the CRC function in question (hint: pages 40–41, 1999 version of [21]). (d) Using
equations, explain how CRC values are represented as remainders of polynomial division,
and explain how this and (b) support the property in (a) (hint: [30, p.363]).

‡Exercise (ICV requires keyed hash function). The known-plaintext ICV attack still
works if the CRC function is replaced by any other function of the plaintext alone, includ-
ing an (unkeyed) cryptographic hash function. Explain why.

‡LACK OF INDEPENDENT MECHANISMS. Note that this flawed ICV method also
fails to detect fraudulent message insertion by an attacker holding a recovered encryp-
tion keystream—obtained, e.g., by attacking Shared Key authentication (page 353); any
known-plaintext scenario also allows encryption keystream recovery. Thus rather than
having two independent protection mechanisms, in the WEP design compromise of one
(encryption) compromises the other (data authentication)—breaking a design principle.
Also, from the viewpoint that WEP’s data integrity mechanism was intended, or marketed,
as a means to prevent use of the transmission channel by unauthorized users (whereas the
usual goal of encryption is to prevent disclosure of confidential information), this data
integrity failure may be viewed as an access control failure.

IVS IN WEP. The WEP encryption design specified the use of 24-bit initialization
vectors (IVs), to vary the keystream across different frames—by the unorthodox means
of simply concatenating an IV to a fixed shared master key K. It was widely known that
reusing keystreams should be avoided, yet how to generate IVs was left as a homework
assignment for manufacturers. As it turns out, regardless of the IV generation method, 24
bits was too few from the start. An understanding of why emerges from the next example,
which explores: How long do we expect it takes before a 24-bit IV is repeated?

Example (24-bit IV spaces). For a network transmitting packets of a given (average)
size at a given (average) rate, what time will elapse before an IV collision (two packets
with the same IV)? The time is maximized if packets are assigned IV values in sequence,
e.g., from 0 to 224− 1. Thereafter, a collision is unavoidable. For illustration and ease
of scaling, assume a network speed of 10 Mbps. This is close to the maximum 11 Mbps
(raw data rate) from the 1999-ratified 802.11b amendment, but far less than new Wi-Fi

13For example, a D with a single 1-bit in one byte (other bytes all 0) will flip the corresponding bit in the
recovered plaintext. This matches our Chapter 2 example on the one-time pad not providing data integrity.
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networks which approach gigabits/s (Gbps). Assume also 1500-byte packets, to match
the Ethernet MTU or maximum transmission unit (802.11 supports PDUs somewhat over
2300 bytes). Our model network then supports (107 bits/s)/(1500× 8) bits/packet =
833.33 packets/s. Multiplying by 3600 s/hr yields 3 million packets/hr (≈ 221.52). To
exhaust 224 distinct IVs then takes 224/(3 ·106) = 5.59 hours. This time will decrease for
a faster network that is fully loaded (or has smaller frames), e.g., to a few minutes for
Gbps networks; and will increase for a slower network or one with lower traffic load.

INEVITABLE IV COLLISIONS. In summary, even for a slow model network, IV col-
lisions occur in under a day (while the ideal period is never). The actual situation is worse:
in practice, with more than one WLAN device transmitting, the packets of all devices shar-
ing a fixed key K draw on the same IV space at once, without coordination. If IVs are
selected randomly, collisions are expected well before 224 frames—rather, on the order of
212, due to the birthday paradox (Chapter 2), which tells us to expect collisions in time
proportional to the square root of the event space size—here, a reduction factor of 4000.
As another reality, wireless network cards may reinitialize when systems reboot (e.g., as
laptops are powered on), with common or predictable IV reset values and sequencing
algorithms both within and across manufacturers. The obvious engineering choice of re-
setting IVs to 0, and incrementing sequentially, leads to an expectation of many collisions
among IVs of low numerical value. Colliding 24-bit IVs in WEP are thus common.

We next summarize WEP security properties and key recovery, the strongest attack.

12.6 WEP security summary and full key recovery

Here we first highlight selected WEP design properties. Many of these are now recognized
to be poor choices, enabling major security failures, which we review in turn. We also
discuss in some detail the ultimate attack: recovery of the master key. We begin with six
observations about WEP’s design; notably, all involve key management.

D1: IVs (in cleartext, as typically required) immediately precede WEP-encrypted frames. While
not a flaw itself, this allows immediate identification and matching of reused keystreams,
and lookup of keystreams previously collected or compiled in keystream dictionaries.

D2: The same key is used for three cryptographic mechanisms—confidentiality, authentication
(Shared Key), and data authentication (encrypted CRC). In general, such dependence ad-
mits new risks—a failure in one mechanism may compromise the others, and some attacks
may exploit relationships between the mechanisms.

D3: IVs are 24 bits and selected entirely at the option and control of the frame originator,
with IV reuse allowed. As consequences, in practice: IV reuse is unavoidable (due to the
bitlength), standard-compliant receivers must accept all IVs (including those intentionally
reused), and keystream reuse is unavoidable (in the common case of static master keys).

D4: The concatenation of the IV and master key K is used directly as the RC4 seed. Later
designs would use hash functions to mix auxiliary parameters with a master key, to derive
sets of secondary keys that differ from each other and whose reuse cannot be forced.
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D5: In practice, across a WLAN’s devices and APs, many users share a master key. As conse-
quences: (a) users can derive the frame keys protecting other users’ data; (b) those sharing
a master key all draw on the same IV space (increasing the number of unintentional IV
collisions—resulting in reused keystreams); and (c) the master key is an attractive target.

D6: The master key is often a human-chosen or memorable string. Such keys are at risk to
simple password-guessing attacks—even in implementations configured for 104-bit secret
keys; meanwhile, the original 40-bit keys are entirely insufficient for serious protection.

Note: D5 and D6 are not design choices per se, but consequences of 802.11 declaring man-
agement and selection of keys to be beyond its scope. For D5, shared master keys can
be avoided by infrastructure or policies providing distinct users with distinct master keys,
but both are typically hard to implement or enforce in non-corporate environments.

‡SECURITY DESIGN PRINCIPLES. WEP design choice D2 fails to provide inde-
pendence between cryptographic keys, in conflict with design principles P7 (MODULAR-
DESIGN) and P13 (DEFENSE-IN-DEPTH). WEP encryption being disabled by default,
per the specification, breaks P2 (SAFE-DEFAULTS). The WEP design was open to pub-
lic scrutiny only after it was finalized, breaking principle P3 (OPEN-DESIGN).

FAILURES RELATED TO DESIGN CHOICES. We now list some of the most serious
consequences of the preceding design choices combined with how WEP used RC4.

F1: The Shared Key authentication method had severe flaws (802.11 mode 2, now deprecated).
Passive recording of one exchange not only allows subsequent fraudulent authentication,
but immediately provides a secret keystream that can be reused by an unauthorized party
to inject arbitrary (properly encrypted) 128-byte messages. This is contrary to expecta-
tions that only legitimate devices knowing the master secret can send encrypted traffic on
the WLAN. This flaw is independent of the master secret being 40 or 104 bits.

F2: The data authentication mechanism was easy to break (encrypted CRC as ICV). Using
the ICV mechanism attack (page 355), an eavesdropper can copy a legitimate message
and inject an undetectably altered version without knowing the master secret.14 In gen-
eral, data authentication mechanisms should serve to both detect alteration and confirm
message authenticity; here, the ICV attack allows undetected alteration, while keystream
reuse enables injection of new forged messages, more directly defeating message authen-
ticity. This flaw is likewise independent of the master secret being 40 or 104 bits.

F3: Confidentiality intended by RC4 encryption was compromised by a combination of design
choices enabling identification and reuse of keystreams, including attacks that need not
explicitly recover the master secret. Contributing factors here were design choices D1 and
D3 (short, visible IVs) and a design encouraging shared static master keys (D5), combined
with simple bytewise XOR-encryption. Keystream-type attacks are generally unimpeded
by 104-bit keys, while 40-bit keys offer no serious protection.

F4: Explicit recovery of the master secret is possible by both guessing attacks (when weak)
and (even for strong, 104-bit keys) by an efficient attack requiring only passive observation

14On-the-fly data alteration is a more sophisticated attack, but possible in conjunction with a middle-person
attack (Fig. 12.3), itself possible because of the absence of a strong mutual authentication protocol in WEP.
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of traffic with little computation. In both cases, master key compromise naturally results
in total security failure of all mechanisms. We discuss these in turn.

WEP KEY RECOVERY: GUESSING ATTACKS. In practice, if a WEP master se-
cret, whether 40 or 104 bits, originates from a human-chosen password, then password-
guessing dictionary attack strategies often succeed (Chapter 4). For the 40-bit case, ex-
haustive guessing through the keyspace is easy even for truly random strings. (The next
exercise pursues user-chosen passwords in general; it may be deferred until Section 12.8.)

‡Exercise (Offline dictionary attack on PSK). Explain how recording the first two
messages of the four-pass handshake (page 365) allows an attack recovering the PSK for
weak user-chosen passwords. (Hint: page 363, equation (12.4); or [32], [24].)

WEP KEY RECOVERY: FMS ATTACK. In 2001, Fluhrer, Mantin, and Shamir (FMS)
described a method to recover WEP seed keys, thus fully breaking WEP. They found spe-
cific sets of IVs (weak IVs) that manipulate RC4’s key setup such that the first keystream
byte leaks information on one byte of the key; gathering this over enough IVs reveals the
byte. A different set of IVs then reveals the next key byte, and so on. The attack relies
on IVs being visible (D1) and directly used as part of the seed (D4) used for key setup. A
master key shared across users (D5) makes collection of WLAN traffic both faster and sim-
pler (as all frames correspond to a fixed base key with different IVs). The attack relies on
seeing the first keystream byte for each IV used. While ciphertext reveals only the XOR of
keystream with plaintext, WEP provides a known-plaintext scenario accommodating this
requirement: the first plaintext byte of WEP-encrypted frames is the constant 0xAA.15 Thus
an XOR of 0xAA to the first encrypted payload byte yields the keystream byte as required.

The attack is iterative. At each step, given knowledge of the first i bytes of the RC4

key (seed), it finds the next byte. For a WEP key of 40 bits (8 bytes), bytes 0–2 of a seed
(IV0, IV1, IV2)::K are known (visible) from the start, with bytes 3–7 to be found. Recall
(page 351) that the seed bytes determine how the byte values 0...255 of the hidden state
vector S are permuted during key setup. A weak IV leaves S in a state that potentially leaks
information. To find the first unknown byte, seed[3], IVs with byte pattern template
(3,255, t) are used, with most values 0≤ t ≤ 255 satisfying the requirements; frames with
IVs of this form are found from captured traffic. To find key byte b, 3≤ b≤ 7, useful weak
IVs include those of the form (b,255, t). An initial response of WEP product vendors was
to disallow (filter out) IVs of this pattern; however, more advanced attacks soon emerged
for which IV filtering was not possible.

‡FMS ATTACK (DETAILS). The first RC4 keystream byte is z = S[S[1]+ S[S[1]]]. It
depends on three entries of S at the instant key setup ends. FMS weak IVs aim to arrange
that S[1] = 0 and S[0] = b, so that z = S[0+ b] = S[b]. This value z turns out to allow a
direct calculation of seed[b], using two main observations. (1) During key setup line 4
(page 351), when i = b, the unknown seed[b] is added into j along with known values;
and (2) then in line 5, the updated value j = ji (for round i = b) determines the value
swapped into index b as new value S[b] from index ji. From line 4 it now follows that,
aside from seed[b], ji and S[ ji] depend only on known or predictable values, including

15Due to standards-related issues, this is part of a known-plaintext LLC/SNAP header (page 360).
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t (fixed for a given IV); here for S[ ji], note that at this point S[h] = h for most h (from
line 1). This sketches out why seeing keystream byte S[b] allows recovery of seed[b]—
provided no further swaps (after round i = b) involve index b. This last condition is why
for each b, multiple (e.g., 60) IVs of the desired form are collected. Based on modeling,
the condition holds with probability somewhat over 0.05, so 60 instances are expected to
yield at least 3 correct observations or “votes” for the correct value of seed[b]. Of 60
available votes, none of the other 255 (8-bit) values is expected (by model) to get even
two votes, thus simple voting is expected to identify the correct key byte.

ATTACK TIME VS. KEY LENGTH. For a 40-bit WEP key, the FMS attack recovers
5 key bytes, each over one iteration step. For 104-bit keys, the 13 key bytes require 13
iterations, taking about 2.6 times longer—an increase only linear in the key length. In
contrast, an attack time exponential in key length is expected (e.g., 0.5 · 2n for n-bit key
trials) for cryptographic algorithms for which there are no known algorithmic weaknesses.

‡Exercise (Key recovery implementations). The FMS paper estimated requiring 4
million WEP frames. The first implementation used 5–6 million, but this was reduced to 1
million by optimizations. Independent public implementations of FMS key recovery soon
appeared in tools AirSnort and WEPCrack.16 (a) Summarize these optimizations (hint:
[48]). (b) The PTW attack, a later statistical method not restricted to weak IVs, needed
only 40,000 (85,000) frames for 50% (95%) probability of success in key recovery. In
2007 it recovered a 104-bit WEP key in 60 seconds. Explain how it acquired frames with
different IVs using active techniques including re-injection of captured ARP requests17

and deauthenticate management frames (hint: [50]; [49] for improvements). (c) Discuss
the evolution of WEP key recovery attacks, from FMS to attacks utilizing arbitrary IVs;
discuss passive vs. active attacks, the number of frames needed, attack times, and incor-
poration into automated key recovery tools such as Aircrack-ng (hint: [41]).

‡Exercise (Fragmentation attacks). IEEE 802.11 supports payload fragmentation and
reassembly of MAC frames. An 8-byte known-plaintext LLC/SNAP (subnetwork access
protocol) header commonly starts the WEP-encrypted body (Fig. 12.7 at ‘*’ after IVD).
Explain how this and one passively recorded encrypted frame can be used to: (a) recover
an 8-byte keystream by simple XOR; (b) leverage 802.11 fragmentation to directly enable
transmission of 64 bytes of encrypted data; (c) with further steps, recover 1500-byte key-
streams, thereby allowing transmission (without fragmentation) of 1500 bytes of data; and
(d) by inserting an IP header into frame fragments, get an AP to decrypt captured WLAN

traffic and forward the result to an address of choice. (Hint for all parts: [6].)
‡Exercise (RC4 initial keystream bytes). When the 2001 FMS attack appeared, a sug-

gested work-around was that when using RC4, an agreed-upon number of output bytes (at
least 256) be discarded before using the keystream, to avoid biases in the initial keystream
bytes. Why was this solution not promoted by the Wi-Fi Alliance? (Hint: [11]; cf. [27].)

SUMMARY COMMENT: KEY MANAGEMENT. In distributed networks using open
standards and public communications channels, cryptographic protection is recognized

16Free cracking tools (illegal in some countries) rarely bring joy to product vendors, but are hard to ignore.
17The Address Resolution Protocol (ARP) is discussed in Chapter 11.
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as the primary means for security. Aside from trustworthy algorithms, cryptography it-
self depends on one major assumption among all others: that secret keys remain secrets
associated with (only) the authorized parties. Sound key management is absolutely essen-
tial, in all aspects. However, WEP’s design failed here—its properties D2–D6 (page 357)
would not have been approved by security experts. While it is understood that a stan-
dards committee has limited resources, the decision to declare management of the master
key beyond the scope of WEP itself turned out badly for everyone but attackers. WEP’s
above-noted spectacular failures are strongly related to this void; the lack of built-in key
management, with no requirement or support for easy key update, discouraged changing
master keys, commonly resulting in a shared, long-term static key—increasing both its
attractiveness as a target, and the consequences of its compromise. Had 802.11 failed to
gain popularity, these issues would have drawn less attention and had little impact—but
success attracts heavy scrutiny, and errors become both highly visible and costly to repair.

12.7 ‡AES-CCMP frame encryption and key hierarchy (WPA2)

The security of 802.11 networks improved with the introduction of the AES-CCM protocol
(AES-CCMP), which is the core element of WPA2 (page 364). AES-CCMP uses the AES

block cipher as a replacement for WEP and its corresponding RC4 stream cipher. Here
we describe AES-CCMP frame encryption and how a set of session keys is derived from
the pairwise master key. Section 12.8 then describes how group keys are managed, the
four-pass handshake protocol used by AES-CCMP for mutual authentication between STA

and AP, and further context on the evolution of 802.11 security from WEP to WPA3.
AES-CCMP FRAME ENCRYPTION. AES-CCMP uses the AES block cipher in the CCM

mode (counter mode of operation for encryption, with CBC-MAC authentication).18 Here
the AES algorithm, which processes data in 128-bit blocks, is used with a 128-bit key as
the basis for both frame encryption and frame integrity. CCM has two parts.

1. The CBC-MAC data authentication algorithm is used to compute a MAC (integrity tag),
which is appended to the frame data.

2. The combined string is encrypted using counter mode (CTR), whereby a counter block
is initialized (serving as an IV); then each 128-bit plaintext block is XOR’d to the AES-
encryption of the current counter value (which itself increments after each plaintext block).

As discussed in Chapter 2, such algorithms combining authentication and encryption are
called authenticated encryption (AE). In CCMP, some MAC frame header and CCMP

header fields are also authenticated (but not encrypted), resulting in what is called AE
with associated data (AEAD). Fields that are mutable (subject to change) are zeroed out
for the purposes of MAC computation and verification.

CCMP HEADER, PN, CTR MODE NONCE. CCMP adds 16 bytes to an 802.11 frame
body PDU (replacing WEP’s 4+4 bytes, Fig. 12.7): 8 bytes of cleartext CCMP header

18The counter mode of operation (CTR), CBC-MAC and CCM are introduced in Chapter 2.
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before the encrypted part, and 8 final bytes for the MAC integrity value.19 Our main
interest in this cleartext header is a 6-byte packet number (PN), and a KeyID field (cf. Fig.
12.7). The PN is used both to detect replay (below), and to avoid key reuse as explained
next. A 48-bit PN is to be incremented with each frame (MPDU), yielding a PN that is
unique for each MPDU (for a given PTK session key),20 used to build a 128-bit counter
block (Fig. 12.9) for CCM’s CTR mode encryption. CTR mode requires, for its initial
counter block, a nonce value that is never reused for the same key. A 104-bit nonce
and a 16-bit rolling counter i are part of the full counter block (the rolling counter’s 216

values far exceed the number of 128-bit blocks to be counted, given the MPDU size limit).
The value i is incremented (within the CTR mode) as each 128-bit block in the frame is
encrypted, starting with i = 1 for the first 128-bit plaintext block. Here the PN (with extra
assurance from the MAC source address) ensures that the 128-bit counter block of Fig.
12.9 starts at a value never used before for this PTK—as required by the CCM mode. Note
that this value need not be unpredictable—uniqueness is the requirement.

nonce	for	Counter	mode

Priority
byte

16	bits

Source
MAC	address

Packet	Number
(PN)

Counter
(i)Flags

484888

Figure 12.9: Counter block format for CTR mode in CCMP. The initial block uses i = 1.
Flags and the Priority byte are omitted from our discussion. The nonce here need only be
unique; in other cases, nonces are specified to be unpredictable random numbers.

Exercise (AES-CCMP details). (a) Describe full details for data integrity and encryp-
tion of frames in AES-CCMP, including padding fields and the frame format, how CCMP

header fields are used, and the special first block in CCMP’s CBC-MAC. (b) Discuss the
advantages and disadvantages of AES-CCMP keeping only 8 bytes of 16-byte CBC-MAC.
(Hint: [22]; [11, Ch.12]. CCMP follows RFC 3610 [55] with M = 8, L = 2.)

NOTATION FOR PSEUDO-RANDOM BIT GENERATION. We now introduce notation
for pseudo-random functions (PRFs). PRFs are used in 802.11 to derive a set of keys from
a master key (key derivation), and to initialize random strings. To instantiate a PRF, the
HMAC construction is used on the SHA-1 hash function, yielding the MAC algorithm
called HMAC-SHA-1 (Chapter 2). It takes two inputs—a key, and a message string—and
produces 160 bits of output. For notation, with “::” denoting concatenation, define:

x hmac sha1(K,A,B, i) = HMAC SHA 1(K,A :: [0] :: B :: [i]) (12.3)

where [0] and [i] denote 1-byte representations of 0 and unsigned integer i. To get 160 ran-
dom bits, we call this function with i = 0. If the number t of desired random bits exceeds
160, then we call it again for i = 1 and so on, until the combined output (appending each
new output to the end) is at least t bits, and use the first t bits. To generate t = 384 bits,

19The MAC protocol data unit (MPDU) carried by an 802.11 frame body (Fig. 12.2) may result from the
fragmentation of a MAC service data unit (MSDU) that exceeds the MPDU maximum size.

20A 48-bit counter, starting from 1 and incremented per frame, is not expected to roll over, for a given
session key. If the device is restarted, a new session key is established, and PN is reset to 1 by default.
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A:	AP	(access	point)

KCK
128

literal	string	(constant)
pseudo-random

func�on

KEK TK
128 128

PTK						(384	bits)	
pairwise	transient	key

PMKpairwise	master	key

nonceA
nonceS

MACaddrA
MACaddrS

S:	STA	(sta�on)
256

Figure 12.10: Derivation of session keys for AES-CCMP, also called a key hierarchy. PMK

is agreed between STA and AS (then sent from AS to AP), or derived from a static password
or PSK. Table 12.3 gives more information on acronyms KCK, KEK and TK.

we define PRF 384(K,A,B) = PRF(K,A,B,384) to mean calling x hmac sha1(K,A,B, i)
enough times to get 384 bits, i.e., using i = 0,1 and 2.

SESSION KEYS FOR AES-CCMP. Three 128-bit keys comprise an AES-CCMP pair-
wise transient key (PTK); transient refers to a temporal/session key for the current asso-
ciation. One key is for frame encryption, the temporal key (TK). The other two protect
messages in the four-pass handshake (page 365), as Table 12.3 notes. The PTK is gener-
ated from the pairwise master key (PMK) by the above pseudo-random function (PRF):

PT K = PRF 384(PMK,"Pairwise key expansion", A1 :: A2 :: n1 :: n2) (12.4)

The PTK bitstring is partitioned to yield three keys (KCK :: KEK :: T K), as Fig. 12.10
shows. Here A1 and A2, respectively, are the numerically lower and higher of the MAC
addresses of the STA and AP, while n1 and n2, respectively, are the lower and higher of
the 256-bit random number values nonceS, nonceA from the four-pass handshake.

REPLAY PROTECTION. AES-CCMP has an anti-replay defense based on packet num-
ber (PN). A STA keeps, for each PTK, a 48-bit unsigned (received-PN) ReplayCounter,
set to 0 when the PTK is established. A transmitting unit is expected to keep a (transmit-
ted) PNvalue for each PTK, incremented by one before sending each encrypted frame.
This allows a replay check by receivers: for each incoming frame with valid integrity, the
frame is deemed a replay (and dropped) if the PN value extracted from its CCMP header
is less than or equal to the ReplayCounter for this PTK; otherwise, the ReplayCounter
is updated by the received PN value. Thus ReplayCounter monotonically increases.

Exercise (AES-CCMP improvements over WEP). Explain how the AES-CCMP design
addresses WEP’s security failures (listed in Section 12.6); summarize in a table.

Key name Encryption Integrity Place of use

KCK (key confirmation key) X four-pass handshake
KEK (key encryption key) X four-pass handshake
TK (temporal key) X X frame data (AES-CCM)

Table 12.3: Functions of the subkeys of the pairwise transient key (PTK).
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12.8 Robust authentication, key establishment and WPA3

Wireless links introduce new risks not present in wired LANs. In light of this, an ini-
tial goal of 802.11 was to add security mechanisms to retain “wired equivalent privacy”
(WEP). This unfortunately did not turn out to be the result. We recall again what went
wrong with WEP, then follow the evolution of 802.11 security, with focus on the four-pass
handshake, group key management, and additional authentication methods.

RECAP. The WEP design implicitly relied on each frame using a different keystream.
Legitimate devices could aim for this by varying the IV—the design with per-packet IVs
appears to support devices trying to avoid keystream reuse. But IV reuse was not pre-
vented, and turned out to be impossible to avoid (for a static PSK), due to the IVs being
short; and lack of support for automated key management resulted in static PSKs. The
combination enabled a multitude of attacks (Sections 12.5–12.6). In retrospect, the de-
sign was naive and made without review by security experts—who plan for worst cases,
based on experience and respect for attackers. The issue of IV and key(stream) reuse is
related to message replay, which WEP also did not prevent. While detecting replay of
application packets is often left to higher layers, at layer 2 we now expect a design to
preclude reuse of keys across frames. This is one of many improvements delivered by the
robust network redesign (below), which includes AES-CCMP and the four-pass handshake.

TKIP. In 2001, an immediately deployable WEP replacement was urgently needed.
This constrained designs to those deliverable by software/firmware upgrade, with ongoing
reliance on RC4 (including some aspects of its key setup, based on existing RC4 hardware-
assist). The Temporal Key Integrity Protocol (TKIP) emerged as the interim solution.
TKIP’s design was complex yet understandably weak. It was deprecated by the Wi-Fi
Alliance in 2015 (although deployed devices typically linger for many years). Thus our
focus is on the longer-term AES-CCMP design (Section 12.7) that emerged alongside TKIP.

802.11 TIMELINE AND WPA. WEP, TKIP and AES-CCMP are part of the early history
of 802.11 standards (Table 12.4). A related acronym is WPA (Wi-Fi Protected Access), the
name for an 802.11 subset (including also minor variations and extensions) promoted by
an industry association called the Wi-Fi Alliance (WFA). In late 2002, due to the perceived
urgency to replace WEP, and with the redesign (802.11i) specifying TKIP and AES-CCMP

still in progress, WPA was derived from the TKIP (RC4) part of a draft 802.11i. The final
802.11i specification (with both TKIP and AES-CCMP) was largely adopted by WFA and
marketed as WPA2, supported by interoperability testing. WPA3 followed later (page 368).

MIXED ARCHITECTURES AND EVOLUTION. By the 802.11i plan,21 once all WEP

devices are retired or upgraded to TKIP, what remains to consider are devices that sup-
port (1) TKIP-only, or (2) both TKIP and AES-CCMP. A WLAN security policy could then
allow TKIP associations in the short term, in the intermediate term allow interoperabil-
ity between TKIP-only devices and newer devices capable of both TKIP and AES-CCMP,
and in the longer term require that all associations use AES-CCMP. This plan salvaged
investments in existing hardware, while moving in the longer term to a stronger design.

21This was circa 2002–2004, prior to AES-GCMP, WPA3 and other changes noted in Table 12.4.
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Specification Date Notes

802.11–1997 1997 original version with WEP and RC4 (no AS, EAP, or AES)
WPA* 2002 TKIP-based subset of draft 802.11i (no AES)
802.11i 2004 security redesign: TKIP optional, AES-CCMP required
WPA2* 2004 interop spec based on full 802.11i (AES support required)
802.11w 2009 protected management frames (PMF): integrity for selected frames
802.11–2012 2012 SAE (Simultaneous Authentication of Equals) introduced
802.11ac 2013 new options: 256-bit AES keys, AES-GCMP
802.11–2016 2016 SAE (page 368) used to derive PMK (upgrades old PSK)
WPA3* 2018† mandatory: PMF, SAE (if Personal), 192-bit (if Enterprise mode)

802.11b 1999 transmission rates up to 11 Mbps (from 1–2 Mbps in 1997)
802.11g 2003 transmission rates up to 54 Mbps (an improved 802.11a)
802.11n Wi-Fi 4 2009 150 Mbps × 4 streams maximum
802.11ac Wi-Fi 5 2013 from 433 Mbps to several Gbps (maximum 8 streams)
802.11ax Wi-Fi 6 2020 claims to approach 10 Gbps (maximum 8 streams)

Table 12.4: Selected 802.11 and Wi-Fi Protected Access (WPA) specs. Upper portion
relates to security; lower portion relates to radio transmission. TKIP, AES-CCMP and AES-
GCMP are 802.11 cipher suites for data confidentiality and integrity. Wi-Fi Alliance spec-
ifications (denoted *) promote WLAN interoperability certification (testing and branding)
for both radio standards and security features. †(v2.0, Dec 2019; see Section 12.9)

‡NONCE GENERATION. The pseudo-random function (PRF) used to derive PTK

(page 363, equation 12.4) is also used to initialize the counters for nonceS, nonceA. The
nonces are inputs to this same PTK derivation, which occurs during the four-pass hand-
shake (next). It is specified that these nonces should be randomly generated; 802.11
recommends that for RSNs (below), at device startup the nonce values be initialized using:

value = PRF 256(RandomNum,"Init Counter", LocalMACAddr :: Time) (12.5)

RandomNum is a random number produced by the local device, itself perhaps 256 bits,
depending on its cryptographic unpredictability. Time estimates current time (in Network
Time Protocol format). The other arguments are a literal string and device MAC address.

FOUR-PASS HANDSHAKE (OVERVIEW). The four-pass handshake of 802.11i (2004)
was a major step forward. It ties the 802.1X mutual authentication between STA and AS

(which establishes a pairwise master key, PMK) to a session between STA and AP, deriving
a new PTK (set of session keys) from the PMK. The exchange of fresh (random number)
nonces allows derivation of a fresh PTK by equation (12.4), intended to be distinct from
any previous association’s session keys (even if from a static PSK or PMK). The main
contents of the four messages are as follows (these so-called EAPOL-Key messages are
unencrypted unless denoted; fields beyond our interest are omitted).

m1) STA← AP: nonceA . . . . . . a fresh 256-bit random number chosen by AP

m2) STA→ AP:* nonceS, IES . . . analogous nonce from STA + security option info
m3) STA← AP:* nonceA, IEA, EKEK(GT K) . . . . . . . . . . . GTK is discussed below
m4) STA→ AP:* ACK . . . . . . *messages covered by an integrity MAC using KCK

IES, IEA are Information Element (IE) fields related to the selected security options.
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FOUR-PASS HANDSHAKE (NOTES). Observations on the handshake follow.

1. Per Fig. 12.10, the integrity MACs on messages m2–m4 demonstrate knowledge of KCK
and therefore also PMK (as well as nonceA, nonceS, and the two MAC addresses).

2. The IEs allow a cross-check with the corresponding IEs (page 343) from the original
association exchange, which is not integrity-protected. The integrity MAC here allows a
check that the earlier elements were not manipulated. The nonceA in m3 is not needed for
key derivation, but allows a sanity check that m3 belongs to this protocol run.

3. The ACK acknowledges that all checks succeeded, and that STA is ready to start authenti-
cated encryption with the new temporal key (TK). Message m1 is not integrity protected,
but if nonceA is tampered, the handshake will fail (a later integrity MAC check will fail).

4. The integrity MACs on m2–m3 not only protect the messages, but confirm knowledge
of the new, freshly generated PTK (and thus the PMK it was derived from). This also
confirms the “liveness” of the other party (i.e., that they participated in real time, since
each message incorporates data that depends on a newly generated, unpredictable nonce),
and absence of a middle-person or rogue AP (from the MAC on m3). While the STA–AS

authentication generated PMK, this provides evidence to STA that this AP is trusted by that
AS, and to the AP that this is the same STA that AS authenticated. Aside: it is for these
reasons that nonceA, nonceS should be fresh random numbers, rather than simply unique.

5. Since each party provides a nonce, neither controls the final value of PTK from equation
(12.4), and the use of MAC addresses within this equation binds PTK values to specific
devices. The PTK frame encryption key (TK) will be further varied on a per-frame basis
by additional parameters in the CCM construction (e.g., packet number).

6. ‡In m3, GTK (sent with a key identifier) is for the case where the negotiated security
options include a group key for encrypting multicast messages, as explained next.

‡GROUP KEYS AND KEYID. If multicast (including broadcast) messages from the
AP are to be encrypted, then in practice a group encryption key is defined for the WLAN,
allowing all STA devices to decrypt the same frame. To support this in AES-CCMP, beyond
the 384-bit PTK, a 128-bit session key called a group temporal key (GTK) is used, derived
from a random 256-bit AP-created group master key (GMK) as:

GT K = PRF 128(GMK,"Group key expansion",macAddrA :: nonceG) (12.6)

where nonceG is a random or pseudo-random number from the AP with address macAddrA.
The temporal key (for the group) is then (group) TK = GTK. Aside: as this TK is not
pairwise, the data integrity (origin authenticity) aspect of CCMP authenticated encryption
cannot be relied on to imply a unique source for multicast messages.

Now when the AP sends an encrypted multicast frame, it uses the CCMP header KeyID
field (2 bits) to specify to STAs which TK to use for decryption. KeyID thus distinguishes
between pairwise and group temporal keys. Allowing four choices (2 bits) enables real-
time transitions when keys (pairwise or group) are updated, e.g., current-key vs. next-key.

‡GTK KEY DISTRIBUTION. The GTK is sent to each STA in its respective four-pass
handshake, AES-encrypted using that STA’s KEK (see message m3). This GTK distri-



12.8. Robust authentication, key establishment and WPA3 367

bution process is simpler than establishing a PTK, since each STA’s existing KEK—part
of PTK—can be relied on. (Based on the PMK from each STA’s 802.1X authentication,
both STA and AP can generate the PTK upon completion of m2.) GTK is similarly up-
dated as needed, by a customized two-pass Group Key Handshake (not discussed here);
implementations may, e.g., update the GTK once an hour using this.

Exercise (Broadcast keys). In an 802.11 WLAN with all associated STA devices shar-
ing pairwise master keys with their AP, why are group encryption keys needed for broad-
cast, i.e., why not encrypt broadcast messages for each STA, using individual pairwise
keys? (Aside: independent of this, when a STA leaves a network, by convention it sends a
disassociate message, at which point the AP updates the group key.)

RSNS. The 802.11i security amendment in 2004 (Table 12.4) defined the term Robust
Security Network (RSN). Items introduced as part of this included:

1. defining an RSN association (RSNA) to be an association using the four-pass handshake,
and defining an RSN as a WLAN whose policy requires that all associations be RSNAs;

2. making CCMP support mandatory for 802.11-compliant networks (while allowing TKIP as
a non-mandatory option, and documenting WEP as a non-RSN option);

3. introducing the four-pass handshake with STA session keys derived per Fig. 12.10, tied
into the 802.1X controlled-port design, and based on a PMK from either a PSK or the
output of an 802.1X mutual authentication method;

4. providing WLAN access control via frame encryption, in that a temporal key is required in
order to inject valid encrypted frames or extract plaintext from such frames;

5. generalizing the frame header WEP bit (Fig. 12.2) to a protected bit; and
6. disallowing the Shared Key protocol as a pre-association authentication alternative.

Despite consensus that RC4-based versions of 802.11 (WEP, TKIP) should no longer be
used, fully eliminating such legacy systems is hard, even 20 years after the first attacks.

‡Exercise (Password-to-PSK mapping). Used when no external AS is involved, a PSK

is often based on a pre-configured (secret) password or passphrase. The required 256-bit
PSK is typically derived using a deterministic function, whose output is then the PMK. A
technique from 2004 recommended deriving the PSK from the SSID and user password
(8 to 63 ASCII characters) via 4096 iterations of HMAC-SHA-1. Specify the full details.
(Hint: [22, Appendix H.4], including a reference implementation in C.)

Exercise (Session keys of other shared-key users). In an AES-CCMP architecture, sup-
pose a PSK is shared among multiple users or posted in public view (shared and public).
(a) Explain how one user can compute the PTK of another; clearly indicate what informa-
tion is required (hint: this greatly simplifies the offline dictionary attack from page 359).
(b) Given this, discuss the risks of (shared and public) Wi-Fi passwords in coffee shops.

OPPORTUNISTIC WIRELESS ENCRYPTION (OWE). Free airport and hotel Wi-Fi
services often use an open AP (no encryption or authentication). OWE aims to improve
on this by encrypting traffic, with no extra user actions (but without any authentication).
The STA and AP carry out an unauthenticated DH exchange upon establishing 802.11
association (Table 12.1, page 343). The DH secret is used to derive a PMK, which is used
in the four-pass handshake triggered by the AP, establishing the session encryption keys.
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Exercise (OWE security). (a) What threats does OWE address relative to an open AP?
Consider both passive and active attacks, e.g., rogue AP. (b) Some free Wi-Fi services
are not open, but use a shared and public PSK, i.e., a communal passkey posted publicly.
Would using OWE instead help or hurt security? (Hint: [18]. Note: OWE is not part of
WPA3, but is promoted by the Wi-Fi Alliance under a separate Enhanced Open program.)

SAE (DRAGONFLY). 802.11–2012 (Table 12.4) added a core 802.11 authentica-
tion method based on a pre-shared secret: SAE (Simultaneous Authentication of Equals).
SAE first uses Dragonfly, a password-based key establishment protocol similar to SPEKE
(Chapter 4), offering forward secrecy and mitigating offline dictionary attacks (above),
which plague WPA2-personal. By Dragonfly, a STA and AP mutually authenticate, demon-
strating knowledge of the shared secret; a resulting fresh, high-entropy PMK is then used
in the four-pass handshake to derive the usual session keys. (See also Section 12.9.)

WPA3 AND HOME NETWORKS. WPA3 specifies five suites of security requirements:
two personal modes (for small or home networks using static secrets or passwords), three
enterprise modes (using 802.1X EAP methods for upper-layer authentication). These two
divisions each include a baseline WPA3only mode, and a transition mode to interoperate
with WPA2 products. The enterprise division also has a “192-bit” WPA3only mode with
longer keys (e.g., 192×2 = 384-bit elliptic curve parameters paired with AES-256). The
WPA3only-personal mode requires support of SAE and integrity-protected management
frames, while disallowing TKIP, WEP, and older PSK authentication (whereby predictably
mapping PSK to PMK then PTK is subject to dictionary attack). For home-network prod-
ucts, labels such as WPA2(AES)-personal are used to signal WPA2 excluding TKIP, and
WPA2-WPA3-transitional to allow WPA3 devices to interoperate with WPA2 (AES).

‡Exercise (Device setup, WPS and DPP). Wi-Fi Protected Setup (WPS) was promoted
in 2007 to easily share a secret (PSK) between an AP and user device (STA); it is now
deprecated. In one mode, a button-push on the AP released the PSK to the STA; another
used an 8-digit PIN. (a) Summarize the technical details of these methods and the circa-
2011 flaw in the PIN method (hint: [54]). (b) Explain known vulnerabilities in algorithms
for generating default WPA2 passwords, often on printed labels on router-APs (hint: [26]).
(c) The Device Provisioning Protocol (DPP), released in parallel with WPA3 and promoted
as Easy Connect by the Wi-Fi Alliance, replaces WPS. It aims to provision public-key
identities for Wi-Fi devices. Summarize the main technical details of DPP. (Hint: [56].)

EAP METHODS. 802.11 leaves open the choice of 802.1X authentication method
(EAP method), and a wide variety is used. Table 12.5 gives examples, some themselves
being frameworks allowing choice of inner methods. Recall the goal (Section 12.3): STA–
AS mutual authentication, resulting also in a PMK (Fig. 12.10, page 363).

METHOD CATEGORIES. EAP methods may be categorized by whether they use
(symmetric) pre-shared secrets, or credentials based on public-key cryptography; and
whether the exchange is direct or occurs after a tunnel is first set up (e.g., using TLS) to
facilitate an inner method. Such tunnels may protect static secrets from dictionary attacks
or preserve privacy of user identities. Among the most popular enterprise EAP methods
has been EAP-TLS; here only the TLS authentication handshake (Chapter 9) is used, and
mainly with mutual authentication based on certificates for both AS and client (STA), thus
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RFC no. Short title Notes

1334 [25] PAP and CHAP authentication PAP is cleartext userid-password
1661 [44] PPP (Point-to-Point Protocol) allows PAP and CHAP
1994 [45] CHAP hash of secret and challenge
2759 [60] MS-CHAPv2 CHAP variant, mutual authentication

2865 [39] RADIUS Remote Authentication Dial In User Service
2869 [38] EAP over RADIUS updated in part by RFC 3579
3579 [2] RADIUS Support for EAP see Section 12.3 herein
3748 [1] EAP (Extensible Authen. Prot. ) includes EAP-GTC (generic token card)
5080 [33] RADIUS implementation issues suggests mitigations

4962 [20] key management best practices tied in by RFC 5247 abstract
5247 [3] EAP key management framework specifies EAP key hierarchy

draft [37] PEAP (Protected EAP) TLS tunnel method (Microsoft)
4851 [8] EAP-FAST tunnel, may be based on pre-shared key
4764 [5] EAP-PSK AES-based challenge-response
5216 [43] EAP-TLS updates original RFC 2716
5281 [14] EAP-TTLS TLS tunnel secures other methods
6124 [42] EAP-EKE specified after expiry of EKE patent
8146 [17] EAP-pwd (with salting) based on the Dragonfly key exchange

Table 12.5: Selected early RFCs on 802.11 security and EAP. An RFC (Request For Com-
ments) is an official document under the Internet Society. A standards-track RFC must
be endorsed by the Internet Engineering Task Force (IETF); non-endorsed independent
submissions may also be published, and categorized as Informational or Experimental.

requiring management of client-side certificates. EAP methods that avoid client-side cer-
tificates are generally simpler to deploy, but may be less resistant to attacks.

12.9 ‡End notes and further reading

For a comprehensive introduction to 802.11 networks and 802.11i security, WEP, its flaws,
and how it differs from WPA/ WPA2, see Edney [11]; Lehembre [24] gives an overview.
Mishra [31] gives a clear, informed summary of pre-WPA 802.11 security issues, including
session hijacking and rogue APs; Borisov [7] explains fundamental cryptographic design
flaws. For war driving see Skoudis [46]. For DoS attacks on 802.11, including deauthen-
tication and disassociation, see Bellardo [4]. For the FMS key recovery attack on WEP, see
Fluhrer [13]; Stubblefield’s implementation [48] verified its viability and improved some
details. More efficient approaches followed, e.g., by Tews [49]; Bittau [6] found further
serious attacks on WEP. On the unsuitability of encrypted CRCs for data authentication,
see Menezes [30, p.363] (cf. Stubblebine [47]). For automated recovery of plaintext when
Vernam keystreams are reused (or from the XOR of two plaintexts), see Mason [28] (also
Dawson [10]). McEliece [29] clearly explains computational aspects of finite fields.

The Wi-Fi Alliance specifies precise requirements for WPA3 compliance [57]. For
802.11 standards, see Table 12.4; Chapter 2 gives references on the Galois Counter Mode
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Protocol (AES-GCMP) added in 802.11ac. NIST offers guidance on RSNs and 802.11i
[34], Bluetooth [35], and mobile device management [36]. IEEE 802.1X [23] specifies
port-based network access control. Youm [59] surveys EAP methods (cf. Table 12.5).

RADIUS and EAP were designed for use with the Point-to-Point Protocol (PPP) [44].
In early Internet service over phone lines, a user’s computer modem dialed into the local
modem pool of an ISP. PPP converted the phone line to a bytestream channel and then
relayed bytes. PPP’s link-layer services are not used by 802.11, but its authentication ar-
chitecture matches. In PPP, a password was originally sent plaintext (PAP [25]) or used
in the challenge-response CHAP [45] protocol. This relied on the physical security of
telephone wires—from which accessing and extracting data is harder than for 802.11 ra-
dio. EAP [1] replaced PAP and CHAP by a framework allowing choice of methods (and
thus evolution). RADIUS (Remote Authentication Dial In User Service) relayed data be-
tween local modem pools and a centralized (RADIUS) server for verification; this avoided
replicating secrets across numerous local databases. RADIUS evolved over time, but its
historical name remains along with its functionality: relaying data between service access
points and a central authentication server. Diameter [12] is an Authentication, Authoriza-
tion and Accounting (AAA) protocol intended to replace RADIUS. For analysis of the
variants MS-CHAP and MS-CHAPv2 [60] of CHAP authentication, see Schneier [40].

The eduroam network (Education Roaming) [58] is an example of using 802.1X-based
authentication and RADIUS servers; member institutions provide WLAN access via their
local networks, to visiting users from other eduroam-participating institutions. Regarding
the practice of MAC address randomization to protect privacy, see Vanhoef [51].

SAE was first advanced as a password-authenticated key exchange protocol (Chap-
ter 4) for peer-to-peer authentication in mesh networks under 802.11s (July 2011); it was
renamed Dragonfly and has many variants (e.g., [15, 16]), one used in EAP-pwd [19].
For side-channel attacks on Dragonfly (as used per 802.11’s SAE and EAP-pwd), see
the Dragonblood [53] work. See also Vanhoef’s attacks [52] on WPA2’s four-pass hand-
shake that reinstall temporal keys and reset packet numbers such that nonces are reused
(defeating anti-replay defenses). For formal analysis of WPA2, see Cremers [9].

As a grammatical note to end with, we write “a STA” (orally: a STAY, for station)
rather than “an STA” (an ESS-TEE-AY), as we prefer the oral efficiency of the former.
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