
Computer Security and the Internet: Tools and Jewels (2e)

Chapter 13

Bitcoin, Blockchains and Ethereum

13.1 Bitcoin overview . 376
13.2 Transaction types and fields .379
13.3 ‡Bitcoin script execution (signature validation) . 382
13.4 Block structure, Merkle trees and the blockchain . 384
13.5 Mining of blocks, block preparation and hashing targets 386
13.6 Building the blockchain, validation, and full nodes . 391
13.7 ‡Simple payment verification, user wallets, private keys 395
13.8 ‡Ethereum and smart contracts . 399
13.9 ‡End notes and further reading . 405
References . 407

The official version of this book is available at
https://www.springer.com/gp/book/9783030834104

ISBN: 978-3-030-83410-4 (hardcopy), 978-3-030-83411-1 (eBook)

Copyright c©2020-2022 Paul C. van Oorschot. Under publishing license to Springer.

For personal use only.

This author-created, self-archived copy is from the author’s web page.

Reposting, or any form of redistribution without permission, is strictly prohibited.

version: 15 Oct 2021

https://www.springer.com/gp/book/9783030834104

Chapter 13

Bitcoin, Blockchains and Ethereum

Bitcoin is a communication protocol and peer-based system supporting transfer of virtual
currency units denominated in bitcoin (BTC). It uses hash functions and digital signatures
to implement money—but distinct from a line of earlier proposals, it does not rely on cen-
tral trusted authorities. Money is moved between parties by transactions, its ownership
dictated by transaction records, public keys and control of matching private keys. System
controls prevent fraudulent currency duplication. Rules (controlled by community con-
sensus and subject to change) limit overall currency production; to experts viewing that
as a requirement for legitimate currencies, this justifies calling Bitcoin a cryptocurrency.

This chapter explains how Bitcoin works, and its underlying blockchain technology,
which delivers publically verifiable, immutable records whose integrity relies on neither
trusted central parties nor secret keys. It also gives an overview of Ethereum, extending
Bitcoin to a decentralized computing platform supporting what are called smart contracts.
End notes provide references to explore underlying principles and further details.

13.1 Bitcoin overview

The basic idea of Bitcoin is as follows. Assume (without further explanation) the ex-
istence of a transaction statement (digital string), by which one party is recognized as
the owner of some amount of virtual money. The owner can transfer this value to a new
owner by digitally signing a second transaction statement that conveys this intention and
includes the signature public key of the new owner (intended receiver), and a hash value
that uniquely identifies the original statement (implying the amount to transfer). The sec-
ond owner can then transfer the value to a third owner by digitally signing a third statement
that includes the public key of the third owner (as intended receiver), and a hash value of
the second statement (by which the second owner came to own the virtual coin).1 Thus a
coin is represented by a chain of signatures over data strings, and its owner is determined
by signatures and public keys. We now consider how this idea is extended into a practical
system that reduces the risks of cheating and theft.

1Here coin is a synonym for money, but may mislead readers—as virtual coins may be split or merged.

376

13.1. Bitcoin overview 377

genesis	block	 block	1	 block	i-1	 block	i	(newest)	

On	dereferencing,	check:	(hash	of	block	i-1)	=	(hash-value	within	hashlink	i)

●N
U
LL
	

HEAD	●● ●

Figure 13.1: A blockchain of block headers. A hashlink (Fig. 13.2) includes a hash of
the referenced item’s content. The genesis block serves as a trust sink, an endpoint dual
of trust anchors (Chapter 8). Later figures show that blocks also incorporate transactions.

PUBLICLY VERIFIABLE APPEND-ONLY LEDGER. Bitcoin uses a special type of
linked list, called a blockchain. Each item or block in the list represents a set of transac-
tions, and also points to its predecessor (Fig. 13.1). As we will see, the blockchain and
supporting data structures provide a continually updated log of transactions that is:

• publicly verifiable (replicated and open for public view; no encryption is used; trans-
actions can be verified to be unaltered and valid according to system-defined rules);
• append-only (no parts can be erased; all past transactions remain intact); and
• a ledger (with offsetting debits and credits, or inputs and outputs in Bitcoin terms).

The ledger dictates who owns the money, i.e., who has the authority to claim (spend,
transfer) coins. The system records all valid transactions over time. It relies on peer nodes
(page 394) that exchange information in a distributed network. Coded into peer node
software is a small set of public trusted data, such as the first (genesis) block in Fig. 13.1;
nodes can then independently confirm the validity of transactions, as will be explained.

LINKED LISTS. A linked list is a basic data structure used to traverse a sequence of
items. Each item contains data plus a link to a next item. The link is implemented using
either a pointer (memory address) or an index into a table. The end of the list is denoted
by a reserved value (e.g., NULL); the start is accessed by a head link (HEAD).

HASHLINKS. While typical linked lists point forward to the newest item, a blockchain
points backward in time, and uses a special type of link called a hashlink. Conceptually,
each hashlink in a blockchain has two fields (Fig. 13.2):
1) a reference to a target item; and
2) the hash value of the target item itself (using a known hash function).
The hash input includes the referenced item’s own hashlink. On dereferencing a hashlink,
an integrity check is done: the retrieved item is hashed, and tested for equality with the
hashlink’s hash field (Fig. 13.1), as part of a built-in mechanism to detect whether the
referenced item has been altered. To implement hashlinks efficiently, a supporting data
structure is often used, e.g., list items are stored in a table indexed by their hash value.

ADDRESSES FROM PUBLIC KEYS. No owner name is attached to physical cash.
This provides a degree of untraceability (albeit imperfect—serial numbers can be used to

pointer	or	reference	to	item
● hash	value	(cryptographic	hash)

of	item	pointed	to

symbol	deno�ng	hashlink	data	structure

Figure 13.2: Hashlink data structure. In practice, the hash value itself serves as reference.

378 Chapter 13. Bitcoin, Blockchains and Ethereum

trace paper money). Many cryptocurrency designs strive for similar privacy-friendliness.
Rather than associate coins with explicit user identities, Bitcoin uses addresses derived
from public keys. The basic scheme for deriving an address from K = (x,y), a represen-
tation of an ECDSA public key (page 397), is as follows; “::” denotes concatenation.

mainPart = RIPEMD160(SHA256(K)) [two hash functions are used]

checksum = SHA256(SHA256(version :: mainPart)) [version: 1-byte format code]

address = version :: mainPart :: (first 32 bits of checksum)
The 32-bit checksum can detect all but 1 in 232 benign (e.g., typing) errors. Addresses
are 26–35 bytes (depending on version and format) after base58 encoding (next), and are
made available selectively to other parties, e.g., by email, text message, or 2D barcode.

‡ENCODING OF BINARY STRINGS. The strings that comprise transactions include
binary values (e.g., signatures, public keys, hashes). For display in human-readable form,
these strings may be encoded as alphanumeric or hexadecimal characters. One encoding,
called base58, uses 58 printable characters: 26 uppercase, 26 lowercase, and 10 digits,
excluding 4 ambiguous characters: uppercase “I” and “O”, lowercase “l”, and the digit 0.

SINGLE-USE ADDRESSES. At a glance, Bitcoin addresses hide user identities, pro-
viding anonymity. However, as they are in essence pseudonyms, reusing one address
across many transactions allows user actions to be linked; recall, all transactions are in
a public ledger. Such linkability does not directly expose identities, but when combined
with information beyond formal transaction details, anonymity might nonetheless be com-
promised. In practice, this motivates per-transaction addresses, e.g., users are encour-
aged to use software that creates a new Bitcoin address (as receiver) for each incoming
transaction—implying a new key pair.

COIN OWNERS REPRESENTED BY UTXOS. The simplest Bitcoin transaction trans-
fers bitcoin ownership from one address (providing bitcoin as input), to another (receiving
bitcoin as transaction output). The new output is unspent (available to spend); the input
becomes spent as a result of the transaction. Transaction details allow unspent transaction
outputs (UTXOs) to be associated with addresses. The blockchain itself neither explicitly
tracks which user is associated with which addresses, nor keeps per-user UTXO balances;
data structures external to the blockchain are used (by Bitcoin nodes) to keep track of
UTXOs, i.e., which outputs have not yet been spent. Fig. 13.3 provides a model.

tx	2

tx	4
.	.	.

block	hdr
i

TXOs Bob
Doris
Alice

Charlie

implied
UTXO	owner*

tx	1

tx	3

tx	2237
unspent
spent

Emma
.

block hdr
i

tx	3

tx	2237

tx	1
tx	2

tx	4

a)	Block	
					when
					created

b)	Later	
					�me

Bob

Alice

Charlie
.	.	.

Figure 13.3: Unspent transaction outputs (UTXOs). Blocks added to the blockchain
contain transaction outputs (TXOs), which are consumed as input by later transactions.
*UTXOs are not directly associated with users, but owners are implied by details in each
transaction (e.g., addresses derived from public keys). Section 13.2 explains transactions.

13.2. Transaction types and fields 379

WALLETS. Use of per-transaction addresses and corresponding new key pairs (above)
is supported by wallet software (Section 13.7), simplifying the perspective presented to
users. Wallets keep track of all addresses associated with a user—and importantly, the cor-
responding private keys needed to claim access to coins sent to those addresses. Wallets
use these to control and manage a user’s coins, tracking all transaction outputs available
to the user-owned addresses. This is essential, because no central database run by any
official organization explicitly records Bitcoin accounts (owners) or their balances.

DOUBLE SPENDING AND TRANSACTION VALIDITY. What stops an electronic coin
owner from double spending, that is, transferring the same coin to two different parties?
Early electronic cash systems relied on a central authority to track who owns each coin
at any instant. In contrast, Bitcoin avoids a central authority for this, instead relying on a
novel consensus-based design (Section 13.6) that incentivizes and rewards cooperation.

VALIDATING TRANSACTIONS. What determines the validity of a Bitcoin transac-
tion? We will find (Section 13.6) a checklist of items including: verifying cryptographic
signatures, checking that claimed transaction outputs have not yet been spent (i.e., track-
ing UTXOs, which includes taking into account the time order of transactions), and con-
firming that transactions have been accepted by Bitcoin’s consensus system.

SIMPLIFIED OVERVIEW. Transactions originate from user wallets, and are injected
into and shared by a peer-to-peer network of Bitcoin nodes. These provide information
to miners, which package sets of transactions into blocks (for efficiency), and compete to
have their blocks added into the blockchain. The remainder of the chapter pursues details.

13.2 Transaction types and fields

Transactions are grouped into blocks (as detailed in Section 13.4), which are then linked
to form the blockchain of Fig. 13.1. Here we consider the structure of individual Bitcoin
transactions. For concreteness, we show representative data structures, reflecting rela-
tively early implementations. While details will change over time (and already have),2

this does not impact our main goal: introducing principal ideas and underlying concepts.
RELATING INPUTS TO OUTPUTS. A transaction transfers bitcoin from a sender

(who owns the input, prior to the transaction) to a receiver (who will receive the input, as
it turns into output). An input is itself the output of a prior transaction (Fig.13.4).

tx	123input0.0 output0.1 input1.0 tx	4567

earlier	transac�on current	transac�on
output1.0	(owned	by	Alice)	

output0.0

output0.2 input1.1 output1.1	(owned	by	Bob)	

Figure 13.4: Model of how transaction inputs transition to outputs (becoming new inputs).

REGULAR TRANSACTION (DATA STRUCTURE). Table 13.1 shows the fields in a
transaction with one input and one output. In general, there may be multiple inputs and
outputs. A transaction’s intended output value is explicitly stated (btc-value). The input
value is implied, by reference to an earlier transaction (prev-out-txID). The total output

2For example, SegWit (BIP141, Section 13.9) moves unlocking scripts to the end of a transaction.

380 Chapter 13. Bitcoin, Blockchains and Ethereum

Section Field Name Description

top txID† (implicit) hash of rest of transaction; effectively, a serial no.
version protocol version (dictates block format and fields)
n-in number of inputs in this transaction
n-out number of outputs (indexed as: 0, 1, ...)
lock-time if 0, allows transaction to be included without delay

input for each input, include:
prev-out-txID txID of earlier transaction whose output is to be used
prev-out-index which output of that earlier transaction (0 means first)
scriptSig an unlocking script (e.g., with signature to claim ownership)

output for each output, include:
out-index (implicit) used as reference when this output is later spent
btc-value bitcoin value intended for receiver
scriptPubKey a locking script (e.g., with receiver’s hashed public key)

Table 13.1: Regular transaction (representative Bitcoin data structure). †txID is not an
explicit field, but is computed by software on retrieving a transaction (and also used as an
index to retrieve it). The other fields in the top section can be skipped over for now.

value must not exceed the total input (lest money be arbitrarily created). The hash of a
transaction serves as its transaction ID (txID), and is how transactions are referenced.
The input section’s field prev-out-txID is the hash of a previous transaction.

Example (Scripts and their semantics). The following example transaction presents
the most common script type.3 It has an input section unlocking script (field scriptSig),
and an output section locking script (scriptPubKey):

scriptSig : <sig1><pubkey1> (13.1)

scriptPubKey : OPDUP OPHASH160 <addr1> OPEQUALVERIFY OPCHECKSIG (13.2)

The scriptSig field contains the sender’s signature over selected transaction data, and a
corresponding public key (it will be compared to a key from an earlier transaction); as Fig.
13.4 shows, a transaction’s input is drawn from the output section of an earlier transaction
(we’ll give more details soon). The scriptPubKey field includes the receiver address (plus
items noted shortly). The semantic meaning of this pair of scripts is:

By signature <sig1>, related to <pubkey1>, I claim (unlock) an output value
of an earlier transaction, and transfer the stated amount to a receiver whose
public-key hash is <addr1>. The receiver, to later claim this new output,
must produce a signature that is valid relative to this same public-key hash.

The strange-looking opcodes (operation codes) in (13.2) are instructions that will be exe-
cuted within the script processing part of transaction validation (Section 13.3).

3‡This script has pattern type Pay-to-Public-Key-Hash (P2PKH). It is more compact than and replaced
older Pay-to-Public-Key (P2PK) scripts, as hashes are shorter than public keys themselves. P2PKH also
conceals the payee public key until used to claim an output. See also Pay-to-Script-Hash (P2SH), page 383.

13.2. Transaction types and fields 381

Section Field Name Description

top → same fields as regular transaction (Table 13.1)

input prev-out-txID 0x0000... (32 zero bytes; no prior output claimed)
prev-out-index 0xFFFFFFFF
coinbase unlocking script, also contains field for blockheight

output → same fields as regular tx; miner itself is the receiver;
btc-value = block reward per Equation (13.3)

Table 13.2: Coinbase transaction (data structure) contrasted with regular transaction.

‡LOCK TIME. A lock-time field value d implies a block number (height) if d < 5
million, otherwise a Unix time in seconds. This delays a transaction if needed to ensure it
appears only in a block of height > d or with timestamp > d. If d = 0, there is no effect.

‡Exercise (Lock time). Look up possible reasons for using a non-zero lock time.
(Hint: this can allow a payer to change their mind, or make conditional payments.)

COINBASE TRANSACTION. Table 13.2 outlines the data structure for a special type
of transaction, the coinbase transaction. Rather than consume output from an earlier
transaction, it creates (mints) units of currency as part of a block reward, specified in
equation (13.3). The reward value is conveyed using a btc-value field, as found also
in Table 13.1. The reward is for solving a puzzle task that requires a huge number of
computational steps, called a proof of work within block mining (Section 13.5). The entity
(miner) completing this task specifies who the reward goes to (e.g., its own address).
As a coinbase transaction claims no previous outputs, its input fields prev-out-txID
and prev-out-index are given special values (Table 13.2). A coinbase field plays the
role of the usual scriptSig field (unlocking script) of regular transactions, and has a
blockheight field set during mining (page 387). The coinbase transaction is listed as a
block’s first transaction. The process for recognizing and rewarding entities for generating
blocks is part of Bitcoin’s consensus mechanism (Section 13.6), which over the long term
rewards miners based on their computational power.

BLOCK REWARD AND CHANGE. A transaction consumes the sum of its inputs. An
entity authorizing a transaction that pays out to other receivers less than this sum, may
give itself change by specifying an extra output to an address of its own. Any excess of
inputs over specified outputs serves as a transaction fee (page 388). The sum of all fees is
claimable by the block miner as part of the block reward in the coinbase transaction:

block reward = block subsidy+ transaction fees (13.3)

The block subsidy started at 50 bitcoin in 2009. It is halved every 210,000 blocks (this
works out to be about every four years); it became 6.25 bitcoin in May 2020. This is
part of a ruleset limiting total currency units to 21 million bitcoin; at the current target
average of one block every 10 minutes, the last bitcoin units will be minted in the year
2140, having value 1 satoshi = 10−8 BTC = 0.00000001 BTC (the smallest bitcoin unit).
This is 1 one-hundred-millionth of a bitcoin, i.e., 1 BTC = 100 million satoshis.

382 Chapter 13. Bitcoin, Blockchains and Ethereum

13.3 ‡Bitcoin script execution (signature validation)

We have seen that Bitcoin transactions contain scripts. Here we work through an example
to explain how these are one component used to check the validity of transactions.

STACK-BASED MACHINE MODEL. Bitcoin scripts process strings of tokens using
an efficient, well-known stack-based computational model. (Loops are not supported;
running time is bounded by the script size.) The standard approach is as follows. If the
next token is a binary operator: perform the operation, consuming as operands the top
two items on the stack (then place the result back on the stack, i.e., PUSH it). If the next
token is a unary operator: perform the operation, consuming the top stack item (PUSH the
result). If the next token is an operand (not an operator): PUSH it onto the top of the stack.

EVALUATING INPUT-OUTPUT SCRIPTS. For a transaction to be valid, all of its
execution scripts must evaluate to TRUE (i.e., with final value TRUE atop the stack, and no
error exceptions).4 More specifically: for each output script value claimed from a previous
unspent transaction, an input script must be provided that makes the joined script TRUE,
as now explained. An execution script is the concatenation of two pieces identified in the
input section of the current transaction. Consider the pieces:

script1 = <sig1> <pubkey1>

script0 = OPDUP OPHASH160 <addr0> OPEQUALVERIFY OPCHECKSIG

script1 is from our earlier scriptSig field (page 380); script0 is from the scriptPubKey of
a previous transaction output identified by the prev-out-txID, prev-out-index fields
in the current transaction (thus denoted <addr0>, distinct from <addr1> on page 380).
Semantically, signature <sig1> claims the right to redeem a coin; <pubkey1> is provided
to validate this claim; and <addr0> is an address (coin owner) from the earlier transac-
tion. The Bitcoin opcodes (operation codes) used below have these meanings: OPDUP

(duplicate the top item on the stack), OPHASH160 (derive an address from a public key),
OPEQUALVERIFY (test whether two values are equal), OPCHECKSIG (verify a digital sig-
nature). The example script execution (below) will test two main things:

a) that the signature verifies mathematically, using <pubkey1>; and

b) the hash of <pubkey1> matches that of the key for the coin in the old transaction.
This ensures that the sender in the new transaction owns the coin being spent (has access
to the private key). The comparison of public keys involves checking that the (old) re-
ceiver address from script0 agrees with the address newly derived from the public key in
script1—in which case the latter is safe to use for signature verification. We next step
through how Bitcoin script engines execute these checks.

Example (Script execution). Scripts are evaluated linearly in one pass as postfix ex-
pressions on a stack-based machine (Table 13.3). It processes the 7-token sequence
<sig1> <pubkey1> OPDUP OPHASH160 <addr0> OPEQUALVERIFY OPCHECKSIG

from the concatenation script1::script0 of our scripts above by the following steps (K2A

denotes hashing, to convey the semantics of deriving Bitcoin addresses from public keys):

4Script engine rules also treat early exit as failure (ruling out tactics such as: push TRUE then exit).

13.3. ‡Bitcoin script execution (signature validation) 383

1. PUSH <sig1>

2. PUSH <pubkey1>

3. duplicate the operand currently on top of the stack

4. POP the stack’s top item into opnd; compute K2A(opnd); PUSH result onto stack

5. PUSH <addr0>

6. POP top two operands, compare them, if unequal then (PUSH FALSE, then EXIT)

7. POP into opnd1, POP into opnd2, then test whether opnd1 (public key) confirms opnd2
(signature) to be a valid signature. The signature usually covers5 fields (Table 13.1)
from the new transaction (prev-out-txID, prev-out-index, btc-value, scriptPubKey,
lock-time) and the previous transaction (scriptPubKey corresponding to script0, iden-
tified by these prev-out fields). For a valid signature PUSH TRUE, else PUSH FALSE.

addr0

pubkey1 K2A(pubkey1) K2A(pubkey1)
pubkey1 pubkey1 pubkey1 pubkey1 pubkey1

sig1 sig1 sig1 sig1 sig1 sig1 TRUE

1 2 3 4 5 6 7
Table 13.3: Stack frames after each of the above seven script execution steps.

Script validation is carried out by various entities, including miners before selecting any
transaction for a new block (Section 13.5), and payee software before acknowledging
receipt. The above opcodes are a small subset of those possible in Bitcoin scripts, and
some—such as OPCHECKSIG in step 7—are elaborately tailored to specific data structures.

WRITING ARBITRARY DATA TO THE BLOCKCHAIN. Bitcoin’s success has led to
unrelated applications using its blockchain to store and publicly timestamp data, e.g., by
creating transactions that write non-Bitcoin data into address fields with no intention of
coin transfer.6 This results in unspent transactions being stored forever (in RAM or disk
memory) by Bitcoin nodes that track UTXOs, wasting resources (transmission, storage,
CPU cycles) while advancing no Bitcoin goals. In response, Bitcoin officially now allows
(although some used to discourage it) the insertion of arbitrary data (at the time of writing,
it is often 40 bytes, but up to 83) after the data-carrying script opcode OPRETURN. Scripts
including OPRETURN by definition evaluate to FALSE, and their transactions are called
provably unspendable. As a key point: Bitcoin nodes internally maintain UTXO sets
(indexed by txID for efficiency), and unspendable transactions are removed from these.

Exercise (Zero-value outputs). Given that OPRETURN is supported, a possible mining
policy is to include (in new blocks) transactions with zero-value outputs only if they have
OPRETURN scripts. Explain why this might be considered a reasonable policy.

P2SH. Pay-to-Script-Hash (P2SH) is a powerful alternative to P2PKH scripts (page
380). When a receiver provides a P2SH address to a payer, the payer uses it as a regular

5Appended to each signature is a SIGHASH byte code specifying which fields the signature covers.
6As such data-encoding addresses are not the hash of a public key or script, the TXOs are not spendable.

384 Chapter 13. Bitcoin, Blockchains and Ethereum

address. To redeem the payment, the receiver must produce an unlocking script that:
1) hashes to the specified P2SH address (possibly not even involving signatures); and
2) evaluates to TRUE when combined with the locking script.
This allows complex retrieval conditions, e.g., requiring multiple signatures, while iso-
lating the script complexity from both the payer and the blockchain until payments are
claimed (with scripts represented on the blockchain by their hash). Had P2SH scripts
been in Bitcoin’s original design, P2PKH (and P2PK, which it replaced) would not have
been needed. (As a side point, the design of P2SH itself would also have been simpler.)

Exercise (P2SH). Transactions are redeemed by combining unlocking and locking
scripts. With a P2SH address, the locking script becomes the redeem script (whose hash
is the P2SH address), which becomes part of the unlocking script, and the overall trans-
action locking script becomes simpler (shorter). (a) Give an example of a Bitcoin locking
script using OPCHECKMULTISIG, that requires at least two signatures, and a correspond-
ing unlocking script. (b) Using a P2SH address, give a corresponding set of: redeem
script, locking script, and unlocking script. (c) List and explain the advantages of using
the P2SH version. (Hint: [1, pp.132–135].)

13.4 Block structure, Merkle trees and the blockchain

Here we describe the fields within blocks, including lists of transactions bundled into
them. Blocks are back-linked to form the blockchain. First, it helps to understand Merkle
hash trees, a data structure used here to efficiently, securely bind transactions into blocks.

MERKLE TREES. To construct a Merkle hash tree of transactions for a specific block,
the transactions are first given a fixed order by a block miner (Section 13.5). The txIDs
(Table 13.1) of these ordered transactions serve as a tree’s leaf nodes (Fig. 13.5, level 3).
The leaf nodes are paired, and the concatenation of each pair’s values is hashed. (For
missing items on the right side of an incomplete tree, any singleton item is concatenated
to itself.) The resulting hashes produce level 2 entries, which are likewise paired and
concatenated, and so on. The resulting final hash value is called the Merkle root.

BLOCK AS DATA STRUCTURE WITH TRANSACTIONS. A Bitcoin block has two
main parts (Table 13.4): a block header, and an ordered set of detailed transactions each
of length typically 250 to 1000 bytes. The merkle-root field in the header serves to

level	0

txID-1 txID-2 txID-3 txID-4 txID-5 txID-6 txID-7 txID-8

H1.2 H3.4 H5.6 H7.8

H1.4

H1.8

H5.8level	1

level	2

level	3

Merkle
root

Figure 13.5: Merkle tree of transaction hashes (hash tree, authentication tree). Each node
holds a 32-byte hash value. The leaf nodes are the hashes of respective transactions.

13.4. Block structure, Merkle trees and the blockchain 385

Block Part (bytes) Field Name Description

top (4) block-size number of bytes, excluding this field

block header (80)
(4) version protocol version (dictates block format)
(32) prev-block-hash hash of previous block’s block header
(32) merkle-root hash from Merkle tree of this block’s txs
(4) timestamp approx. Unix time block hashing is done
(4) mining-bound compact format of hashing target (page 389)
(4) mining-nonce modified in trials to satisfy hashing target

transaction list
(varies) tx-count number of transactions in this block
(varies) tx[0] coinbase transaction (bytestring)
(varies) tx[1] regular transaction number 1 (bytestring)
(varies) tx[2] regular transaction number 2 (bytestring)

... note: tx order affects merkle-root value
(varies) tx[n-1] last regular transaction (bytestring)

Table 13.4: Block (data structure) with transactions. Block-related data commonly stored
externally to a block itself includes the hash of the block’s header, and the block number
(called height). Unix time corresponds to the number of seconds since January 1, 1970.

incorporate the entire ordered list of transactions into the header; it commits7 the header
to precisely these (ordered) transactions, down to their bit-level representation. The header
field prev-block-hash identifies the previous block in the chain, and is a hashlink (page
377) specifying the hash of that previous block’s header. The hash of its block header
is used to uniquely identify each block; this is based on the negligible probability of
two randomly selected blocks having the same 256-bit header hash (i.e., 1/2256 ≈ 0 in
practice). Because merkle-root is included, the hash of a block header provides a unique
fingerprint for not only the block header, but for the full set of transactions in the block.

BLOCKCHAIN OF BLOCK HEADERS. The Bitcoin system is engineered such that
a new block is produced roughly every ten minutes. In practice, each block typically
holds 1000 to 2500 transactions. As discussed, a block header’s Merkle root incorporates
that block’s transactions, while each new block’s hashlink points back to the most recent
block before it, all the way back to the original genesis block. This orders transactions
both within and across blocks. The result is the blockchain: a back-linked list of blocks
ordering and integrating all transactions in time, made available as a public ledger (Fig.
13.6). While the blockchain is a linked list of block headers, it effectively also links all
transactions by virtue of the Merkle root fields. The combined structure of hashlinks and
Merkle tree roots allows integrity verification of all transactions in the ledger. Again, this
relies on the collision resistance property of cryptographic hash functions, not secret keys.

7Assuming the hash function used is collision resistant (Chapter 2), it can be proven that changing even
a single bit in any transaction would, with overwhelming probability, change that transaction’s txID, which
would change the merkle-root value, which would change the hash of the block header (which a hashlink
verifies). In this way, the merkle-root value binds (commits) the block header to a precise set of transactions.

386 Chapter 13. Bitcoin, Blockchains and Ethereum

tx	1

genesis	block	

hash	to	a	Merkle	tree	root,	then	store	that	into	block	header

tx	1
tx	2
tx	3
tx	4
.	.	.
tx	2237

block	1	 block	2	

block	hdr

tx	1
tx	2

tx	865
.	.	.

block	i	

tx	1
tx	2

tx	1583
.	.	.

block	i+k	

tx	1
tx	2

tx	1425
.	.	.

hashlink	
value	of	
Merkle	root

block	hdr block	hdr block	hdr
N
U
LL
	

Figure 13.6: The full blockchain. A block header’s hashlink (Fig. 13.1) holds the hash of
the block header pointed to, allowing verification of the integrity of the pointed-to block.
The genesis block (hard-coded into nodes) serves to validate the final integrity check.

HOW DATA INTEGRITY IS CHECKED. Verifying data integrity of a given blockchain
requires holding a reference to the current head block, and a trusted genesis block. Starting
from the head, as each block’s prev-block-hash field is dereferenced to get the preced-
ing block, this hashlink’s hash field is compared to the hash of that previous block’s header
(hashed after retrieval). In a full blockchain check, this process ends with a match against
the hard-coded genesis block, validation failing if any integrity check fails along the way.
As the blockchain is a chain of block headers, this process detects modification of any
block header fields, including merkle-root fields. Note, however, that this does not it-
self directly verify integrity of individual transactions, or that a given transaction is part
of a given block—that requires recomputing a Merkle root value, or a separate process
called Merkle path authentication as explained later in Section 13.7.

ADDITIONAL ISSUES. We note here two related issues. (1) Independent of integrity
checks, an attacker aiming to inject false transactions (bitcoin transfers) must also arrange
valid corresponding transaction scripts, with valid digital signatures. (2) Can attackers
cause Bitcoin nodes to accept a false head block? This threat relates to how Bitcoin
consensus emerges in accepting new blocks, and what it means for a block to be “on the
blockchain”. Section 13.6 pursues these important questions.

13.5 Mining of blocks, block preparation and hashing targets

The next two sections consider the process of preparing blocks, and how they are selected
for inclusion on the blockchain. A simplified overview sets the context (cf. page 379).

MINING AND BLOCK PREPARATION (OVERVIEW). Bitcoin user transactions are
submitted to a peer-to-peer network for packaging into blocks by miners, who compete
in a race to construct candidate blocks that meet eligibility rules for inclusion in the
blockchain. Block construction requires preparing block headers, after first selecting a
set of transactions (needed to compute a Merkle root) from a larger available set that
miners have collected in memory pools. One rule requires completing a computational
task (puzzle), which on average rewards miners in proportion to their effort invested. The
task is executed by a search loop (which updates a counter input or nonce), seeking a
hash output with numerical value below a mining bound. This bound is periodically ad-

13.5. Mining of blocks, block preparation and hashing targets 387

justed to control the block production rate. Overall, this bizarre-sounding process results
in consensus-based decisions on which next block gets into the blockchain, with a novel
incentive mechanism driving behavior aligned with system goals. Details are next.

BLOCK MINING PSEUDOCODE. A simplified mining process overview is as follows
(review Table 13.2 for coinbase transaction fields).

1 /* Illustrative block mining pseudocode. Here r denotes the block header */
2 k := 1 + (blockheight of current top block) /* k is target block height
3 boundB := hashing target from mining bound /* recalibrated every 2 weeks
4 prepareRegularTxs() /* select + finalize regular txs for this block
5 prepareCoinbaseTx(k) /* set locking script; coinbase.blockheight := k
6 r := prepareBlockHdr() /* compute merkle-root then set up header fields
7 LOOP /* timestamp doubles as second nonce, outer loop
8 { r.timestamp := getTime() /* update (approx. Unix time of hashing)
9 r.nonce := 0 /* primary mining nonce, indexes inner loop

10 LOOP{ /* outer loop expands search space of inner
11 trialHash := h(h(r)) /* h is SHA256; hash the entire block header r
12 IF(trialHash <= boundB)THEN (quit both loops) /* joy, block is valid
13 r.nonce := r.nonce + 1 /* updating nonce changes header being hashed
14 }UNTIL(r.nonce = 2ˆ32) /* inner loop nonce is 32 bits
15 }

Both loops are exited on finding a satisfying nonce (success, line 12), or on an interrupting
announcement that a competing miner has found a valid block at the same block height.8

The inner loop increments mining-nonce in the block header (line 13). The outer loop
updates the timestamp (line 8), which also serves as a second-level nonce—note that
when the inner loop repeats starting from 0, the timestamp field ensures an altered header.
Mining and validation of a block header r use the SHA256 hash function (SHA-2 family,
Chapter 2), with 256-bit hash values, and nested use as follows: SHA256(SHA256(r)).

PREPARING A BLOCK HEADER. To prepare a block header for (and alter during)
the hashing loops, six fields are involved (see pseudocode line 6; review Table 13.4).

1. Version. This is 1 or 2 (at the present time of writing).

2. Prev-block-hash. This is the hash of the blockchain’s current top block (main branch),
which will be called the parent of the candidate block9of the successful miner.

3. Merkle root. This is computed per Fig. 13.5, after first selecting (pseudocode line
4) all the regular transactions for the block from the miner’s memory pool (below),
and then preparing the coinbase transaction (which yields txID-1 in Fig. 13.5).

4. Timestamp. This estimates the time a block emerges (Unix format, seconds). The
pseudocode assumes the inner loop takes at least 1 s, changing timestamp at line 8.

5. Mining bound. The hash target’s 4-byte form (page 389) is written into this field.

6. Mining nonce. This is used mainly as a counter (pseudocode lines 9, 13). The final
nonce value for a candidate block allows the hash of the header to satisfy the bound.

8The block height (pseudocode line 2) is as shown in Fig. 13.7, page 389.
9We call an in-progress block a candidate block once it has a valid proof of work (i.e., solved puzzle).

388 Chapter 13. Bitcoin, Blockchains and Ethereum

‡NONCE SOLUTIONS DIFFER ACROSS MINERS. Are miners all searching for the
same nonce? No. A nonce solution for one in-progress block does not work for oth-
ers, as blocks being hashed have different header merkle-root values—due to differing
coinbase transactions (e.g., miners use different addresses). Miners also tend to select dif-
ferent candidate transactions, in different orders. Thus, mining is not a computing power
footrace to find the same nonce—but over time, success correlates with computing power.

MEMORY POOL. As each new individual transaction is submitted by a user, it is
immediately propagated by Bitcoin peer nodes. For official recognition, a transaction:
1) must be embedded into a valid block, which includes a proof of work; and
2) this block must become part of the settled blockchain, i.e., a confirmed block (p.392).
Miners store received transactions in a memory pool or transaction pool, for selection into
their own in-progress blocks (different miners tending to have slightly different pools).
When a miner receives a new valid block from peers, it removes from its local memory
pool all the transactions in that block. Transactions in the memory pool are also filtered to
remove any that have become ineligible due to the new block, e.g., whose claimed outputs
(previously UTXOs) were consumed by a transaction in the block. If the new block results
in a miner abandoning its own in-progress block, then any transactions in the abandoned
block that are not in the new block, remain eligible for the next block to be built.

PRIORITIZING MEMORY POOL TRANSACTIONS. Miners select transactions for in-
progress blocks from their memory pool. Only a subset are typically selected, for reasons
including a maximum block size. Recalling equation (13.3), the reward for mining a block
includes not only a block subsidy, but all fees offered by transactions in the block. Thus
an obvious approach is to select transactions with the highest transaction fee per byte of
transaction size. Beyond fees, miners may rank each transaction in their memory pool
using a priority formula. One such formula might be (square brackets indicate units):

priority = ∑
all inputs

input value [satoshis] × input age [depth]
transaction size [bytes]

(13.4)

This sum weights each of a transaction’s inputs both by value, and by age measured as a
depth below the blockchain’s current top block (Fig. 13.7). An input of depth k has a block
number k less than the top block. The Bitcoin reference software at one time selected a
transaction even if it offered no fee, provided that its priority was high enough.

Note that equation (13.4) gives higher priority to transactions that are higher value,
older, and shorter—by this, unselected transactions (even zero-fee) increase in priority
over time, as their depth increases. Individual miners using their own prioritization rules
may exclude zero-fee transactions.10 It is naturally expected that transactions offering
higher fees will appear on the blockchain sooner. Wallet software is configured to offer
fees that are appropriate for its users (or to prompt a user to offer suitable fees).

‡Exercise (Transaction fees). a) What is the current value of a bitcoin, in US dollars?
b) What is currently considered to be a standard transaction fee for Bitcoin transactions
(in bitcoin)? c) Why might one expect transaction fees to increase over time?

10Zero-fee transactions may now be a thing of the past, with the role of age also at the discretion of miners.

13.5. Mining of blocks, block preparation and hashing targets 389

...	

height	i ...	

block	i+k

block	0

block	1

block	2

block	i

top	block

genesis	block

depth	k

Figure 13.7: Bitcoin blocks (conceptual model, latest block stacked on top). A block i
that has k blocks on top of it is said to be at depth k, meaning it also has k confirmations.

‡ORPHAN TRANSACTIONS. A transaction may be otherwise suitable for the mem-
ory pool, except that it claims one or more outputs that do not (yet) exist, neither on the
blockchain nor in a memory pool. This may occur legitimately, e.g., if two transactions
occur within a short time, the second claims an output from the first, and the second
reaches some nodes before the first. Such orphan transactions are held in an orphan pool
distinct from the main memory pool. Upon receiving a new block, nodes check whether
any transactions therein allow any transactions to be rescued from the orphan pool to the
memory pool.

MINING NONCE AND LOOP (DETAILS). We now look at mining-nonce details.
Once an in-progress block is finalized, including all header fields except the mining nonce
field, this nonce is set to zero. It is then used as a counter in the mining task (inner loop,
page 387): compute the hash H of the block header, quit if H ≤ b (this implies success),
otherwise increment the nonce and try again. As now explained, b is a hashing target.

MINING BOUND. Within block headers (Table 13.4), the 4-byte mining bound field is
encoded as an 8-bit exponent t and 24-bit coefficient c, defining a 32-byte hashing target

b = c∗28(t−3) (13.5)

as a 256-bit unsigned integer. The 32-byte hash H of a valid block header must be ≤ b, as
the proof of work; in practice, H then has many leading zero bits. To illustrate (Fig. 13.8):

mining-bound= 0x1711A333 yields target b = 0x11A333∗28(0x17−3) (13.6)

Note: 0x17 is decimal 23. Here the coefficient is multiplied by 28∗20 or logically shifted
20 bytes left. The formula slides a coefficient with 24 bits of precision between leading
and trailing zeros (see the figure to understand this). Decreasing t yields a smaller bound,
requiring more leading zeros. (Aside: the −3 in b’s formula is a normalization relative to
the 3-byte coefficient: an exponent of t = 3 leaves c unshifted as b’s lowest 3 bytes.)

RECALIBRATING MINING BOUND. Bitcoin aims to generate one new block every
10 minutes on average. To this end, the mining bound (which determines the mining
difficulty) is updated every 2016 blocks; the difficulty is increased if miners invest more
resources (miner investment cannot itself be directly controlled). Note that 2016 = 10 ·6 ·
24 ·14 is the number of blocks expected in 14 days at exactly 10 minutes per block.

390 Chapter 13. Bitcoin, Blockchains and Ethereum

hex17	=	23								23−3	=	200x1711A333
low

shi�	20	bytes	le�,	fill	with	zeros	

32−23	=	9	bytes
00 11	A3	3300 00 00

3	byte	
coefficient	

hex1D	=	29								29−3	=	260x1D00FFFF

shi�	26	bytes	le�,	fill	with	zeros	

32−29	=	3	
00	00	00 00	FF	FF 00 00

zero	bytes	at
high	end	also

exponent		coefficient

genesis
block
bound		

block
626,976
bound		

Figure 13.8: Converting 4-byte mining-bound fields to 32-byte hashing targets. The
genesis block target bound, with 3 high-end leading zero bytes plus a fourth from the
coefficient 00FFFF itself, implies that a valid hash must have at least 32 leading zero bits.
The mining bound from block 626,976 (April 2020) has a smaller exponent 0x17 (versus
0x1D). This results in a smaller left-shift of the coefficient and thus more leading zeros,
here requiring at least 9 ·8+3 = 75. (Why +3? Byte 0x11 itself has 3 leading zero bits.)

At recalibration, let (t2, t1) be the timestamps from the blocks (ending, starting) the
two week period (i.e., the top block and the one 2015 blocks earlier). Let bcurrent be the
current hash target for blocks in this period, from their identical mining-bound fields.
The desired time for 2016 blocks is tp = 2016 · 10 · 60 seconds (block timestamps are in
seconds). The actual measured time is tm = t2− t1. A scaling factor s is then computed as

s =
tmeasured

tplanned
=

tm
tp

=
t2− t1

tp
and bnew = s ·bcurrent (13.7)

The 4-byte mining-bound field value for blocks in the new period is formatted from bnew.
If s is not in the range 1/4 ≤ s ≤ 4, then s is reset to the boundary exceeded. (This same
target bnew is independently computed by all Bitcoin nodes, using public blockchain data.)

RELATIVE MINING DIFFICULTY. To express the difficulty of finding a nonce satis-
fying the hashing target bL for any block L, compared to that for satisfying the target bG

for the genesis block G, the relative mining difficulty DL of block L is defined to be:

DL =
bG

bL
, or equivalently DL ·bL = bG (a constant) (13.8)

Note: bG is in the numerator (left equation). From this definition, the genesis block itself
has relative mining difficulty 1 (case L =G). DL > 1 for all other blocks, as the target bL is
generally decreased over time, to make the hashing constraint harder (more leading zeros).
From the right of equation (13.8), note: as block L’s relative mining difficulty DL goes
up, its hash target bL goes down (and vice versa). Note also that while mining involves
enormous computational effort (on average), verifying that a block header satisfies the
hash bound requires little work (hash the header once, then compare to the target).

Example (Relative mining difficulty). For block L = 626,976 (Fig. 13.8), and using
equation (13.5) for b, we compute: DL = bG/bL = (cG · 28·26)/(cL · 28·20) = (cG/cL)248

for cG = 0x00FFFF, cL = 0x11A333. Using a hex calculator (or site), DL ≈ 243.8594.
Example (Mining difficulty, bits and leading zeros). The difficulty of mining can be

expressed—albeit less precisely—solely by a lower bound on the number of leading zero

13.6. Building the blockchain, validation, and full nodes 391

bits in the relevant hash. From Fig. 13.8, the genesis block requires 32 zero bits, and 75
are required by block L = 626,976. From our example, this block L has mining difficulty
DL ≈ 243.8594. Note that log2(DL) = 43.8594, while 75− 32 = 43. This illustrates the
general relationship: a block with difficulty DL corresponds to a target bound b with z
leading zero bits, for z = 32+ blog2(DL)c, i.e., dropping the fractional part. The number
of hashing trials (nonce trials) expected on average is then approximated by T = 2z.

‡Exercise (Mining is not for the meek). If you try to mine a block, might you get lucky
and make some easy money? Not likely. Using the mining bound to find the expected
number of SHA256 hashes needed, estimate your expected time if using one modern
desktop CPU. (Hint: [53]; look up how many SHA256 hashes/s can be done. With money
up for grabs, you face many competitors with heavy investments in specialized hardware.)

13.6 Building the blockchain, validation, and full nodes

Here we discuss how it is decided which blocks actually end up on the blockchain, through
Bitcoin’s decentralized consensus process. Once a miner has mined a block (i.e., has a
proof of work—a block header satisfying the hash target), it sends the block to its peers,
hoping that they start building on it rather than a competing miner’s block. Peers indepen-
dently validate this block and, if it is valid, add it to their local view of the blockchain and
share it with further peers. On receiving a new valid block, it is expected that most miners
abandon their own effort to find a block at that height, clean up their memory pool, and
start mining a fresh block. We now look at how transactions and blocks are validated.

TRANSACTION VALIDATION. A peer network propagates new transactions as can-
didates for embedding into a next block. Full nodes (page 394) receive and, by design,
share them further if they pass validity tests. Transaction validation checks include:
T1. size checks (e.g., transaction bytesize is in current min-max range; min ≈ 100);
T2. sanity checks on transaction format, field syntax, script structure;
T3. value checks (non-negative, < 21 million, sum of outputs ≤ sum of inputs);
T4. check whether the lock-time field implies that the transaction is not yet valid; and
T5. financial viability—each claimed output must: (i) exist, (ii) be unspent, i.e., in the

UTXO pool, and (iii) have its locking script satisfied by an unlocking script.
Transactions previously seen are not re-forwarded. These checks are also used by miners
before admitting transactions into their memory pool.

BLOCK VALIDATION CHECKS. Testing whether a new block is valid requires checks
on its transactions and header. The main items to fully verify that a block is valid are:
B1. total block bytesize (originally max 1 Mb, now at most 2–4 Mb; see Section 13.9);
B2. sanity checks on the block header (format, syntax, timestamp reasonable);
B3. proof of work in the block header (the authentic hash bound is satisfied);
B4. Merkle root in the header matches hash of all transactions;
B5. each individual transaction validates (see transaction checks above); and
B6. a single coinbase transaction is included, listed first, and claims the correct value.

392 Chapter 13. Bitcoin, Blockchains and Ethereum

Once a block passes all these checks, a node is expected to propagate it—but only if, in the
node’s local view, the block is on the main branch (below). This requires a further check:
the block header must have a valid hashlink to a parent, at the head of the main branch.
(This parent should, based on earlier checks, also chain back to a trusted checkpoint block,
if not the genesis block itself.) By propagating the block to peers, a node enables others
to build on the same main branch. Since no individual node can trust that others follow
these rules, each carries out independent checks—and a consensus emerges (below).

MAIN AND SIDE BRANCHES. Despite the simplified model (Fig. 13.7, page 389),
the tip of the blockchain has a main branch (main chain) and side branches (Fig. 13.9).
The main chain tends to be the longest chain (tallest stack), but by definition is the branch
with greatest aggregate proof of work (smaller hash targets carry more weight). Note
however that nodes in the distributed peer network may have different local views, based
on incomplete information (e.g., due to temporary link failures, or propagation delays
related to network topology); for competing new valid blocks at the same height and
mining-bound, a miner tends to build on the one first received. Thus a single node’s view
is not definitive or universal; rather than all miners working on the main branch, some
temporarily mine competing branches—possibly at different heights. A side branch could
grow to overtake the main chain. As we shall see, in practice side branches either fall
away or overtake the main branch quite quickly (e.g., within one or two blocks).

ORPHAN AND UNRECOGNIZED BLOCKS. Suppose a node receives a block that
verifies as valid (above). The block may extend the main chain, a side branch, or neither (if
its header hashlink matches no parent block previously seen, including all side branches).
The first case is common; the main chain remains unchanged. In the second case, it is
possible that a side branch now overtakes the main branch; a miner with this view is
expected to switch over to the new main branch. In the third case, with no parent in sight
from the local view, the block goes into a holding tank called the orphan block pool. One
source of orphan blocks is a block emerging relatively quickly by chance, and arriving
at a peer ahead of its parent; when the parent block finally arrives, the orphan is moved
into the relevant case. Blocks that fit side branches (the prev-block-hash field fitting a
side-chain parent)—let’s call them side-pool blocks—are, like orphan pool blocks, kept
in the short term, as they may come into play. But as a main branch emerges to be a clear
winner over increasingly distant side branches, blocks on distant side branches in essence
become permanently excluded from the main branch. In this way, some candidate blocks,
despite a valid proof of work, fail to be included in the consensus blockchain. Sadly, the
unlucky miners of such unrecognized blocks receive no block rewards;11 and over time,
such blocks effectively cease to exist, as they are not “on” the blockchain. C’est la vie.

CONFIRMED BLOCKS. As an increasing number of blocks are built on top of a given
block, the probability of it failing to become part of the consensus blockchain diminishes
rapidly, and eventually it is considered “on the blockchain” as an unchangeable outcome.

11‡Some experts use the word stale for a block not on the main chain, while others use it for any block
arriving after a same-height block was already seen (such a block often ending up matching the first case).
Other terms for side-chain blocks are uncles or ommers (in Ethereum) and orphans (in Bitcoin)—but the
latter causes confusion with a dictionary interpretation of (true) orphan to mean parentless (as in our use).

13.6. Building the blockchain, validation, and full nodes 393

The block—and its transactions—are then said to be confirmed. By rule of thumb, a depth
of 6 suffices in practice for confirmation; less cautious users may go with fewer. An un-
confirmed block remains subject to the risk of double spending or becoming unrecognized
due to branch reorganization, in which case its transactions will not be valid.

‡COINBASE OUTPUT HOLD. As an extra rule, no coinbase transaction output can
be spent until the coinbase block is confirmed at least N times—to rule out any practical
chance that after the block reward is spent, the blockchain is reorganized such that the
coinbase block is no longer on the main chain (thereby becoming invalid). N = 100 is
used at the time of writing, implying on average a wait of 16 hrs 40 min at 10 min/block.

INCENTIVE TO EXTEND MAIN BRANCH. As a heuristic expectation, miners will
build on the main branch. This is supported by two circumstances. 1) In preparing a block
header, a miner must explicitly choose a branch to extend, as a block’s prev-block-hash
field specifies a parent. 2) If a miner completes a proof of work but their block perishes
on a side branch, the miner loses the block reward. Thus committing to build on a known
side branch reduces expected earnings (odds are, it is wasted effort). The rule that a block
reward stands only if its block settles on the main chain incentivizes compliant behavior.12

Note: if a non-compliant miner includes an invalid transaction in its block, other miners
lose incentive to build on it, as doing so would forfeit their own potential block reward, as
other compliant peers will abandon that branch, on seeing the block fail validity tests.

BLOCK SELECTION AS VOTING. In review, as nodes see new blocks, the invalid
are dropped, the others fitted to a branch at a unique fitting point using the block header’s
parent pointer. Each new block may rearrange leadership between main and side branches.
Using local information, miners independently choose which branch to build on—each
incentivized to build on what is the main branch from their view. Each miner, by choosing
a block to build on, in essence casts a vote for a main branch, “voting with their feet”.

Example (How forks resolve quickly). Suppose two miners are building on the same
parent block Z (Fig. 13.9a), and at about the same time, each completes their block and
sends it to their peers. What will happen? We expect peers to begin mining new blocks
on top of whichever of these two blocks, A or B, they receive first. Now some miners are
working to extend branches with parent A, and some with parent B (Fig. 13.9b); call them
branchA miners, and branchB miners. We say the blockchain has a fork.

Now a miner in one of the two sets will succeed first—say branchB—and immediately
propagate new block B′. Both branchA and branchB miners receive B′. BranchB miners
see their (main) branch has been extended, and immediately start building new blocks
with B′ as parent, to extend branchB yet further. BranchA miners see that “their” main
branch has now fallen behind; they could continue, hoping to get lucky twice (first finding
a block A′ to catch up, and then a second to re-take the lead), but they are already one
block behind, which may be a sign that more computing power was already on branch
B. Even if a valid A′ is found, by that time, branchB miners may have a B′′ (Fig. 13.9c).
And branchA miners recall: no block reward can be claimed unless your block ends up

12Here compliant means consistent with a Bitcoin reference implementation. Aside from the reward in-
centive, Bitcoin also relies on an assumption that a majority of computing power rests with compliant miners.

394 Chapter 13. Bitcoin, Blockchains and Ethereum

height	i	

A B

Zi+1

i+2

i+3

Y

i+4

A B

Z

Y

B'

A B

Z

Y

B''

B'A'
a)

b) c)

Figure 13.9: Resolution of a blockchain fork (model scenario). (a) If blocks A and
B emerge around the same time (say this event happens with constant probability p),
miners start building on A or B, whichever they receive first. (b) Blocks A′ and B′ may
again emerge at about the same time, but the probability of t such events in a row is an
increasingly unlikely pt (decaying exponentially as t grows). Typically one block, say
B′, emerges sufficiently ahead of others, that a majority of miners receive it first and start
building on it. (c) By the time block B′′ emerges, extending B′, almost all miners have
abandoned work on side branch A and recognize B as the main branch.

on the main branch. Alas, the odds suggest that it is time to switch to branch B, and leave
gambling to the weekend horse races. As some branchA miners switch to join branch
B, the probability increases that branch B pulls further ahead. Branch A becomes a side
branch with fewer miners, and soon none (if they are paying attention and receive timely
updates from their network links). The fork is now resolved, in favor of branchB miners.

FULL NODES AND MINING POOLS. Devices may connect to the Bitcoin network
as nodes. (For light nodes, see Section 13.7.) Full nodes validate and forward individual
transactions and blocks, and maintain UTXO pools. They are the foundation of the peer
network, and miners rely on access to their functionality—including to manage transac-
tions in memory pools, for inclusion in new blocks. The core mining activity (building
new blocks) is distinct from peer sharing of data, and not all full nodes are also miners.
One might thus expect fewer miners than full nodes. However, miners may form a mining
pool (also page 404), to collectively work on the same hashing puzzle for an in-progress
block proposed by a pool leader (with block rewards split by agreement); one full node
then serves many miners. By some estimates, there are many more miners than full nodes;
in practice, the ratio of full nodes to miners is not precisely understood.

Exercise (Non-compliant miner). If a miner prepares a candidate block (with valid
proof of work) whose coinbase transaction claims a larger block reward than allowed, and
circulates this block while no other candidate blocks at that height are also ready, will this
block be accepted into the blockchain? Why or why not?

‡Exercise (Blockchain forks reconverging). Using a series of diagrams, explain the
sequential stages as two groups of miners compete as the blockchain forks, work to extend
different branches, then quickly reconverge on the main branch. (Hint: [1, pp.199-204].)

13.7. ‡Simple payment verification, user wallets, private keys 395

13.7 ‡Simple payment verification, user wallets, private keys

Here we discuss thin clients and issues related to Bitcoin wallets and storing private keys.
A summary of cryptographic algorithms used in Bitcoin is also given.

LIGHT NODES AND SPV. A prudent seller who receives bitcoin as payment in a
transaction T may wish to wait until T is confirmed before releasing goods—in case
the buyer is double spending. A confirmation can be observed without running a full
node by a method called Simplified Payment Verification (SPV). Indeed, typical client
software is not run as a full Bitcoin node processing all blocks and their transactions;
that requires a significant investment of computing time and memory (the blockchain is
relatively large), and regular users are interested in their own transactions, not mining. In
contrast, SPV requires only the block headers from the top block to the block containing
the target transaction, plus minor further data as explained next. SPV clients (also called
thin clients or light nodes) may be used in wallet software (page 397); newly originated
retail transactions sent into the network are processed by full nodes. Thin clients have a
reduced data footprint—aside from using block headers (smaller by a factor of about 1000
than full blocks), they collect and keep transaction details only for transactions of specific
interest, e.g., payments for a given user’s addresses (keys).

SPV PROCESS. The idea is to establish that transaction T is legitimately part of block
L. If L is then observed to be at depth k, this gives confidence that T has k confirmations.
Inclusion of T in L is established by Merkle path authentication (below). The chain from
the top block to L is verified through block headers (the proofs of work are checked).
For confidence that these headers are themselves part of the authentic chain, it suffices to
have confidence in the authenticity of the top block retrieved; hashlinks are used to verify
the rest. One method is to retrieve and cross-check the top block from multiple nodes
(assuming at least one source is honest and not under attacker influence); another is to
obtain the top block from a single trusted source and channel.

MERKLE PATH AUTHENTICATION. Relying on collision resistance properties of
hash functions, the block header merkle-root field is used to verify that a transaction
belongs to a block as follows. Suppose a given transaction is asserted to be part of a
block (say transaction 3 in it), and a client wishes to confirm this. Let the block header’s
merkle-root value be x, and txID-3 the transaction’s hash. Using txID-3 along with
the off-path values (txID-4, H1.2, H5.8) from the authentication path in Fig. 13.10, the
client proceeds to recompute a candidate root value, and as the final test compares that
for equality to x (from the integrity-checked block header). The client may obtain the off-
path values by a query to peers—any values that result in matching x suffice for a proof
of inclusion, confirming that the transaction is part of the block. (The peers need not be
trusted—the assurance relies again on cryptographic hash function collision resistance,
and an authentic root value.)

Exercise (SPV confirmation). SPV verifies block headers (from top to target block),
but not the individual transactions in intervening blocks. Why is that not necessary?

Exercise (Authenticity of block headers). Two methods to ensure authenticity of
block headers are noted above. A third is to obtain the full set from any source (not nec-

396 Chapter 13. Bitcoin, Blockchains and Ethereum

level	0

txID-1 txID-2 txID-3 txID-4 txID-5 txID-6 txID-7 txID-8

H1.2 H3.4 H5.6 H7.8

H1.4

H1.8

H5.8level	1

level	2

level	3

Merkle
root

target	transac�on

Figure 13.10: Merkle path authentication. Off-path values for txID-3 are shaded (blue).
A block having N transactions has an authentication path involving only lg2(N) values.

essarily trusted), and confirm by hashlinks that they lead into a genesis block hard-coded
into the verifying client. Discuss advantages and disadvantages of the three alternatives.

Exercise (SPV and UTXOs). The input of a new transaction W claims an output from
an old transaction T . The buyer is in a hurry; the seller prefers to wait for 6 confirmations
of W before releasing any goods. The buyer suggests to the seller: “Use SPV to verify
that T is a valid transaction; that will confirm that the output that I am claiming is valid
cash recognized by Bitcoin.” What should the seller do, and why?

PRIVATE KEY: GUARD AS CASH. Bitcoin transactions send currency to addresses.
Digital signatures claim the currency, requiring access to private keys. Consequently:

1) loss of the private key means (unrecoverable) loss of the currency; and

2) theft of the private key allows theft of the currency.

Furthermore, transactions are irrevocable and irreversible. This makes Bitcoin attractive
to criminals and thieves, and is in contrast to conventional banks, where regulations typi-
cally require long-term relationships with, and contact details for, real-world participants.

PRIVATE KEY RISKS AND PASSWORDS. The risk of losing a private key is increased
by possible loss of any information or device used to generate or protect it. This includes
passwords or passphrases used to derive a symmetric encryption key (passkey) to protect
a private key, and seeds in hierarchical wallets (page 398). It is therefore risky (inviting
loss) to store a private key encrypted under a passkey while relying entirely on human
memory to recall the password. Specific risks to private keys thus include:

a) loss of access due to forgotten passwords,

b) loss of access due to hardware failure or lost information, and

c) theft, possibly combined with offline guessing attacks (Chapter 4).

As noted above, the risk is permanent loss of the associated currency. The disadvan-
tages of passwords (Chapter 3) have severe implications here—if a private key (or related
passkey) is misplaced, forgotten, or lost, there is no equivalent to the password recovery
(rescue) services associated with web account passwords. The risk of theft (consider mal-
ware, device theft, cloud storage break-in, cloud backup) followed by successful offline
guessing can be mitigated by avoiding user-chosen passwords.

13.7. ‡Simple payment verification, user wallets, private keys 397

PRIVATE-KEY MANAGEMENT AND WALLETS. In the context of Bitcoin, wallet
refers to a means to store and manage key pairs. Beyond storing private keys, wallet func-
tionality may include a convenient user interface, and being able to track all transactions
related to unspent outputs paid into a user’s addresses. Wallet strategies, broadly either
online (higher convenience, lower safety) or offline, imply two storage categories.

i) Hot storage (private keys reside on devices regularly connected to the Internet). This
includes client wallet software running on a user’s own device (e.g., local desktop, lap-
top, smartphone); and cloud wallets, with user private keys managed by (or available
to be retrieved from) a web-based service. The risks here include theft by malware
(e.g., local), Internet-based theft, and third-party risks (cf. exchanges, below).

ii) Cold storage (private keys are on offline media, ideally never directly connected to the
Internet). This includes paper wallets (with keys printed then stored in a safe place,
made human-readable by encoding as hexadecimal strings or base58 or 2D barcodes);
storage on a USB key or other physical token; and hardware wallets (special-purpose
hardware devices allowing private-key computations, but not private-key export). Pay-
ments can be made to an address whose private key is offline (since payment does not
itself involve a receiver’s private key), if the address itself is known.

CUSTODIANS AND EXCHANGES. As noted, coin owners should guard Bitcoin pri-
vate keys as cash. Analogously to cash being deposited in traditional banks, Bitcoin
custodian services are available, through access to users’ private keys. Separately, Bitcoin
exchanges facilitate conversion between fiat currencies and cryptocurrencies, and may
also offer custodian services. As these introduce intermediaries as trusted third parties,
this trades off one risk (a user losing its own private keys) for others (trustworthiness of a
third party’s integrity and viability, and its ability to protect its private keys from theft).

Exercise (Bitcoin exchange bankruptcies). (a) Summarize the popular media reports
of the 2014 bankruptcy of the (Japanese) MtGox exchange (hint: wikipedia). (b) Give a
technical summary of Bitcoin transaction malleability as it relates to MtGox (hint: [21]).
(c) Summarize what is known about the 2019 bankruptcy of the (Canadian) QuadrigaCX
exchange and CEO Gerald Cotten (hint: online resources).

HASH FUNCTIONS. Table 13.5 summarizes the use of hash functions in Bitcoin.

Use Example Algorithm

mining (header hash) page 387 dhash = SHA256(SHA256(·))
txID, prev-out-txID Table 13.1 dhash (for transaction identifiers)
prev-block-hash Table 13.4 dhash (for block/block header identifiers)
merkle-root Table 13.4 dhash
addresses page 377 RIPEMD160(SHA256(·)); dhash for checksum
ECDSA signatures page 397 dhash (may differ in special cases)

Table 13.5: Hashing algorithm use in Bitcoin. “dhash” is short for double-SHA256.

ELLIPTIC CURVE SIGNATURES. Hash functions are noted above, and Bitcoin does
not specify encryption (its use by wallet software to protect private keys is independent
of the Bitcoin protocol). For digital signatures, Bitcoin uses the elliptic curve digital

398 Chapter 13. Bitcoin, Blockchains and Ethereum

signature algorithm (ECDSA) and an elliptic curve identified as secp256k1. It is believed
to provide 128-bit security, i.e., a successful attack should require about 2128 symmetric-
key operations or SHA256 invocations. Private keys are 256 bits; signatures are 512 bits.
Public keys are 512-bit points (x,y), or reduced to 257 bits in compressed format with the
x component and a single bit allowing the y component to be computed from the curve
equation y2 = x3 +7 (mod p); the extra bit selects one of the two square root solutions.

DETERMINISTIC KEY SEQUENCES. Bitcoin imposes a key management burden on
users, by expecting use of a new key pair for each transaction. How should a normal
person repeatedly generate public-private key pairs, make a new public key available (to
receive each transfer) and securely back up each private key, without ever connecting cold
to hot storage? As a popular response, Bitcoin wallets (software applications) support
schemes deriving pseudo-random sequences of private keys from a (secret) master or seed
key, providing a master public-key property: sequences of corresponding public keys (ad-
dresses) can be derived from a separate, non-secret seed. Giving the non-secret seed to a
network-connected wallet enables public-key generation for countless incoming transfers;
private keys remain offline (cold). Securely backing up one secret seed replaces backing
up long lists of secrets. Extending such schemes to multi-level trees of keys results in hi-
erarchical deterministic (HD) key schemes. A related concept is watch-only wallets (and
addresses): a network-connected wallet (client or service) is given a set of public keys, in
order to monitor for all transactions involving the corresponding addresses, without risk
of outgoing transfers (private keys are withheld, thus watch-only). This works for any
public key, but often involves seed-based sequences (i.e., master public keys, as above).

Example (Deterministic key management). Such deterministic schemes for DSA-
type digital signatures rely on the simple relationship between a signature private key x
and matching public key gx (mod p). (Here we use Diffie-Hellman notation; generator
g and prime p are suitable public parameters.) For a sense of how such schemes work,
consider a sequence of keys relying on two parameters: our previous x (a secret random
number), and a new k (random number). Index i identifies a stage in the sequence, “::”
denotes concatenation, and H is, say, SHA256. The ith private and public keys are now:

(private) xi = x + H(i :: k) and (public) gxi = gx ·gH(i::k) (13.9)

Addresses are derived from public keys in the usual way. Using k = gx (mod p) eliminates
the need for a separate random number k. Generating the public-key sequence requires
knowing gx (and k if distinct); knowing that does not allow derivation of private keys, but
does allow discovery that a sequence of keys (addresses) are related. Note: in the simple
scheme of equation (13.9), every individual private key xi should be protected as strongly
as the master private key x, because compromise of any single xi allows recovery of x (by
the left equation), allowing an adversary to compute all private keys in the sequence.

ONGOING CHALLENGES. Many issues remain for Bitcoin and related cryptocur-
rency and blockchain systems. While our aim has been a relatively concise introduction,
with more focus on understanding how things work than why or design options or ongoing
research (Section 13.9), we note among the challenges: scalability (number of transactions
per second or block), massive power consumption by mining, centralization due to mining

13.8. ‡Ethereum and smart contracts 399

pools (page 404), privacy, use of cryptocurrencies in illegal activities, governance issues,
usability and asset safety (including both theft and lost access to private keys).

13.8 ‡Ethereum and smart contracts

Ethereum has attracted enormous attention since its debut in July 2015. One of many
Bitcoin-inspired cryptocurrencies, it builds on the idea of blockchain-based public ledgers.
However, far beyond simple cryptocurrency transfers, it strives to deliver a decentral-
ized computing platform for executing smart contracts—specialized programs designed
to execute autonomously, recording data and implementing agreements involving virtual
goods. Here we give an overview of how Ethereum works and a sense of its major differ-
ences from Bitcoin, in a selective tour to motivate readers to explore further.

EXPLICIT ACCOUNT BALANCES. Ethereum’s currency, ether (ETH), is created
by a block mining process resembling that of Bitcoin. ETH can be transferred across
Ethereum accounts by transactions, and exchanged for other currencies. Unlike Bitcoin,
which stores values as unspent transaction outputs, Ethereum explicitly tracks per-account
balances, using nonces (as counters) to prevent replay of transactions as noted next.

TYPES OF ACCOUNTS. Ethereum has two types of accounts. An externally-owned
account (EOA or user account) is controlled by a private key, and sends signed transac-
tions to be included in blocks on Ethereum’s blockchain. EOAs have three state values:

(address, balance, nonce) (13.10)

An EOA identifier or address is the rightmost 20 bytes of the hash of the account’s ECDSA
public key (using KECCAK-256, the basis for SHA-3); balance is the account’s current
value in wei (1 ETH = 1018 wei); nonce counts how many transactions an EOA has sent.

The second type of account is a code account (or contract account). It is controlled
by an executable program called a contract, which runs on the Ethereum virtual machine
(EVM, below). The code runs when a contract receives a message (below), and may
access Ethereum storage, write new state, send new messages, and create further contracts
(bottom left, Fig. 13.11, page 402). A code account has five defining state values:

(address, balance, nonce, acctStorageRoot, codeHash) (13.11)

A code account’s nonce counts how many contracts it has created; its address is the hash
of the sender’s address and nonce from the transaction that created it. An acctStorageRoot
value binds storage (persistent state) to each code account; it is the 32-byte hash root of a
Merkle Patricia Tree (page 403), allowing authentication of any-sized persistent state, with
underlying data, e.g., stored in a database and retrieved as needed, its integrity verifiable
using the root value. Finally, codeHash is the hash of the contract bytecode, uniquely
identifying the executable code that runs when a message is sent to the account.

TRANSACTIONS AND MESSAGES. EOAs create Ethereum transactions, which are
signed data structures (details below). They are commonly used to:

a) transfer value between EOAs (for simple payments),

400 Chapter 13. Bitcoin, Blockchains and Ethereum

b) invoke existing contracts, and

c) create new contracts (initializing them and setting up their executable code).
Both transactions and contract executions may result in messages to (other) contracts;
these also transfer value and data between accounts. Messages to contracts may trigger
responses; this instantiates functions, and is how contracts interact.

EVM EXECUTION, MEMORY AND LOCAL MACHINE STATE. Ethereum nodes in-
dependently execute contracts on their local copy of an Ethereum virtual machine (EVM).
In contrast to Bitcoin’s minimal scripting language with limited opcodes and no loops (al-
beit thereby avoiding infinite loops and related deliberate abuses), the EVM instruction
set is complete in the sense that it enables general computer programs (called Turing com-
pleteness), with one major constraint: computation is gas-limited (gas is explained next).
Local EVM execution involves three flavors of memory:

1) a conventional run-time stack (32-byte values are PUSHed and POPed);
2) (non-persistent) EVM execution memory; and
3) (persistent) EVM storage, holding key-value pairs (32 bytes for each of key, value).

A program counter (PC) indexes the next byte of EVM code to execute, and a GAS register
tracks gas. We summarize an EVM’s operational machine state as:

local EVM machineState = (PC, GAS, exec mem, stack, current code) (13.12)

The machine has access to relevant account state, (13.10) and (13.11), including the per-
sistent storage underlying acctStorageRoot and codeHash, which is the EVM bytecode
denoted current code in (13.12). EVM execution also has access to metadata from the
current transaction and incoming messages resulting from it, and the header data of the
block associated with the transaction; and can send a return value (as a byte array).

FEES AND GAS CONCEPT. Ethereum uses a fee model designed to protect resource
consumption from both deliberate (malicious) actions and the effects of benign errors. The
cost of resources used by transactions and contract execution must be paid for by accounts.
A fee schedule (page 401) specifies the cost of each resource in units of gas (generalizing
the idea of buying gas for a car); bills for resources consumed are in gas units. Gas is
bought using ETH, but the price of gas is not fixed. Instead, a transaction offers gasPrice,
a price per unit of gas used. By including a transaction in a block, the miner accepts the
offered gas price. Minimum expected gas prices are known or advertised.

TRANSACTION FIELDS. We model a transaction by a data structure with fields:

(toAddr, valueTo, data, nonce, (gasLimit, gasPrice), sendersSig) (13.13)

Messages are similar, but without sendersSig. The fields are used as follows.
toAddr: the receiver’s account address (page 399), or NUL for contract creation.
valueTo: amount to transfer to the receiver (in wei). If the receiver is a contract, its code

is run. For a contract creation, this is the new account’s starting balance.
data: for messages, this provides input to contracts. For contract creation, it provides

startup code that is run once as initialization, and returns the long-term EVM code
to be run on each subsequent invocation of the contract.

13.8. ‡Ethereum and smart contracts 401

nonce: this is compared to the sender account’s nonce value (counter) when a transaction
is executed by a miner (and processed by peers), to stop transaction replays.

gasLimit: maximum number of gas units the sender releases to execute this transaction
(including costs associated with any resulting messages).

gasPrice: offered payment per unit of gas (in wei per gas unit). The miner that mines a
transaction collects fees including all gas spent executing the transaction. Any gas
allocated but unused upon completion is returned to the sender. The up-front cost
of a transaction is computed as: v0 = (gasLimit ∗gasPrice) + valueTo.

sendersSig: this provides data allowing verification of the sender’s signature, and also
includes information identifying the sender’s address.

RECEIPTS AND EXECUTION LOGS. Dedicated EVM opcodes are used to log or
record, for external access, information on events related to contract execution. For each
transaction involving contracts, a receipt is generated. It includes a status code, the set of
logs generated, and a Bloom filter data structure for efficient use of the log information.

EVM FEE SCHEDULE. Gas charges (Table 13.6) based on instruction complexity
or system cost apply to EVM opcodes, persistent memory used (EVM storage), and the
number of bytes in a transaction (effectively a bandwidth cost). A contract does not pay
for its own gas—rather, the invoking transaction does.

EVM charge Description of Ethereum opcode or storage-related item (gas units: wei)

3–5 gas ADD, SUB, NOT, XOR; MUL, DIV, MOD

8 gas JUMP (+2 if conditional), ADDMOD (addition modulo 2256)

375 gas base cost of a LOG operation; +375 per LOG topic, +8 per byte of LOG data
20,000 gas to store a non-zero value in EVM persistent storage (contract memory)

4 gas for every zero byte (code or data) in a transaction
68 gas for every non-zero byte (code or data) in a transaction

21,000 gas base cost for every transaction
32,000 gas to create a contract (in addition to base cost)

Table 13.6: Fee schedule, illustrative items [55]. The last four are intrinsic gas costs.

MINING REWARDS. The miner of an Ethereum block (or rather, the beneficiary
specified, Table 13.7) receives the block’s transaction fees (gas consumed in executing its
transactions), plus a block reward13 of 2 ETH, plus 1/32 of this reward value for including
each of up to two ommer headers (next paragraph). The beneficiary of any so-included
ommer block also receives between 7/8 and 2/8 of the block reward, the fraction calculated
as (8− i)/8 where i counts (from 1 to 6) how many generations older the ommer block
is than the mined block. (This rewards some miners even for a valid block that never
makes it onto the blockchain.) Aside: whereas Bitcoin’s (current) plan halves the block
subsidy every four years until a fixed currency production end-date, Ethereum currently
has no production end-date and somewhat ad hoc rule changes (e.g., the block reward was
5 ETH before dropping to 3, and now 2 as of the time of writing).

13Ethereum’s block reward corresponds to what Bitcoin calls a block subsidy in (13.3), page 381.

402 Chapter 13. Bitcoin, Blockchains and Ethereum

Field Name Description

parentHash hashlink to parent block on blockchain
ommersHash hash of the ommers list in the full block (explained inline)

nonce 8-byte counter, used in proof of work
mixHash explicit representation of proof of work
difficulty analogous to Bitcoin difficulty (but easier, producing blocks faster)

block number explicitly stated block number
timestamp approximate Unix time of block birth
beneficiary 20-byte receiver address for block reward (e.g., miner’s address)
gasLimit bound on per-block gas costs
gasUsed total gas used on this block, including executing its transactions

logsBloom 256-byte structure related to block’s log entries/transaction receipts
transactionsRoot hash of root of Merkle Patricia Tree of block’s transactions (page 403)
receiptsRoot analogous to transactionsRoot, but for transaction receipts in block
stateRoot analogous to transactionsRoot, but for persistent state (world state)

extraData up to 32 bytes further content (at miner’s option)

Table 13.7: Ethereum block header. ?Hash and ?Root fields are 32 bytes. The header is
about 500 bytes (extraData varies by 32 bytes); over half of this is logsBloom.

BLOCK HEADERS, COMPLETE BLOCKS AND OMMERS. The fields in an Ethereum
block header are summarized in Table 13.7 and Fig. 13.11. A full block consists of:

(block header, list of ommer block headers, sequence of transactions) (13.14)

The second item in (13.14) is a set of block headers that hash to ommersHash. An ommer
block (gender-neutral for uncle, or off-chain sibling of an ancestor) is the sibling of an
earlier main-chain block, but which (from the miner’s local view) itself did not end up on
the main chain despite being a valid candidate block. Ommers play a role in Ethereum’s
blockchain consensus protocol, which selects not the longest but the heaviest chain (Sec-
tion 13.9). Ethereum gives miners an extra small reward for including block headers of
up to 2 ommers in total from any of the past 6 generations. This heuristic aims to mitigate

block	0	

code	acct

block	n-1	

block	hdr

user	with	private	key	
EOA

code	acct

signed
transac�on
results	in
message

messages
world
state
tree

new	block	added	by	consensus

block	hdr

block	n	

contract	runs	on	miner's	EVM

read
write	 stateRoot

tx	1
tx	2

tx		m
.	.	.

transac�onsRootminer	selects	m
							transac�ons

receiptsRoot

genesis	

ommersHash

ommer1	hdr	
ommer2	hdr	

(addr,	balance,	nonce)

PC
GAS
stack

execu�on	mem
code

EVM use	as	key	to
look	up	value

value
peers	propagate
transac�ons	and	new	blocks

Figure 13.11: Overview of Ethereum components. Components are explained inline.

13.8. ‡Ethereum and smart contracts 403

attacks enabled by more frequent blockchain forks due to the higher block production
rate—Ethereum produces blocks every 13–14 seconds vs. Bitcoin’s 10 min.

TRANSACTION VALIDATION AND EXECUTION. Following the blockchain model,
to be officially recognized, an Ethereum transaction T must be validated and executed at
some defining point. Here this implies: T being selected by a miner for inclusion into
a new block B, the block header having a valid proof of work, and the block ending up
on Ethereum’s consensus heaviest chain. What follows is a list of major procedural steps
for validating and executing a transaction T (validating an entire candidate block involves
verifying the proof of work, the block header, and all transactions).

1. Do transaction validity checks (e.g., verify format, verify sender’s signature, confirm the
nonce is 1 more than in the sender’s account, sender balance ≥ up-front cost).

2. Transfer valueTo to receiver (from sender).

3. Deduct gasLimit ∗gasPrice from sender balance, and increment the sender’s nonce.

4. Set GAS := gasLimit (as the number of units of gas available).

5. Deduct from GAS all relevant intrinsic gas costs (Table 13.6).

6. If toAddr is a contract, run its code until code exits or “out of gas” (OOG), deducting
costs from GAS as execution runs (per fee schedule).

7. If there are insufficient funds or any other exceptions including OOG, restore all changed
state (except the miner keeps fees for gas burned, and the nonce is not rolled back). Oth-
erwise on exit, restore the cost of any unused gas to the sender’s balance, and finalize the
transaction receipt for this transaction T .

WORLD STATE AND THE BLOCKCHAIN. The blockchain defines what is valid
in Ethereum’s world, and this is captured as the world state—the data associated with
Ethereum accounts. This state is publicly verifiable through a block header and a subset
of its fields that embed the roots of externally maintained search trees (next) for persistent
storage, providing a form of authenticated data structure. As a result, despite almost all
this state being stored off the blockchain, the world state is carried forward in each block.
Equation (13.14) and Table 13.7 help us see how Ethereum blocks represent this world
state. Compared to 80 bytes in Bitcoin, Ethereum block headers are 500 bytes and rely on
this combination of data structures and root values.

ETHEREUM MPT. A Patricia Tree data structure (below) can support storage and
retrieval for a set of (key, value) pairs, with efficient update, insertion and deletion. Each
tree node may hold part of a key (a partial path), pointers to other nodes, and a value. Re-
placing the pointers by hashlinks, so that nodes are referenced by the hash of their content
(rather than address pointers) yields a Merkle Patricia Tree (MPT). Note that now a path
from root to leaf resembles a blockchain; and although computed by a different process,
the hash of the content of an MPT root has the same property as a Merkle hash tree root
(merkle-root in Bitcoin): each is a fingerprint (cryptographically reliable representa-
tion) of the content of the entire tree. The hash of an MPT root’s content can therefore be
used to authenticate the complete (key, value) dataset comprising the tree.

404 Chapter 13. Bitcoin, Blockchains and Ethereum

Relying on this, Ethereum uses a custom MPT to store and update the state underlying
stateRoot, the (hashed) root of the world state tree for accounts. As Fig. 13.11 models,
an account address is used to look up a leaf value of (balance, nonce, acctStorageRoot,
codeHash) from (13.11), where acctStorageRoot itself roots a further tree in the case of a
code account. Similarly, the MPT under a block header’s transactionsRoot is keyed by
transaction indexes in the block. The content of each tree node (including root) is stored
in a database and looked up by hash value. Confused? The next exercise may help.14

Exercise (MPT details). Given a set of (key, value) pairs, a search tree can be built,
allowing value to be looked up at a leaf node, using symbols of key in sequence to trace
a unique path from a tree root onward.15 (a) Explain how tries (prefix trees) and Patricia
Trees (compressed tries) work. (Hint: [39].) (b) Explain how Ethereum’s MPT works,
including its three node types (extension, branch, and leaf). (Hint: [16, 25, 57]; treat the
prefix encoding for nodes as a minor implementation detail, rather than a major focus.)

TRANSACTIONAL STATE MACHINE. Ethereum transactions cause state transitions
that transfer currency and data between accounts, optionally involving contract execution.
At the world state level, Ethereum is a transaction-based state machine, with a state
transition function F taking two inputs—a world state St at time t, and a next transaction
T —and producing a new world state: F(St ,T)→ St+1. We note the following.

a) Like Bitcoin, Ethereum relies on a replicated state machine and mining-based consensus,
but in contrast its official world state is explicitly summarized as each block emerges.16

b) Each block defines a specific ordering of transactions and thus contract executions. Each
contract execution runs atomically, in that the world state is not at risk of changing due to
other transactions or contracts running in parallel. Thus the results of a miner’s local EVM
running contracts (with its local view of world state) become the world reality if the miner
executing a transaction (in block mining) has their block accepted into the blockchain.

c) Contracts execute only as a result of EOA-triggered transactions, and cannot on their own
schedule events to occur at future times, unrelated to the current transaction.

ETHASH AND MINING POOLS. Bitcoin mining is now dominated by mining pools
(page 394), with collaborative groups of miners sharing resources and rewards, typically
leveraging large investments in special-purpose hardware, notably ASICs optimized for
SHA256. Centralization of control conflicts with the goal of decentralized consensus.
Ethereum aims (perhaps optimistically) to address this by using Ethash, a mining hash
function designed to be ASIC-unfriendly, favoring commodity architectures over cus-
tomized hardware. It requires considerable memory, with internal operations heavily
data-dependent and based on a seed updated every 30,000 blocks (about 5.2 days).

PROGRAMMING LANGUAGES. Several languages are available for writing Ethereum
programs (contracts), including Solidity and Vyper (newer), and lower-level LLL (older).
Contract programs are compiled to bytecode for EVM execution.

14As you will by now understand, our exercises often serve to cover additional details from further sources.
15Confusingly, such a search tree is also called a trie—which is still pronounced tree, as in retrieve.
16That this represents the true world state is conditional on the block being accepted as a consensus block.

13.9. ‡End notes and further reading 405

SMART CONTRACTS. Ethereum delivers a computing model for what are called de-
centralized applications (DApps), with the same program independently run on physically
distant machines and computation verified by peer nodes and consensus, without human
involvement. The vision is that arbitrary sets of rules, precisely captured by programs
often called smart contracts, can programmatically enforce transfers or agreements in-
volving digital assets, free of unpredictable regimes or jurisdictions, ambiguous laws and
external control. For context, we note some prominent contract categories (use cases).

1. Financial contracts, including insurance and group-funded ventures (DAO, below). This
goes beyond currency creation, transfer and management by simple exchange contracts.

2. Games and digital collectibles based on cryptocurrencies. (This may overlap the next
category.) Some players may be motivated by economic gain more than conventional fun.

3. Registration, management and transfer of virtual properties. Examples are name registra-
tion (Namecoin, below); trading and ownership tracking of unique digital assets (NFTs,
below); and authorship attribution systems that may reward content producer-publishers.

4. Digital notarization of records for real-world physical asset transfers. Ownership registra-
tion and history (provenance tracking) use the blockchain as an immutable, timestamped
log; linking a physical asset to the digital world here requires human involvement.

5. Virtual gambling and program-based casinos. Ponzi schemes are a related sub-category.
Exercise (The DAO). Smart contracts have been heavily promoted, but come with

challenges. For example, contract immutability is at odds with patching errors via updates.
The 2016 attack on The DAO (Decentralized Autonomous Organization) highlighted this.
Summarize this event and its warning for the future of smart contracts (hint: [50]).

Exercise (Namecoin). A Bitcoin-like system called Namecoin supports a decentral-
ized name registration and resolution system, built as a registry of name-value pairs. Sum-
marize its history, technical design, and deficiencies (hint: [31], also [42, §10.7]).

Exercise (Non-fungible tokens). (a) Explain the non-fungible token (NFT) concept.
(b) Explain how Ethereum, NFTs, and EIP-721 are related (hint: [23]). (c) Give a techni-
cal summary of CryptoKitties and how digital cats are bred and traded (hint: [29, 49]).

Exercise (Heaviest chain). Compare, using a diagram, Bitcoin’s main-branch consen-
sus approach and Ethereum’s heaviest-observed chain (hint: [51, Fig.3], [47]).

13.9 ‡End notes and further reading

Bitcoin was proposed in 2008, including Section 13.7’s SPV process [41]; the genesis
block emerged in January 2009. Greenberg [27] pursues connections between its inventor
Satoshi Nakamoto (pseudonym) and Hal Finney. Bonneau [13] summarizes Bitcoin’s
first six years; for details see Antonopoulos [1] and Narayanan [42]. Zohar [58] discusses
myths and notes challenges; for origins of the underlying technology, see Narayanan and
Clark [43]. For when blockchain technology is applicable, see Ruoti [48]. Böhme [11]
gives an economics-focused summary of Bitcoin properties and risks. Among the many
empirical analyses of Bitcoin, Moore [38] found that 18 of 40 Bitcoin exchanges failed

406 Chapter 13. Bitcoin, Blockchains and Ethereum

over a three-year period (2010–2012), and 38 of 80 over 2010–2015; see also Böhme [12]
for case studies on cryptocurrency vulnerabilities. Möser [40] analyzed all transaction fees
from 2009–2014. Bartoletti [6] studied practical use of the script opcode OPRETURN. For
mining hardware including ASICs, see Taylor [53] (cf. [42, Chapter 5]).

Bitcoin has a well-known reference implementation (Ethereum has several). The Pro-
tocol documentation page of the Bitcoin community wiki [9] describes the reference client
behavior, which implicitly specifies the Bitcoin protocol. A Bitcoin Developer Reference
[10] provides technical details and API information to encourage development of Bitcoin
applications. Blockchain explorers (an extensive list is available [8]) and related tools
(e.g., BlockSci [32]) enable search, display and analysis of public blockchain content.
Hashlinks may be characterized as specifying a verifiably unique object as their target,
and are also called hash pointers; linked lists using them are called authenticated linked
lists. Merkle hash trees (authentication trees) date to a 1979 thesis [37, Chapter 5]. Dis-
tributed consensus dates back to Lamport’s Byzantine Generals problem [33].

The Bitcoin Improvement Proposal (BIP) process is explained by Dashjr [20]. BIP32
[56] popularized hierarchical deterministic (HD) and watch-only wallets; see Gutoski [28]
for HD wallet flaws and references, and Eskandari [24] for Bitcoin key management, the
usability of client software, and wallet strategies. BIP141 [34] (SegWit for segregated
witness), activated 24 August 2017, separates unlocking signatures and scripts from a
transaction’s input section, allowing maximum block size to increase from 1 Mb to 2–4
Mb (depending on transaction details). On Bitcoin cryptography, for ECDSA see Johnson
[30], FIPS 186 [44], and Brown [15] for the secp256k1 curve; for SHA256 see FIPS 180
[45]. Menezes [36, page 350] summarizes the RIPEMD160 specification [14]. KECCAK-
256 is the basis for SHA-3 [46] algorithms, and used in Ethereum.

Ethereum’s white paper [17] giving Buterin’s 2013 vision includes two short con-
tract code examples. The yellow paper [55] formally specifies the Ethereum protocol,
including its modified Merkle Patricia Tree (cf. exercise, page 404),17 fee schedule, EVM
and Ethash (resp. in appendices D, G, H, J); a companion beige paper [19] offers a gen-
tler overview. Informally, Ethereum messages are sometimes called internal transactions
(but never appear on the blockchain). Ethereum.org [26] provides collected resources,
promoting Ethereum as “the world’s programmable blockchain”. Ethereum uses a sim-
plification [47] of a heuristic called Greedy Heaviest-Observed Sub-Tree (GHOST) [51],
basing chain selection on the heaviest path (involving the most computation); and plans
to migrate to a proof-of-stake mining model [5]. Atzei [2] systematizes programming pit-
falls and attacks on Ethereum smart contracts, as well as Bitcoin’s use for smart contracts
[3] despite a primitive scripting language and vulnerabilities (cf. [4]). Regarding smart
contracts—which are arguably neither smart nor contracts—for early formative ideas see
Szabo [52], for an introduction to programming them see Delmolino [22], for empirical
analysis see Bartoletti [7], and for broader discussion of decentralized applications see
Cai [18]. Potentially irrecoverable financial losses (as with The DAO, page 405) motivate
greater attention to security analysis methodologies and tools for smart contracts [54, 35].

17Patricia is from: Practical Algorithm to Retrieve Information Coded in Alphanumeric, a 1968 paper.

References (Chapter 13)

[1] A. M. Antonopoulos. Mastering Bitcoin: Unlocking Digital Cryptocurrencies. O’Reilly. Dec 2014,
openly available, https://en.bitcoin.it/wiki/Mastering_Bitcoin. (Second edition: 2017).

[2] N. Atzei, M. Bartoletti, and T. Cimoli. A survey of attacks on Ethereum smart contracts (SoK). In
Principles of Security and Trust (POST), pages 164–186, 2017. Springer LNCS 10204.

[3] N. Atzei, M. Bartoletti, T. Cimoli, S. Lande, and R. Zunino. SoK: Unraveling Bitcoin smart contracts.
In Principles of Security and Trust (POST), pages 217–242, 2018. Springer LNCS 10804.

[4] N. Atzei, M. Bartoletti, S. Lande, and R. Zunino. A formal model of Bitcoin transactions. In Financial
Crypto, pages 541–560, 2018.

[5] S. Bano, A. Sonnino, M. Al-Bassam, S. Azouvi, P. McCorry, S. Meiklejohn, and G. Danezis. SoK:
Consensus in the age of blockchains. In ACM Advances Financial Tech. (AFT), pages 183–198, 2019.

[6] M. Bartoletti and L. Pompianu. An analysis of Bitcoin OP RETURN metadata. In Financial Cryptog-
raphy Workshops, pages 218–230, 2017. Springer LNCS 10323.

[7] M. Bartoletti and L. Pompianu. An empirical analysis of smart contracts: Platforms, applications, and
design patterns. In Financial Cryptography Workshops, pages 494–509, 2017. Springer LNCS 10323.

[8] Bitcoin community. “Block chain browser” page. https://en.bitcoin.it/wiki/Block_chain_
browser. An example of a popular block explorer is: https://blockchain.com/explorer.

[9] Bitcoin community. Bitcoin wiki, 2020. https://en.bitcoin.it/wiki/ (with “Protocol documen-
tation” page describing the reference client behavior).

[10] bitcoin.org. Bitcoin Developer Reference and Guides (for diagrams). https://developer.bitcoin.
org/reference/ and https://developer.bitcoin.org/devguide/index.html.

[11] R. Böhme, N. Christin, B. Edelman, and T. Moore. Bitcoin: Economics, technology and governance.
Journal of Economic Perspectives, 29(2):213–238, 2015.

[12] R. Böhme, L. Eckey, T. Moore, N. Narula, T. Ruffing, and A. Zohar. Responsible vulnerability disclo-
sure for cryptocurrencies. Comm. ACM, 63(10):62–71, 2020.

[13] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W. Felten. SoK: Research perspectives
and challenges for Bitcoin and cryptocurrencies. In IEEE Symp. Security and Privacy, 2015.

[14] A. Bosselaers and B. Preneel. Final Report of RACE Integrity Primitives Evaluation RIPE-RACE 1040.
Springer LNCS 1007, 1995.

[15] D. R. Brown. Standards for Efficient Cryptography (SEC 2): Recommended Elliptic Curve Domain
Parameters. Certicom Research, 27 Jan 2010 (version 2.0).

[16] E. Buchman. Understanding the Ethereum trie, Jan. 2014. Online, https://easythereentropy.
wordpress.com/2014/06/04/understanding-the-ethereum-trie.

[17] V. Buterin. A next generation smart contract and decentralized application platform, 2013. Ethereum
whitepaper.

[18] W. Cai, Z. Wang, J. B. Ernst, Z. Hong, C. Feng, and V. C. M. Leung. Decentralized applications: The
blockchain-empowered software system. IEEE Access, 6:53019–53033, 2018.

407

https://en.bitcoin.it/wiki/Mastering_Bitcoin
https://en.bitcoin.it/wiki/Block_chain_browser
https://en.bitcoin.it/wiki/Block_chain_browser
https://blockchain.com/explorer
https://en.bitcoin.it/wiki/
https://developer.bitcoin.org/reference/
https://developer.bitcoin.org/reference/
https://developer.bitcoin.org/devguide/index.html
https://easythereentropy.wordpress.com/2014/06/04/understanding-the-ethereum-trie
https://easythereentropy.wordpress.com/2014/06/04/understanding-the-ethereum-trie

408 References (Chapter 13)

[19] M. Dameron. Beigepaper: An Ethereum technical specification. v0.8.5 (15 Aug 2019).

[20] L. Dashjr. BIP2: BIP process, revised. 3 Feb 2016, https://github.com/bitcoin/bips/blob/
master/bip-0002.mediawiki. For other BIPs see: https://github.com/bitcoin/bips/.

[21] C. Decker and R. Wattenhofer. Bitcoin transaction malleability and MtGox. In Eur. Symp. Res. in
Comp. Security (ESORICS), pages 313–326, 2014. Springer LNCS 8713 (proceedings, part II).

[22] K. Delmolino, M. Arnett, A. E. Kosba, A. Miller, and E. Shi. Step by step towards creating a safe smart
contract: Lessons and insights from a cryptocurrency lab. In Financial Cryptography Workshops, pages
79–94, 2016. Springer LNCS 9604.

[23] W. Entriken, D. Shirley, J. Evans, and N. Sachs. EIP-721: ERC-721 Non-Fungible Token Standard.
Ethereum Improvement Proposal no.721, Jan 2018, https://eips.ethereum.org/EIPS/eip-721.

[24] S. Eskandari, D. Barrera, E. Stobert, and J. Clark. A first look at the usability of Bitcoin key manage-
ment. In NDSS Workshop on Usable Security (USEC), 2015.

[25] Ethereum Wiki. Patricia Tree—Modified Merkle Patricia Trie Specification (also Merkle Patricia Tree).
April 2021, https://eth.wiki/en/fundamentals/patricia-tree.

[26] ethereum.org. Online resources from the Ethereum community. https://www.ethereum.org.

[27] A. Greenberg. Nakamoto’s neighbor: My hunt for Bitcoin’s creator led to a paralyzed crypto genius.
Forbes, 25 Mar 2014.

[28] G. Gutoski and D. Stebila. Hierarchical deterministic Bitcoin wallets that tolerate key leakage. In
Financial Crypto, pages 497–504, 2015.

[29] X.-J. Jiang and X. F. Liu. CryptoKitties transaction network analysis: The rise and fall of the first
blockchain game mania. Frontiers in Physics, 9. Article 631665, 1–12 (Mar 2021).

[30] D. Johnson, A. Menezes, and S. Vanstone. The elliptic curve digital signature algorithm (ECDSA).
International J. of Information Security, 1(1):36–63, 2001.

[31] H. A. Kalodner, M. Carlsten, P. Ellenbogen, J. Bonneau, and A. Narayanan. An empirical study of
Namecoin and lessons for decentralized namespace design. In WEIS, 2015.

[32] H. A. Kalodner, M. Möser, K. Lee, S. Goldfeder, M. Plattner, A. Chator, and A. Narayanan. BlockSci:
Design and applications of a blockchain analysis platform. In USENIX Security, 2020.

[33] L. Lamport, R. E. Shostak, and M. C. Pease. The Byzantine Generals problem. ACM Trans. Program.
Lang. Syst., 4(3):382–401, 1982. Reprinted in Concurrency: The Works of Leslie Lamport, ACM, 2019.

[34] E. Lombrozo, J. Lau, and P. Wuille. BIP141: Segregated Witness (Consensus Layer). 21 Dec 2015,
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki.

[35] L. Luu, D. Chu, H. Olickel, P. Saxena, and A. Hobor. Making smart contracts smarter. In ACM Comp.
& Comm. Security (CCS), pages 254–269, 2016.

[36] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptography. CRC
Press, 1996. Openly available, https://cacr.uwaterloo.ca/hac/.

[37] R. C. Merkle. Secrecy, Authentication, and Public Key Systems. PhD thesis, Electrical Engineering,
Stanford University, June 1979.

[38] T. Moore and N. Christin. Beware the middleman: Empirical analysis of Bitcoin-exchange risk. In
Financial Crypto, pages 25–33, 2013. Updated with J. Szurdi in: “Revisiting the risks of Bitcoin
currency exchange closure”, ACM TOIT 18(4) 50:1–18, 2018.

[39] P. Morin. Chapter 7: Data Structures for Strings. Section 7.3: Tries, and Section 7.4: Patricia Trees.
Lecture notes—COMP 5408, Carleton University (Canada), Jan 2014, https://cglab.ca/˜morin/
teaching/5408/notes/strings.pdf.

[40] M. Möser and R. Böhme. Trends, tips, tolls: A longitudinal study of Bitcoin transaction fees. In
Financial Cryptography Workshops, pages 19–33, 2015. Springer LNCS 8976.

https://github.com/bitcoin/bips/blob/master/bip-0002.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0002.mediawiki
https://github.com/bitcoin/bips/
https://eips.ethereum.org/EIPS/eip-721
https://eth.wiki/en/fundamentals/patricia-tree
https://www.ethereum.org
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://cacr.uwaterloo.ca/hac/
https://cglab.ca/~morin/teaching/5408/notes/strings.pdf
https://cglab.ca/~morin/teaching/5408/notes/strings.pdf

References (Chapter 13) 409

[41] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, Oct 2008. Unrefereed paper.

[42] A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S. Goldfeder. Bitcoin and Cryptocurrency Tech-
nologies: A Comprehensive Introduction. Princeton University Press, 2016. Open prepublication draft
(9 Feb 2016) available via the Princeton page: http://bitcoinbook.cs.princeton.edu/.

[43] A. Narayanan and J. Clark. Bitcoin’s academic pedigree. Comm. ACM, 60(12):36–45, 2017.

[44] NIST. FIPS 186-4: Digital Signature Standard. U.S. Dept. of Commerce, July 2013.

[45] NIST. FIPS 180-4: Secure Hash Standard (SHS). U.S. Dept. of Commerce, Aug 2015.

[46] NIST. FIPS 202: SHA-3 Standard—Permutation-Based Hash and Extendable-Output Functions. U.S.
Dept. of Commerce, Aug 2015. SHA-3 functions are each based on KECCAK algorithm instances.

[47] F. Ritz and A. Zugenmaier. The impact of uncle rewards on selfish mining in Ethereum. In IEEE
EuroS&P Workshops, pages 50–57, 2018.

[48] S. Ruoti, B. Kaiser, A. Yerukhimovich, J. Clark, and R. K. Cunningham. Blockchain technology: What
is it good for? Comm. ACM, 63(1):46–53, 2020.

[49] A. Serada, T. Sihvonen, and J. T. Harviainen. CryptoKitties and the new ludic economy: How
blockchain introduces value, ownership, and scarcity in digital gaming. Games and Culture, 16(4):457–
480, 2021.

[50] D. Siegel. Understanding the DAO attack. CoinDesk media, 25 June 2016, https://www.coindesk.
com/understanding-dao-hack-journalists.

[51] Y. Sompolinsky and A. Zohar. Secure high-rate transaction processing in Bitcoin. In Financial Crypto,
pages 507–527, 2015.

[52] N. Szabo. Formalizing and securing relationships on public networks. First Monday, 2(9), 1997.
https://firstmonday.org/ojs/index.php/fm/article/view/548.

[53] M. B. Taylor. The evolution of Bitcoin hardware. IEEE Computer, 50(9):58–66, 2017.

[54] P. Tsankov, A. M. Dan, D. Drachsler-Cohen, A. Gervais, F. Bünzli, and M. T. Vechev. Securify:
Practical security analysis of smart contracts. In ACM Comp. & Comm. Security (CCS), 2018.

[55] G. Wood. Ethereum: A secure decentralized generalised transaction ledger, 2019. Ethereum yellowpa-
per, Petersburg version, 8 Jun 2020.

[56] P. Wuille. BIP32: Hierarchical Deterministic Wallets. 11 Feb 2002, https://en.bitcoin.it/wiki/
BIP_0032. Cf. “Deterministic wallet”, https://en.bitcoin.it/wiki/Deterministic_wallet.

[57] C. Yue, Z. Xie, M. Zhang, G. Chen, B. C. Ooi, S. Wang, and X. Xiao. Analysis of indexing structures
for immutable data. In ACM Int. Conf. on Management of Data (SIGMOD), pages 925–935, 2020.

[58] A. Zohar. Bitcoin: Under the hood. Comm. ACM, 58(9):104–113, 2015.

http://bitcoinbook.cs.princeton.edu/
https://www.coindesk.com/understanding-dao-hack-journalists
https://www.coindesk.com/understanding-dao-hack-journalists
https://firstmonday.org/ojs/index.php/fm/article/view/548
https://en.bitcoin.it/wiki/BIP_0032
https://en.bitcoin.it/wiki/BIP_0032
https://en.bitcoin.it/wiki/Deterministic_wallet

	Bitcoin, Blockchains and Ethereum
	Bitcoin overview
	Transaction types and fields
	*Bitcoin script execution (signature validation)
	Block structure, Merkle trees and the blockchain
	Mining of blocks, block preparation and hashing targets
	Building the blockchain, validation, and full nodes
	*Simple payment verification, user wallets, private keys
	*Ethereum and smart contracts
	*End notes and further reading

