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Chapter 2

Cryptographic Building Blocks

This chapter introduces basic cryptographic mechanisms that serve as foundational build-
ing blocks for computer security: symmetric-key and public-key encryption, public-key
digital signatures, hash functions, and message authentication codes. Other mathematical
and crypto background is deferred to specific chapters as warranted by context. For exam-
ple, Chapter 3 provides background on (Shannon) entropy and one-time password hash
chains, while Chapter 4 covers authentication protocols and key establishment includ-
ing Diffie-Hellman key agreement. Digital certificates are introduced here briefly, with
detailed discussion delayed until Chapter 8.

If computer security were house-building, cryptography might be the electrical wiring
and power supply. The framers, roofers, plumbers, and masons must know enough to not
electrocute themselves, but need not understand the finer details of wiring the main panel-
board, nor all the electrical footnotes in the building code. However, while our main
focus is not cryptography, we should know the best tools available for each task. Many
of our needs are met by understanding the properties and interface specifications of these
tools—in this book, we are interested in their input-output behavior more than internal
details. We are more interested in helping readers, as software developers, to properly use
cryptographic toolkits, than to build the toolkits, or design the algorithms within them.

We also convey a few basic rules of thumb. One is: do not design your own crypto-
graphic protocols or algorithms.1 Plugging in your own desk lamp is fine, but leave it to a
master electrician to upgrade the electrical panel.

2.1 Encryption and decryption (generic concepts)

An algorithm is a series of steps, often implemented in software programs or hardware.
Encryption (and decryption) algorithms are a fundamental means for providing data con-
fidentiality, especially in distributed communications systems. They are parameterized by
a cryptographic key; think of a key as a binary string representing a large, secret number.

1This follows principle P9 (TIME-TESTED-TOOLS) from Chapter 1. The example on page 33 illustrates.
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2.1. Encryption and decryption (generic concepts) 31

PLAINTEXT AND CIPHERTEXT. Encryption transforms data (plaintext) into an un-
intelligible form (ciphertext). The process is reversible: a decryption key allows recovery
of plaintext, using a corresponding decryption algorithm. Access to the decryption key
controls access to the plaintext; thus (only) authorized parties are given access to this key.
It is generally assumed that the algorithms are known,2 but that only authorized parties
have the secret key. Sensitive information should be encrypted before transmission (as-
sume communicated data is subject to eavesdropping, and possibly modification), and
before saving to storage media if there is concern about adversaries accessing the media.

D	

Ch.2.	Generic	encryp.on	(E)	and	decryp.on	(D).	For	the	case	of	symmetric-key	
encryp.on,	E	and	D	use	the	same	shared	(symmetric)	key	$k	=	k	^	\prime$,	
E	and	D	are	inverses	under	that	parameter,	and	one	of	the	pair	is		
some.mes	denoted	a	“forward”	algorithm”,	the	other	a	“reverse”.			
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Figure 2.1: Generic encryption (E) and decryption (D). For symmetric encryption, E and
D use the same shared (symmetric) key k = k′, and are thus inverses under that parameter;
one is sometimes called the “forward” algorithm, the other the “inverse”. The original
Internet threat model (Chapter 1) and conventional cryptographic model assume that an
adversary has no access to endpoints. This is false if malware infects user machines.

GENERIC ENCRYPTION NOTATION. Let m denote a plaintext message, c the cipher-
text, and Ek, Dk′ the encryption, decryption algorithms parameterized by symmetric keys
k, k′ respectively. We describe encryption and decryption with equations (Figure 2.1):

c = Ek(m); m = Dk′(c) (2.1)

Exercise (Caesar cipher). Caesar’s famous cipher was rather simple. The encryption
algorithm simply substituted each alphabetic plaintext character by that occurring three
letters later in the alphabet. Describe the algorithms E and D of the Caesar cipher mathe-
matically. What is the cryptographic key? How many other keys could be chosen?

In the terminology of mathematicians, we can describe an encryption-decryption sys-
tem (cryptosystem) to consist of: a set P of possible plaintexts, set C of possible ci-
phertexts, set K of keys, an encryption mapping E: (P ×K )→ C and corresponding
decryption mapping D: (C ×K )→ P . But such notation makes it all seem less fun.

EXHAUSTIVE KEY SEARCH. We rely on cryptographers to provide “good” algo-
rithms E and D. A critical property is that it be infeasible to recover m from c without
knowledge of k′. The best an adversary can then do, upon intercepting a ciphertext c, is
to go through all keys k from the key space K , parameterizing D with each k sequentially,
computing each Dk(c) and looking for some meaningful result; we call this an exhaustive
key search. If there are no algorithmic weaknesses, then no algorithmic “shortcut” attacks

2This follows the OPEN-DESIGN principle P3 from Chapter 1.



32 Chapter 2. Cryptographic Building Blocks

exist, and the whole key space must be tried. More precisely, an attacker of average luck
is expected to come across the correct key after trying half the key space; so, if the keys
are strings of 128 bits, then there are 2128 keys, with success expected after 2127 trials.
This number is so large that we will all be long dead (and cold!)3 before the key is found.

Example (DES key space). The first cipher widely used in industry was DES, stan-
dardized by the U.S. government in 1977. Its key length of 56 bits yields 256 possible
keys. To visualize key search on a space this size, imagine keys as golf balls, and a 2400-
mile super-highway from Los Angeles to New York, 316 twelve-foot lanes wide and 316
lanes tall. Its entire volume is filled with white golf balls, except for one black ball. Your
task: find the black ball, viewing only one ball at a time. (By the way, DES is no longer
used, as modern processors make exhaustive key search of spaces of this size too easy!)

‡CIPHER ATTACK MODELS.4 In a ciphertext-only attack, an adversary tries to re-
cover plaintext (or the key), given access to ciphertext alone. Other scenarios, more fa-
vorable to adversaries, are sometimes possible, and are used in evaluation of encryption
algorithms. In a known-plaintext attack, given access to some ciphertext and its corre-
sponding plaintext, adversaries try to recover unknown plaintext (or the key) from further
ciphertext. A chosen-plaintext situation allows adversaries to choose some amount of
plaintext and see the resulting ciphertext. Such additional control may allow advanced
analysis that defeats weaker algorithms. Yet another attack model is a chosen-ciphertext
attack; here for a fixed key, attackers can provide ciphertext of their choosing, and receive
back the corresponding plaintext; the game is to again deduce the secret key, or other in-
formation sufficient to decrypt new ciphertext. An ideal encryption algorithm resists all
these attack models, ruling out algorithmic “shortcuts”, leaving only exhaustive search.

PASSIVE VS. ACTIVE ADVERSARY. A passive adversary observes and records, but
does not alter information (e.g., ciphertext-only, known-plaintext attacks). An active ad-
versary interacts with ongoing transmissions, by injecting data or altering them, or starts
new interactions with legitimate parties (e.g., chosen-plaintext, chosen-ciphertext attacks).

2.2 Symmetric-key encryption and decryption

We distinguish two categories of algorithms: symmetric-key or symmetric encryption
(also called secret-key), and asymmetric encryption (also called public-key). In symmetric-
key encryption, the encryption and decryption keys are the same, i.e., k = k′ in equation
(2.1). In public-key systems they differ, as we shall see. We introduce symmetric encryp-
tion with the following example of a stream cipher.

Example (Vernam cipher). The Vernam cipher encrypts plaintext one bit at a time
(Figure 2.2). It needs a key as long as the plaintext. To encrypt a t-bit message m1m2...mt ,

3Our sun’s lifetime, approximately 10 billion years, is < 260 seconds. Thus even if 1015 ≈ 250 keys were
tested per second, the time to find the correct 128-bit key would exceed 217 = 128,000 lifetimes of the sun.
Nonetheless, for SUFFICIENT-WORK-FACTOR (P12), and mindful that serious attackers harness enormous
numbers of processors in parallel, standards commonly recommend symmetric keys be at least 128 bits.

4The symbol ‡ denotes research-level items, or notes that can be skipped on first reading.
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using key k = k1k2...kt , the algorithm is bitwise exclusive-OR: ci = mi⊕ ki yielding ci-
phertext c = c1c2...ct . Plaintext recovery is again by exclusive-OR: mi = ci⊕ ki. If k is
randomly chosen and never reused, the Vernam stream cipher is called a one-time pad.
One-time pads are known to provide a theoretically unbreakable encryption system. As
a proof sketch, consider a fixed ciphertext c = c1c2...ct . For every possible plaintext
m = m1m2...mt , there is a key k such that c decrypts to m, defined by ki = ci⊕mi; thus c
may originate from any possible plaintext. (Convince yourself of this with a small exam-
ple, encoding lowercase letters a-z using 5 bits each.) Observing c tells an attacker only
its length. Despite this strength, one-time pads are little-used in practice: single-use, long
keys are difficult to distribute and manage, and if you can securely distribute a secret key
as long as the message, you could use that method to deliver the message itself.

Ch.2.	Vernam	cipher.	Ciphertext	bits	ci	result	from	simple	exclusive-or.	If	the	
shared	keystream	is	a	sequence	of	truly	random,	independent	bits	that	is	never	
re-used,	then	this	is	called	a	one-?me	pad,	and	is	known	to	be	unbreakable.		It	is	
not	widely	used	in	prac?ce	due	to	the	imprac?cality	of	managing	such	keystreams.	

ki	
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+	

ci= mi     ki	+	

k	=	k1k2k3 ...	

+	
a)	encryp?on	 b)	decryp?on	

m	=	m1m2 ...		

mi= ci     ki	+	
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shared	keystream	

Bob	Alice	

message	bits	mi	

Figure 2.2: Vernam cipher. If the keystream is a sequence of truly random, independent
bits that is never reused, then this is an unbreakable one-time pad. Practical encryption
systems aim to mimic the one-time pad using shortcuts without compromising security.

Example (One-time pad has no integrity). The one-time pad is theoretically unbreak-
able, in that the key is required to recover plaintext from its ciphertext. Does this mean it
is secure? The answer depends on your definition of “secure”. An unexpected property
is problematic here: encryption alone does not guarantee integrity. To see this, suppose
your salary is $65,536, or in binary (00000001 00000000 00000000). Suppose this
value is stored in a file after one-time pad encryption. To tamper, you replace the most
significant ciphertext byte by the value obtained by XORing a 1-bit anywhere other than
with its low-order bit (that plaintext bit is already 1). Now on decryption, the keystream bit
XOR’d onto that bit position by encryption will be removed (Fig. 2.2), so regardless of the
keystream bit values, your tampering has flipped the underlying plaintext bit (originally
0). Congratulations on your pay raise! This illustrates how intuition can mislead us, and
motivates a general rule: use only cryptographic algorithms both designed by experts, and
having survived long scrutiny by others; similarly for cryptographic protocols (Chapter
4). As experienced developers know, even correct use of crypto libraries is challenging.

‡CIPHER ATTACKS IN PRACTICE. The one-time pad is said to be information-
theoretically secure for confidentiality: even given unlimited computing power and time,
an attacker without the key cannot recover plaintext from ciphertext. Ciphers commonly
used in practice offer only computational security,5 protecting against attackers modeled
as having fixed computational resources, and thus assumed to be unable to exhaustively
try all keys in huge key spaces. Such ciphers may fail due to algorithmic weaknesses, or

5Computational security is also discussed with respect to hash functions in Section 2.5.
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Ch.2.	AES	input-output	interfaces,	as	an	example	of	a		block	cipher.		

key	k	

AES	

(forward)	

plaintext	input	

AES	

(inverse)	

ciphertext	output		

blocklength		
n	=	128	bits			

n		

n		 n		

n		
keylength	y	
128,	192,	256	bits		

ciphertext	input		

plaintext	output		
n	bits	

a)	encrypIon	 b)	decrypIon	Bob	Alice	
key	k	

Figure 2.3: AES interface (block cipher example). For a fixed key k, a block cipher
with n-bit blocklength is a permutation that maps each of 2n possible input blocks to a
unique n-bit output block, and the inverse (or decrypt) mode does the reverse mapping (as
required to recover the plaintext). Ideally, each k defines a different permutation.

a key space so small that all keys can be tested in available time, or keys being covertly
accessed in memory. Exhaustive key-guessing attacks require an automated method to
signal when a key-guess is correct; this may be done using known plaintext-ciphertext
pairs, or by recognizing redundancy, e.g., ASCII coding in a decrypted bitstream.

STREAM CIPHERS. The Vernam cipher is an example of a stream cipher, which in
simplest form, involves generating a keystream simply XOR’d onto plaintext bits; decryp-
tion involves XORing the ciphertext with the same keystream. In contrast to block ciphers
(below), there are no requirements that the plaintext length be a multiple of, e.g., 128 bits.
Thus stream ciphers are suitable when there is a need to encrypt plaintext one bit or one
character at a time, e.g., user-typed characters sent to a remote site in real time. A sim-
plified view of stream ciphers is that they turn a fixed-size secret (symmetric key) into an
arbitrary-length secret keystream unpredictable to adversaries. The mapping of the next
plaintext bit to ciphertext is a position-varying transformation dependent on the input key.

BLOCK CIPHERS, BLOCKLENGTH, KEY SIZE. A second class of symmetric ci-
phers, block ciphers, processes plaintext in fixed-length chunks or blocks. Each block,
perhaps a group of ASCII-encoded characters, is encrypted with a fixed transformation
dependent on the key. From a black-box (input-output) perspective, a block cipher’s main
properties are blocklength (block size in bits) and keylength (key size in bits). When using
a block cipher, if the last plaintext block has fewer bits than the blocklength, it is padded
with “filler” characters. A common non-ambiguous padding rule is to always append a
1-bit, followed by zero or more 0-bits as necessary to fill out the block.

AES BLOCK CIPHER. Today’s most widely used block cipher is AES (Figure 2.3),
specified by the Advanced Encryption Standard. Created by researchers at Flemish uni-
versity KU Leuven, the algorithm itself (Rijndael) was selected after an open, multi-year
competition run by the (U.S.) National Institute of Standards and Technology (NIST). A
similar NIST competition resulted in the SHA-3 hash function (Section 2.5). Table 2.2
(Section 2.7) compares AES interface parameters with other algorithms.
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‡MESSAGE EXPANSION. Symmetric ciphers are typically length-preserving, i.e., the
ciphertext consumes no more space than the plaintext, in which case in-place encryption
is possible (e.g., in a storage context, plaintext may be replaced by ciphertext without
requiring additional memory). Often however, to provide integrity guarantees (Section
2.7), the ciphertext is accompanied by an authentication tag incurring message expansion.
Extra space may also be needed for related parameters (e.g., IVs below; nonces page 48).

D	

Ch.2.	Modes	of	opera/on	of	a	block	cipher.	$\plus$	is	exclusive-or.	The	IV	is	
an	ini/aliza/on	vector	is	...	

mi	

key	k	

Message	m	=	m1m2m3...mt		
Blocks	mi have	bitlength	n,		
to	match	E’s	blocklength		

E	

ci =	Ek(mi)	
	

a)	ECB	mode	

E:	block	cipher,	encrypt	opera/on	
D:	block	cipher,	decrypt	opera/on	

mi =	Dk(ci)	

+	

E	

D	

ci	
ci-1	

c0 =	IV	

mi	

b)	CBC	mode	

k	

k	

+	 ci-1	

mi= Dk(ci)					ci-1	+	ci= Ek(mi    ci-1)	+	

Figure 2.4: ECB and CBC modes of operation. The plaintext m = m1m2 · · ·mt becomes
ciphertext c = c1c2 · · ·ct of the same length. ⊕ denotes bitwise exclusive-OR. Here the
IV (initialization vector) is a bitstring of length equal to the cipher’s blocklength (e.g.,
n = 128). In CBC mode, if a fixed m is encrypted under the same key k and same IV, the
resulting ciphertext blocks are the same each time; changing the IV disrupts this.

ECB ENCRYPTION AND MODES OF OPERATION. Let E denote a block cipher with
blocklength n, say n = 128. If a plaintext m has bitlength exactly n also, equation (2.1) is
used directly with just one 128-bit “block operation”. Longer plaintexts are broken into
128-bit blocks for encryption—so a 512-bit plaintext is processed in four blocks. The
block operation maps each of the 2128 possible 128-bit input blocks to a distinct 128-bit
ciphertext block (this allows the mapping to be reversed; the block operation is a permu-
tation). Each key defines a fixed such “code-book” mapping. In the simplest case (Figure
2.4a), each encryption block operation is independent of adjacent blocks; this is called
electronic code-book (ECB) mode of the block cipher E. If a given key k is used to en-
crypt several identical plaintext blocks mi, then identical ciphertext blocks ci result; ECB
mode does not hide such patterns. This information leak can be addressed by including
random bits within a reserved field in each block, but that is inefficient and awkward. In-
stead, various methods called modes of operation (below) combine successive n-bit block
operations such that the encryption of one block depends on other blocks.

BLOCK CIPHER MODE EXAMPLES: CBC, CTR. For reasons noted above, ECB
mode is discouraged for messages exceeding one block, or if one key is used for multi-
ple messages. Instead, standard block cipher modes of operation are used to make block
encryptions depend on adjacent blocks (the block encryption mapping is then context-
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Ch.2.	Counter	(CTR)	mode	of	opera5on	of	a	block	cipher.		E	denotes	a	block	cipher	

(encrypt	opera5on)	with	blocklength	$n$	(e.g.,	$n	=	128$).	CTR	mode	can	be	

viewed	as	using	ECB	encryp5on	on	an	incremen5ng	index	(counter)	to	generate	a	

keystream	of	blocks,	each	exclusive-OR’d	onto	a	corresponding	plaintext	block.	

Note	that	the	processed	is	reversed	by	genera5ng	the	same	keystream	again	using	

ECB	encryp5on	(the	``reverse”	algorithm,	or	ECB	decryp5on,	is	not	used).		

			Counter	(CTR)	mode	

	

Message	m	=	m
1
m
2
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1
c
2
...	ct		
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Figure 2.5: Counter (CTR) mode of operation. E denotes a block cipher (encrypt opera-
tion) with blocklength n, commonly n = 128. CTR mode ECB-encrypts an incrementing
index (counter) to generate a keystream of blocks to XOR onto corresponding plaintext
blocks. To reverse the process, decryption regenerates the same keystream using ECB
encryption (note that the “inverse” algorithm, or ECB decryption, is not used in this case).

sensitive). Figure 2.4b illustrates the historical cipher-block chaining (CBC) mode of
operation; others, including CTR mode (Fig. 2.5), are now recommended over CBC, for
technical reasons beyond our scope. Some modes, including CTR, use the block cipher to
produce a keystream and effectively operate as a stream cipher processing “large” sym-
bols; modes of operation can thus build stream ciphers from block ciphers (Fig. 2.6).

Ch.2.	Block	cipher	(le0)	vs.	stream	cipher	(right).		
Plaintext	blocks	might	be	128	bits.		If	the	stream	cipher	encrypAon	operates	
on	symbols	(e.g.,	8-bit	units)	rather	than	bits,	then	the	units	output	by	the	
keystream	generator	match	that	size.		

encrypt	plaintext	block	

decrypt	

ciphertext	block	

plaintext	block	

k	keystream	
generator	ki	...	plaintext	bit				mi				 +	

ciphertext	bit					ci					

+	plaintext	bit				mi				

k	

k	 k	keystream	
generator	ki	...	

Figure 2.6: Block cipher (left) vs. stream cipher (right). Plaintext blocks might be 128
bits. The stream cipher encryption may operate on symbols (e.g., 8-bit units) rather than
individual bits; in this case the units output by the keystream generator match that size.

‡Exercise (ECB leakage of patterns). For a picture with large uniform color patterns,
obtain its uncompressed bitmap image file (each pixel’s color is represented using, e.g.,
32 or 64 bits). ECB-encrypt the bitmap using a block cipher of blocklength 64 or 128 bits.
Report on any data patterns evident when the encrypted bitmap is displayed.

‡Exercise (Modes of operation: properties). Summarize the properties, advantages
and disadvantages of the following long-standing modes of operation: ECB, CBC, CTR,
CFB, OFB (hint: [22, pages 228–233] or [26]). Do the same for XTS (hint: [11]).

ENCRYPTION IN PRACTICE. In practice today, symmetric-key encryption is almost
always accompanied by a means to provide integrity protection (not just confidentiality).
Such authenticated encryption is discussed in Section 2.7, after an explanation of message
authentication codes (MACs) in Section 2.6.
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2.3 Public-key encryption and decryption

For symmetric-key encryption, k denoted a key shared between two parties. For public-
key encryption, we label keys with a subscript denoting the single party they belong to. In
fact each party has a key pair, e.g., (eB,dB) for Bob, consisting of an encryption public key
eB, which can be publicized as belonging to Bob, and a decryption private key dB, which
Bob should keep secret and share with no one. (Of course, it may be prudent for Bob to
back up dB; and neither the primary copy, nor the backup, should ever appear in plaintext
form in untrusted storage. Practical issues start to complicate things quickly!)

To public-key encrypt a message m for Bob, Alice obtains Bob’s public key eB, uses it
to parameterize the associated public-key encryption algorithm E, encrypts m to ciphertext
c per (2.2), and sends c to Bob (Figure 2.7). Bob recovers m using the corresponding
known public-key decryption algorithm D, parameterized by his private key dB.

c = EeB(m); m = DdB
(c) (2.2)

INTEGRITY OF PUBLIC KEY IS IMPORTANT. A public key can be published, for
example like a phone number in an old-style phonebook. It need not be kept secret. But
its integrity (and authenticity) is critical—for, if Charlene could replace Bob’s public key
by her own, then someone who thought they were encrypting something under a public
key for Bob’s eyes only, would instead be making the plaintext recoverable by Charlene.

KEY DISTRIBUTION: SYMMETRIC VS. PUBLIC KEY. If a group of n users wish
to use symmetric encryption for pairwise confidential communications, each pair should
use (shared between the pair) a different symmetric key. This requires

(n
2

)
= n(n− 1)/2

keys, i.e., O(n2) keys. For n = 4 this is just 6, but for n = 100 this is already 4950. As n
grows, keys become unwieldy to distribute and manage securely. In contrast, for public-
key encryption, each party needs only one set of (public, private) keys in order to allow
all other parties to encrypt for them—thus requiring only n key pairs in total.

D	

Ch.2.	Comparison:	symmetric-key	vs.	public-key	encryp9on-decryp9on.	For	
symmetric-key	case,	the	same	shared	key	is	used	to	encrypt	and	decrypt.	
In	the	public-key	(asymmetric)	case,	dis9nct	encryp9on	and	decryp9on	keys	
are	used;	one	is	public,	one	is	private.		

m:	plaintext,			c:	ciphertext		
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c =	Ek(m)	

Bob	
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m =	Dk(c)	
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Figure 2.7: Symmetric-key vs. public-key encryption. The symmetric-key case uses the
same shared key to encrypt and decrypt. The public-key (asymmetric) case uses distinct
encrypt and decrypt keys—one public, one private. Some people use “private key” to refer
to secrets in asymmetric systems, and “secret key” for those in symmetric-key systems.
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Ch.2.	Hybrid	encryp0on.		The	main	data	(a	payload	message)	is	encrypted	using	a	
symmetric	key,	and	that	key	is	made	available	by	public-key	methods.	Here	Alice	
creates	a	symmetric	key	k	and	using	it	with	a	symmetric-key	algorithm,	encrypts	the	
message.	The	message	key	is	encrypted	for	Bob	using	his	RSA	public	key		eB.	
Alterna0vely,	k	is	a	shared	Alice-Bob	key	established	byDiffie-Hellman	key	agreement	
(Chapter	4).		Case	3	(non-hybrid):	k	is	a	data	key,	protected	by	a	symmetric	key-
encryp0ng	key	or	KEK),	e.g.,	using	a	key	hierarchy	per	Google	(see	AJM	slides,	Sept	
2018).	
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c			(encrypted	payload)	
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Figure 2.8: Hybrid encryption. The main data (payload message m) is encrypted using
a symmetric key k, while k is made available by public-key methods. As shown, an
originator (say Alice) encrypts a message key k for Bob alone using his public key eB (e.g.,
an RSA key), and attaches this encrypted k to the encrypted payload; this suits a store-and-
forward case (e.g., email). For a real-time communication session, k may alternatively be
a shared Alice-Bob key established by Diffie-Hellman key agreement (Chapter 4).

HYBRID ENCRYPTION. Symmetric-key algorithms are typically faster than public-
key algorithms. On the other hand, public-key methods are convenient for establishing
shared secret keys between endpoints (as just noted). Therefore, to send encrypted mes-
sages, often public-key methods are used to establish a shared symmetric key k (session
key) between communication endpoints, and k is then used in a symmetric-key algorithm
for efficient “bulk encryption” of a payload message m. See Fig. 2.8. Thus a primary use
of RSA encryption (below) is to encrypt relatively short data keys or session keys, i.e., for
key management (Chapter 4), rather than for bulk encryption of messages themselves.

‡MATH DETAILS: RSA PUBLIC-KEY ENCRYPTION. Here we outline the techni-
cal details of RSA, the first popular public-key encryption method. Per notation above,
a party A has a public key eA and private key dA. When used to parameterize the corre-
sponding algorithms E and D, the context is clear and we can use EA and DA to denote the
parameterized algorithms, e.g., EeA(m)≡ EA(m). For RSA, eA = (e,n). Here n = pq, and
parameters e,d, p,q must satisfy various security properties. Those of present interest are
that p and q are secret large primes (e.g., 1000 bits), and e is an integer chosen such that:

gcd(e,φ(n)) = 1 where φ(n) = (p−1)(q−1) in this case.
gcd is the greatest common divisor function, and φ(n) is the Euler phi function, the num-
ber of integers in [1,n] relatively prime to n; its main properties of present interest are
that for a prime p, φ(p) = p− 1, and that if p and q have no factors in common other
than 1 then φ(pq) = φ(p) · φ(q). For RSA, dA = (d,n) where d is computed to satisfy
ed ≡ 1(mod φ(n)), i.e., ed = 1+ (some integer multiple of φ(n)). Now let m be a message
whose binary representation, interpreted as an integer, is less than n (e.g., 2000 bits).

RSA encryption of plaintext m: c = me(mod n), i.e., reduced modulo n
RSA decryption of ciphertext c: m = cd(mod n)

By this we mean, assign to c the number resulting from the modular exponentiation of
m by the exponent e, reduced modulo n. Operations on numbers of this size require spe-
cial “big number” support, provided by crypto libraries such as OpenSSL. Using RSA in
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practice is somewhat more complicated, but the above gives the basic technical details.
‡Exercise (RSA toy example). You’d like to explain to a 10-year-old how RSA works.

Using p = 5 and q = 7, encrypt and decrypt a “message” (use a number less than n). Here
n = 35, and φ(n) = (p− 1)(q− 1) = (4)(6) = 24. Does e = 5 satisfy the rules? Does
that then imply d = 5 to satisfy the required equation? Now with pencil and paper—yes,
by hand!—compute the RSA encryption of m = 2 to ciphertext c, and the decryption of
c back to m. The exponentiation is commonly done by repeated multiplication, reducing
partial results mod n (i.e., subtract off multiples of the modulus 35 in interim steps). This
example is so artificially small that the parameters “run into each other”—so perhaps for
a 12-year-old, you might try an example using p = 11 and q = 13.

‡Exercise (RSA decryption). Using the above equations defining RSA, show that
RSA decryption actually works, i.e., recovers m. (Hint: [22, page 286].)

2.4 Digital signatures and verification using public keys

Digital signatures, typically computed using public-key algorithms, are tags (bitstrings)
that accompany messages. Each tag is a mathematical function of a message (its exact
bitstring) and a unique-per-sender private key. A corresponding public key, uniquely as-
sociated with the sender, allows automated verification that the message originated from
that individual, since only that individual knows the private key needed to create the tag.

The name originates from the idea of a replacement (for digital documents) for hand-
written signatures, with stronger assurances. The late 1990s saw considerable interna-
tional effort towards deploying digital signatures as an actual (legally binding) replace-
ment for handwritten signatures, but many legal and technical issues arose; in current
practice, digital signatures are most commonly used for authentication purposes.

SIGNATURE PROPERTIES. Digital signatures provide three properties:
1. Data origin authentication: assurance of who originated (signed) a message or file.
2. Data integrity: assurance that received content is the same as that originally signed.
3. Non-repudiation: strong evidence of unique origination, making it hard for a party

to digitally sign data and later successfully deny having done so. This is an impor-
tant advantage over MACs (Section 2.6), and follows from signature verification not
requiring the signer’s private key—verifiers use the signer’s public key.
NON-REPUDIATION IN PRACTICE. This property assumes that only the legitimate

party has access to their own signing private key. One might try to deny having executed a
signature by claiming “my private key spilled onto the street—someone else must be us-
ing it!” This assertion will raise suspicion if repeated, but highlights a critical requirement
for digital signatures: ordinary users must somehow have the ability, by appropriate tech-
nology or training, to prevent others from accessing their private keys. Arguably, this has
posed a barrier to digital signatures replacing handwritten signatures on legal documents,
while their use for computer-related authentication applications faces lower barriers.

DETAILS OF PUBLIC-KEY SIGNATURES. Public-key methods can be used to im-
plement digital signatures by a process similar to encryption-decryption, but with subtle
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Ch.2.	Public-key	signature	genera6on-verifica6on	and	encryp6on-decryp6on.		
For	Alice	to	encrypt	for	Bob,	she	must	use	his	encryp6on	public	key;	
but	to	sign	a	message	for	Bob,	she	uses	her	own	signature	private	key.	To	reduce	
confusion,	some	people	use	``private	key’’	to	refer	to	the	secrets	in	
asymmetric	systems,	and	``secret	key”	to	refer	to	those	in	symmetric-key	systems.	

sA:	signing	private	key	(of	Alice)	
vA:	verifica6on	public	key	(of	Alice)	

a)	Public-key	signature	 b)	Public-key	encryp6on	
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Figure 2.9: Public-key signature generation-verification vs. encryption-decryption. For
Alice to encrypt for Bob, she must use his encryption public key; but to sign a message
for Bob, she uses her own signature private key. In a), Alice sends to Bob a pair (m, t)
providing message and signature tag, analogous to the (message, tag) pair sent when using
MACs (Figure 2.12). Internal details on signature algorithm S are given in Figure 2.11.

differences (which thoroughly confuse non-experts). The public and private parts are used
in reverse order (the originator uses the private key now), and the key used for signing is
that of the message originator, not the recipient. The details are as follows (Figure 2.9).

In place of encryption public keys, decryption private keys, and algorithms E, D (en-
crypt, decrypt), we now have signing private keys for signature generation, verification
public keys to validate signatures, and algorithms S, V (sign, verify). To sign message
m, Alice uses her signing private key sA to create a tag tA = SsA(m) and sends (m, tA).
Upon receiving a message-tag pair (m′, t ′A) (the notation change allowing that the pair sent
might be modified en route), any recipient can use Alice’s verification public key vA to
test whether t ′A is a matching tag for m′ from Alice, by computing VvA(m

′, t ′A). This returns
VALID if the match is confirmed, otherwise INVALID. Just as for MAC tags (later), even
if verification succeeds, in some applications it may be important to use additional means
to confirm that (m′, t ′A) is not simply a replay of an earlier legitimate signed message.

Exercise (Combining signing and encrypting). Alice wishes to both encrypt and sign
a message m for Bob. Specify the actions that Alice must carry out, and the data values
to be sent to Bob. Explain your choice of whether signing or encryption should be done
first. Be specific about what data values are included within the scope of the signature
operation, and the encryption operation; use equations as necessary. Similarly specify the
actions Bob must carry out to both decrypt the message and verify the digital signature.
(Note the analogous question in Section 2.7 on how to combine MACs with encryption.)

DISTINCT TERMINOLOGY FOR SIGNATURES AND ENCRYPTION. Even among
university professors, great confusion is caused by misusing encryption-decryption termi-
nology to describe operations involving signatures. For example, it is common to hear and
read that signature generation or verification involves “encrypting” or “decrypting” a mes-
sage or its hash value. This unfortunate wording unnecessarily conflates distinct functions
(signatures and encryption), and predisposes students—and more dangerously, software
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developers—to believe that it is acceptable to use the same (public, private) key pair for
signatures and confidentiality. (Some signature algorithms are technically incompatible
with encryption; the RSA algorithm can technically be used to provide both signatures
and encryption, but proper implementations of these two functions differ considerably in
detail, and it is prudent to use distinct key pairs.) Herein, we carefully avoid the terms en-
cryption and decryption when describing digital signature operations, and also encourage
using the terms public-key operation and private-key operation.

DIGITAL SIGNATURES IN PRACTICE. For efficiency reasons, digital signatures are
commonly used in conjunction with hash functions, as explained in Section 2.5. This is
one of several motivations for discussing hash functions next.

2.5 Cryptographic hash functions

Cryptographic hash functions help solve many problems in security. They take as input
any binary string (e.g., message or file) and produce a fixed-length output called a hash
value, hash, message digest or digital fingerprint. They typically map longer into shorter
strings, as do other (non-crypto) hash functions in computer science, but have special
properties. Hereafter, “hash function” means cryptographic hash function (Figure 2.10).

Ch.2.	Cryptographic	hash	func3on.			In	almost	all	cases,	a	base	requirement	is		
some	form	of	``one-wayness”	property.	Depending	on	the	specific	applica3on		
of	use,		addi3onal	technical	proper3es	are	required.		For	suitable	hash	func3ns,	
the	output	is,	for	prac3cal	purposes,	uniquely	iden3fiable	with	an	input.	

h	=	H(m)	

easy	to	compute		

MAC	verifica3on	

input:		arbitrary-length	string	

H	
	

cryptographic	
	hash	func3on	

hard	to	invert	

m	

output:	fixed-length	string	

Figure 2.10: Cryptographic hash function. A base requirement is a “one-wayness” prop-
erty. Depending on the application of use, additional technical properties are required.

A hash value is ideally an efficiently computable, compact representation intended,
in practice, to be associated with a unique input. For a good hash function, changing a
single binary digit (bit) of input results in entirely unpredictable output changes (50% of
output bits change on average). Hashes are often used as a type of secure checksum whose
mappings are too complex to predict or manipulate—and thus hard to exploit.

PROPERTIES OF CRYPTOGRAPHIC HASH FUNCTIONS. We use H to denote a hash
function algorithm. It is generally assumed that the details of H are openly known. We
want functions H such that, given any input m, the computational cost to compute H(m) is
relatively small. Three hash function security properties are often needed in practice:
(H1) one-way property (or preimage resistance): for essentially all possible hash values

h, given h it should be infeasible to find any m such that H(m) = h.
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(H2) second-preimage resistance: given any first input m1, it should be infeasible to find
any distinct second input m2 such that H(m1) = H(m2). (Note: there is free choice
of m2 but m1 is fixed. H(m1) is the target image to match; m1 is its preimage.)

(H3) collision resistance: it should be infeasible to find any pair of distinct inputs m1,
m2 such that H(m1) = H(m2). (Note: here there is free choice of both m1 and m2.
When two distinct inputs hash to the same output value, we call it a collision.)

The properties required vary across applications. As examples will elaborate later, H1 is
required for password hash chains (Chapter 3) and also for storing password hashes; for
digital signatures, H2 suffices if an attacker cannot choose a message for others to sign,
but H3 is required if an attacker can choose the message to be signed by others—otherwise
an attacker may get you to sign m1 and then claim that you signed m2.

COMPUTATIONAL SECURITY. The one-way property (H1) implies that given a hash
value, an input that produces that hash cannot be easily found—even though many, many
inputs do indeed map to each output. To see this, restrict your attention to only those inputs
of exactly 512 bits, and suppose the hash function output has bitlength 128. Then H maps
each of these 2512 input strings to one of 2128 possible output strings—so on average, 2384

inputs map to each 128-bit output. Thus enormous numbers of collisions exist, but they
should be hard to find in practice; what we have in mind here is called computational
security. Similarly, the term “infeasible” as used in (H1)-(H3) means computationally
infeasible in practice, i.e., assuming all resources that an attacker might be able to harness
over the period of desired protection (and erring on the side of caution for defenders).6

COMMENT ON BLACK MAGIC. It may be hard to imagine that functions with prop-
erties (H1)-(H3) exist. Their design is a highly specialized art of its own. The role of
security developers is not to design such functions, but to follow the advice of crypto-
graphic experts, who recommend appropriate hash functions for the tasks at hand.

‡Exercise (CRC vs. cryptographic hash). Explain why a cyclical redundancy code
(CRC) algorithm, e.g., a 16- or 32-bit CRC commonly used in network communications
for integrity, is not suitable as a cryptographic hash function (hint: [22, p.363]).

Hash functions fall into two broad service classes in security, as discussed next.
ONE-WAY HASH FUNCTIONS. Applications in which “one-wayness” is critical (e.g.,

password hashing, below), require property H1. In practice, hash functions with H1 of-
ten also provide H2. We prefer to call the first property preimage resistance, because
traditionally functions providing both H1 and H2 are called one-way hash functions.

COLLISION-RESISTANT HASH FUNCTIONS. A second usage class relies heavily
on the requirement (property) that it be hard to find two inputs having the same hash. If
this is not so, then in some applications using hash functions, an attacker finding such a
pair of inputs might benefit by substituting a second such input in place of the first. As
it turns out, second-preimage resistance (H2) fails to guarantee collision resistance (H3);
for an attacker trying to find two strings yielding the same hash (i.e., a collision), fixing
one string (say m1 in H2) makes collision-finding significantly more costly than if given

6In contrast, in information-theoretic security, the question is whether, given unlimited computational
power or time, there is sufficient information to solve a problem. That question is of less interest in practice.
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free choice of both m1 and m2. The reason is the birthday paradox (page 44). When it is
important that finding collisions be computationally difficult even for an attacker free to
choose both m1 and m2, collision resistance (H3) is specified as a requirement. It is easy
to show that H3 implies second-preimage resistance (H2). Furthermore, in practice,7 hash
functions with H2 and H3 also have the one-way property (H1), providing all three. Thus
as a single property in a hash function, H3 (collision resistance) is most advanced.

Example (Hash function used as modification detection code). As an example ap-
plication involving properties H1–H3 above, consider an executable file corresponding to
program P with binary representation p, faithfully representing legitimate source code at
the time P is installed in the filesystem. At that time, using a hash function H with prop-
erties H1-H3, the operating system computes h = H(p). This “trusted-good” hash of the
program is stored in memory that is safe from manipulation by attackers. Later, before
invoking program P, the operating system recomputes the hash of the executable file to
be run, and compares the result to stored value h. If the values match, there is strong
evidence that the file has not been manipulated or substituted by an attacker.

The process in this example provides a data integrity check for one file, immediately
before execution. Data integrity for a designated set of system files could be provided as
an ongoing background service by similarly computing and storing a set of trusted hashes
(one per file) at some initial time before exposure to manipulation, and then periodically
recomputing the file hashes and comparing to the allowlist of known-good stored values.8

‡Exercise (Hash function properties—data integrity). In the above example, was the
collision resistance property (H3) actually needed? Give one set of attack circumstances
under which H3 is necessary, and a different scenario under which H needs only second-
preimage resistance to detect an integrity violation on the protected file. (An analogous
question arises regarding necessary properties of a hash function when used in conjunction
with digital signatures, as discussed shortly.)

Example (Using one-way functions in password verification). One-way hash func-
tions H are often used in password authentication as follows. A userid and password p
entered on a client device are sent (hopefully over an encrypted link!) to a server. The
server hashes the p received to H(p), and uses the userid to index a data record containing
the (known-correct) password hash. If the values match, login succeeds. This avoids stor-
ing, at the server, plaintext passwords, which might be directly available to disgruntled
administrators, anyone with access to backup storage, or via server database breakins.

Exercise (Hash function properties—password hashing). In the example above, would
a hash function having the one-way property, but not second-preimage resistance, be use-
ful for password verification? Explain.

Exercise (Password hashing at the client end). The example using a one-way hash
function in password verification motivates storing password hashes (vs. clear passwords)
at the server. Suppose instead that passwords were hashed at the client side, and the

7There are pathological examples of functions having H2 and H3 without the one-way property (H1), but,
in practice, collision resistance (H3) almost always implies H1 [22, p.330].

8An example of such a service is Tripwire [15].
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Family Output size
name Year bitlength bytes Alternate names and notes
SHA-3 2015 224, 256 28, 32 SHA3-224, SHA3-256

384, 512 48, 64 SHA3-384, SHA3-512 (NOTE 1)
SHA-2 2001 256, 512 32, 64 SHA-256, SHA-512
SHA-1 1995 160 20 Deprecated (2017) for browser certificates
MD5 1992 128 16 Widely deprecated, for many applications

Table 2.1: Common hash functions and example parameters. Additional SHA-2 variants
include SHA-224 (SHA-256 truncated to 224 bits), SHA-384 (SHA-512 truncated), and
further SHA-512 variations, which use specially computed initial values and truncate to
224 or 384 bits resp., giving SHA-512/224 and SHA-512/256. NOTE 1: SHA-3’s most
flexible variation allows arbitrary bitlength output; SHA-3 is based on the Keccak family.
For context: Bitcoin computations execute about 290 SHA-2 hashes per year (circa 2019).

password hash was sent to the server (rather than the password itself). Would this be
helpful or not? Should the password hash be protected during transmission to the server?

Example (Hash examples). Table 2.1 shows common hash functions in use: SHA-3,
SHA-2, SHA-1 and MD5. Among these, the more recently introduced versions, and those
with longer outputs, are generally preferable choices from a security viewpoint. (Why?)

BIRTHDAY PARADOX. What number n of people are needed in a room before a
shared birthday is expected among them (i.e., with probability p = 0.5)? As it turns out,
only about 23 (for p = 0.5). A related question is: Given n people in a room, what is
the probability that two of them have the same birthday? This probability rises rapidly
with n: p = 0.71 for n = 30, and p = 0.97 for n = 50. Many people are surprised that n
is so small (first question), and that the probability rises so rapidly. Our interest in this
birthday paradox stems from analogous surprises arising frequently in security: attackers
can often solve problems more efficiently than expected (e.g., arranging hash function
collisions as in property H3 above). The key point is that the “collision” here is not for
one pre-specified day (e.g., your birthday); any matching pair will do, and as n increases,
the number of pairs of people is C(n,2)= n(n−1)/2, so the number of pairs of days grows
as n2. From this it is not surprising that further analysis shows that (here with m = 365) a
collision is expected when n≈

√
m (rather than n≈ m, as is a common first impression).

DIGITAL SIGNATURES WITH HASH FUNCTIONS. Most digital signature schemes
are implemented using mathematical primitives that operate on fixed-size input blocks.
Breaking a message into blocks of this size, and signing individual pieces, is inefficient.
Thus commonly in practice, to sign a message m, a hash h = H(m) is first computed and h
is signed instead. The details of the hash function H to be used are necessary to complete
the signature algorithm specification, as altering these details alters signatures (and their
validity). Here, H should be collision resistant (H3). Figure 2.11 illustrates the process.

‡Exercise (Hash properties for signatures). For a hash function H used in a digital
signature, outline distinct attacks that can be stopped by hash properties (H2) and (H3).

‡Exercise (Precomputation attacks on hash functions). The definition of the one-way
property (H1) has the curious qualifying phrase “for essentially all”. Explain why this
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Ch.2.	Signature	with	hashing	details.	The	signing	algorithm	first	hashes	message	m	to	
H(m),	and	then	applies	the	core	signing	algorithm	to	the	fixed-length	hash,	not	m	itself.	
Signature	verificaAon	likewise	requires	the	enAre	message	m	as	input,	hashes	it	to	
H(m),	and	then	checks	if	an	alleged	signature	tag	is	VALID	or	INVALID	(oJen	coded	as	
boolean	values	TRUE	and	FALSE).	sA	and	vA	are	Alice’s	signature	private	key	and	
signature	verificaAon	public	key,	respecAvely.	Compare	to	Figure	2.7.			
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Figure 2.11: Signature algorithm with hashing details. The process first hashes message
m to H(m), and then applies the core signing algorithm to the fixed-length hash, not m
itself. Signature verification requires the entire message m as input, likewise hashes it to
H(m), and then checks whether an alleged signature tag t for that m is VALID or INVALID

(e.g., returning boolean values TRUE or FALSE). sA and vA are Alice’s signature private
key and signature verification public key, respectively. Compare to Figure 2.9.

qualification is necessary (hint: [22, p.337]).
‡Exercise (Merkle hash trees). Explain what a Merkle hash tree is, and how BitTor-

rent uses this construction to efficiently verify the integrity of data pieces in peer-to-peer
downloads. (Hint: Chapter 13 or [22, p.558], and the Wikipedia entry on “Torrent file”.)

‡Exercise (biometrics and fuzzy commitment). For password-based authentication,
rather than storing cleartext user passwords w directly, systems commonly store the hash
H(w) as noted earlier. Can templates for biometric authentication be similarly protected
using one-way hash functions? What role might error-correcting codes play? (Hint: [13].)

2.6 Message authentication (data origin authentication)

Message authentication is the service of assuring the integrity of data (i.e., that it has
not been altered) and the identity of the party that originated the data, i.e., data origin
authentication. This is done by sending a special data value, or tag, called a message
authentication code (MAC), along with a message. The algorithm computing the tag, i.e.,
the MAC function, is a special type of hash function whose output depends not only on
the input message but also on a secret number (secret key). The origin assurance derives
from the assumption that the key is known only to the originator who computes the tag,
and any party they share it with to allow tag verification; thus the recipient assumes that
the originator is a party having access to, or control of, this MAC key.

If Alice sends a message and matching MAC tag to Bob (with whom she shares the
MAC key), then he can verify the MAC tag to confirm integrity and data origin. Since the
key is shared, the tag could also have been created by Bob. Between Alice and Bob, they
know who originated the message, but if Alice denies being the originator, a third party
may be unable to sort out the truth. Thus, MACs lack the property of non-repudiation, i.e.,
they do not produce evidence countering repudiation (false denial of previous actions).
Public-key signatures provide both data origin authentication and non-repudiation.
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Ch.2.	Message	authen.ca.on	code	(MAC)	algorithm.	As	opposed	to	(unkeyed)	
hash	func.ons,	MAC	algorithms	take	as	input	a	secret	(symmetric	key)	k,	
and	an	arbitrary-length	message	m.		By	design,	with	high	probability,	an	adversary	not	
knowing	k	will	be	unable	to	forge	a	correct	tag	t	for	a	given	message	m;	and	be	unable	
to	generate	any	new	message	m	and	matching	tag	t	(for	an	unknown	k	in	use).	

tag	t	=	Mk(m)	
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Figure 2.12: Message authentication code (MAC) generation and verification. As op-
posed to unkeyed hash functions, MAC algorithms take as input a secret (symmetric key)
k, as well as an arbitrary-length message m. By design, with high probability, an adversary
not knowing k will be unable to forge a correct tag t for a given message m; and be unable
to generate any new pair (m, t) of matching message and tag (for an unknown k in use).

MAC DETAILS. Let M denote a MAC algorithm and k a shared MAC key. If Alice
wishes to send to Bob a message m and corresponding MAC tag, she computes t = Mk(m)
and sends (m, t). Let (m′, t ′) denote the pair actually received by Bob (allowing that the le-
gitimate message might be modified en route, e.g., by an attacker). Using his own copy of
k and the received message, Bob computes Mk(m′) and checks that it matches t ′. Beyond
this basic check, for many applications further means should ensure “freshness”—i.e.,
that (m′, t ′) is not simply a replay of an earlier legitimate message. See Figure 2.12.

Example (MAC examples). An example MAC algorithm based on block ciphers is
CMAC (Section 2.9). In contrast, HMAC gives a general construction employing a generic
hash function H such as those in Table 2.1, leading to names of the form HMAC-H (e.g.,
H can be SHA-1, or variants of SHA-2 and SHA-3). Other MAC algorithms as noted in
Table 2.2 are Poly1305-AES-MAC and those in AEAD combinations in that table.

‡Example (CBC-MAC). From the CBC mode of operation, we can immediately de-
scribe a MAC algorithm called CBC-MAC, to convey how a MAC may be built using a
block cipher.9 To avoid discussion of padding details, assume m = m1m2 · · ·mt is to be
authenticated, with blocks mi of bitlength n, matching the cipher blocklength; the MAC
key is k. Proceed as if carrying out encryption in CBC-mode (Figure 2.4) with IV = 0;
keep only the final ciphertext block ct , and use it as the MAC tag t.

‡Exercise (MACs from hash functions). It may seem that a MAC is easily created by
combining a hash function and a key, but this is non-trivial. a) Given a hash function H and
symmetric keys k1,k2, three proposals for creating a MAC from H are the secret prefix,
secret suffix, and envelope method: H1 = H(k1||x), H2 = H(x||k2), and H3 = H(k1||x||k2).
Here “||” denotes concatenation, and x is data to be authenticated. Explain why all three
methods are less secure than might be expected (hint: [35]). b) Explain the general con-
struction by which HMAC converts an unkeyed hash function into a MAC (hint: [17]).

9In practice, CMAC is recommended over CBC-MAC (see notes in Section 2.9).



2.7. ‡Authenticated encryption and further modes of operation 47

‡Exercise (MAC truncation). The bitlength of a MAC tag varies by algorithm; for
those built from hash functions or block ciphers, the default length is that output by the
underlying function. Some standards truncate the tag somewhat, for technical reasons.
Give security arguments both for, and against, truncating MAC outputs (hint: [34, 17]).

‡Exercise (Data integrity mechanisms). Outline three methods, involving different
cryptographic primitives, for providing data integrity on a digital file f .

Exercise (Understanding integrity). a) Can data origin authentication (DOA) be pro-
vided without data integrity (DI)? b) Is it possible to provide DI without DOA? Explain.

2.7 ‡Authenticated encryption and further modes of operation

Having explained MACs, we discuss how they are commonly combined with symmetric-
key encryption, and then consider a few further symmetric-key cipher modes of operation.

AUTHENTICATED ENCRYPTION. Encryption, when stated as a requirement, usually
implies encryption with guaranteed integrity, i.e., the combination of encryption and data
origin authentication. This allows detection of unauthorized ciphertext manipulation, in-
cluding alteration and message forgery. The combined functionality, called authenticated
encryption (AE), can be achieved by using a block cipher for encryption, and a separate
MAC algorithm for authentication; this is called generic composition (Exercise below).
However, a different approach, preferred for technical reasons, is to use a custom-built
algorithm that does both. Such integrated AE algorithms are designed to allow safe use of
a single symmetric key for both functions (whereas using one crypto key for two purposes
is generally discouraged as bad practice10). Integrated AE algorithms are identified by
naming a block cipher and an AE family—see Table 2.2 (page 49).

AUTHENTICATED ENCRYPTION WITH ASSOCIATED DATA (AEAD). In practice,
the following situation is common: message data is to be encrypted, and accompany-
ing data should be authenticated (e.g., to detect any tampering) but not encrypted—e.g.,
packet payload data must be encrypted, but header fields containing protocol or routing in-
formation may be needed by (visible to) intermediate networking nodes. Rather than use
a separate MAC to detect integrity violations of such information, a special category of
AE algorithms, called authenticated encryption with associated data (AEAD) algorithms,
accommodate such additional or associated data (AD) as shown in Figure 2.13.

‡CCM MODE OF OPERATION. An AEAD method called Counter mode with CBC-
MAC (CCM) combines the CTR mode of operation (Fig. 2.5) for encryption—in essence a
stream cipher—with CBC-MAC (above) for authentication. The underlying block cipher
used is commonly AES. Use in practice requires agreement on application-specific de-
tails for security and interoperability, e.g., input formatting and MAC tag postprocessing
(reducing its length in some cases); Sect. 2.9 gives references to CCM-related standards.

‡CHACHA20 AND POLY1305. ChaCha20 is a stream cipher involving 20 rounds
of an underlying cipher, ChaCha. It was created by University of Illinois at Chicago
professor Dan Bernstein, who also created the Poly1305 MAC algorithm. Both were

10An example of what can go wrong is relatively easy to follow [22, p.367, Example 9.88].
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Ch.2. AEAD. If the MAC tag T is 128 bits, then the ciphertext C’ is 128 bits longer than the 
plaintext. A particular protocol could put the tag T into a pre-allocated field in message sub-
header H’. AEAD functionality may be provided by generic composition, e.g., generating C’ 
using a block cipher in CBC mode, and T by a CBC-MAC algorithm. The authenticated data 
(AD), shown logically adjacent to the plaintext (as both are covered by MAC integrity), might 
be physically intermixed into fields of sub-header H’.
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Figure 2.13: Authenticated encryption with associated data (AEAD). If the MAC tag T
is 128 bits, then the ciphertext C′ is 128 bits longer than the plaintext. A protocol may
pre-allocate a field in sub-header H ′ for tag T . AEAD functionality may be provided by
generic composition, e.g., generating C′ using a block cipher in CBC mode, and T by an
algorithm such as CMAC (Section 2.9) or HMAC-SHA-2. The extra, i.e., associated data
(AD) need not be physically adjacent to the plaintext as shown (provided that logically,
they are covered by MAC integrity in a fixed order). The nonce N, e.g., 96 bits in this
application, is a number used only once for a given key K; reuse puts confidentiality at
risk. If P is empty, the AEAD algorithm is essentially a MAC algorithm.

designed to deliver high security with improved performance over alternatives that make
heavy use of AES (e.g., CCM above), for environments that lack AES hardware support.
Poly1305 MAC requires a 128-bit key for an underlying block cipher (AES is suitable, or
an alternate cipher with 128-bit key and 128-bit blocklength). For an AEAD algorithm,
ChaCha20 is paired with Poly1305 as listed in Table 2.2.

Example (Symmetric algorithms and parameters). Table 2.2 gives examples of well-
known symmetric-key algorithms with blocklengths, keylengths, and related details.

‡Exercise (Authenticated encryption: generic composition). To implement authenti-
cated encryption by serially combining a block cipher and a MAC algorithm, three options
are: 1) MAC-plaintext-then-encrypt (MAC the plaintext, append the MAC tag to the plain-
text, then encrypt both); 2) MAC-ciphertext-after-encrypt (encrypt the plaintext, MAC the
resulting ciphertext, then append the MAC tag); and 3) encrypt-and-MAC-plaintext (the
plaintext is input to each function, and the MAC tag is appended to the ciphertext). Are
all of these options secure? Explain. (Hint: [1, 16, 4], and [37, Fig.2].)
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Name of cipher, MAC Cipher specs Other specs, notes Cipher
or AEAD combination n (bits) y (bits) mode v t details
AES-128, AES-192, AES-256 128 128-256 – – – block
ChaCha20 – 256 – 96 – stream
Poly1305-AES-MAC 128 256 custom 96 128 AES-128
AEAD ChaCha20 Poly1305 128 256 custom 96 128 ChaCha
AEAD AES 128 CCM 128 128 CCM 96 128† AES-128
AEAD AES 256 CCM 256 AES-256
AEAD AES 128 GCM 128 128 GCM 96 128† AES-128
AEAD AES 256 GCM 256 AES-256
DES 64 56 core of triple-DES block
triple-DES (3-key) 64 3x56 NIST SP 800-67r2 block
RC4 – – legacy use stream

Table 2.2: Common ciphers, AEAD algorithms, and example parameters. Blocklength
n, keylength y, nonce/IV bitlength v, MAC tag bitlength t (†may be reduced by post-
processing). Triple-DES involves three rounds of DES under three distinct keys, and
remains of interest for legacy reasons. GCM is Galois/Counter Mode (Section 2.9).

2.8 ‡Certificates, elliptic curves, and equivalent keylengths

CERTIFICATES. A public-key certificate is a data structure whose primary fields are a
subject name, a public key asserted to belong to that subject, and a digital signature (over
these and other fields) by a third party called a certification authority (CA). The intent is
that the signature conveys the CA’s attestation that it has verified that the named subject is
the legitimate party associated with that public key, thus binding subject and public key.
Parties that rely on the certificate (relying parties) require an authentic copy of the CA’s
verification public key to verify the CA’s signature, and thus the certificate’s integrity.

CERTIFICATION AUTHORITIES. The CA’s role is critical for trustworthy certifi-
cates. Before signing a certificate, the CA is expected to carry out appropriate due dili-
gence to confirm the identity of the named subject, and their association with the public
key. For example, to obtain evidence of control of the corresponding private key, the CA
may send the subject a challenge message whose correct response requires use of that
private key (without disclosing it); the CA uses the purportedly corresponding public key
in creating the challenge, or verifying the response. Digital certificates allow relying par-
ties to gain trust in the public keys of many other parties, through pre-existing trust in the
public key of a signing CA. Trust in one key thus translates into trust in many.

CERTIFICATE REVOCATION. Certificates also include: a serial number to uniquely
identify the certificate, an expiry date, identity information for the CA, algorithm identi-
fiers (for the embedded public key, and the CA’s signature), and revocation information.
The latter allows a certificate’s validity, which by default continues until the expiry date,
to be terminated earlier (e.g., if the private key is reported compromised, or the named
subject ceases to continue in the role for which the public key was certified). The revoca-
tion information indicates how relying parties can get further details, e.g., a signed list of
revoked certificates, or the URL of a trusted site to contact for a real-time status check of
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a certificate’s validity. Certificates and CAs are discussed in greater detail in Chapter 8.
NIST-RECOMMENDED KEYLENGTHS. For public U.S. government use, NIST rec-

ommended (in November 2015) at least 112 bits of “security strength” for symmetric-
key encryption and related digital signature applications. Here “strength” is not the raw
symmetric-key bitlength, but an estimate of security based on best known attacks (e.g.,
triple-DES has three 56-bits keys, but estimated strength only 112 bits). To avoid obvi-
ous “weak-link” targets, multiple algorithms used in conjunction should be of comparable
strength.11 Giving “security strength” estimates for public-key algorithms requires a few
words. The most effective attacks against strong symmetric algorithms like AES are ex-
haustive search attacks on their key space—so a 128-bit AES key is expected to be found
after searching 2127 keys, for a security strength of 127 bits (essentially 128). In contrast,
for public-key cryptosystems based on RSA and Diffie-Hellman (DH), the best attacks do
not require exhaustive search over private-key spaces, but instead faster number-theoretic
computations involving integer factorization and computing discrete logarithms. This is
the reason that, for comparable security, keys for RSA and DH must be much larger than
AES keys. Table 2.3 gives rough estimates for comparable security.

Symmetric-key RSA DH ECC
security strength modulus modulus private key
112 (triple-DES) 2048 2048 224 224-255
128 (AES) 3072 3072 256 256-383

Table 2.3: Recommended keylengths for comparable algorithm strengths. Numbers de-
note parameter bitlengths. A symmetric key of 128 bits corresponds to the lowest of three
keylengths supported by AES. For RSA and DH, the modulus implies the size of the
public key. RSA entries are for encryption, signatures, and key agreement/key transport
(Chapter 4). These are recommended pairings, rather than exact security equivalents.

ELLIPTIC CURVE PUBLIC-KEY SYSTEMS. Public-key systems are most easily
taught using implementations over number systems that students are already somewhat
familiar with, e.g., arithmetic modulo n = pq (for RSA), and modulo a large prime p
for Diffie-Hellman (DH) later in Chapter 4. By their underlying mathematical structures,
RSA and DH are respectively classified as integer factorization cryptography (IFC) and
finite field cryptography (FFC). Public-key functionality—encryption, digital signatures,
and key agreement—can analogously be implemented using operations over sets of el-
ements defined by points on an elliptic curve. Such elliptic curve cryptography (ECC)
implementations offer as a main advantage computational and storage efficiencies due to
smaller key sizes (Table 2.3). In certain situations ECC also brings disadvantages. To
mention one, in many RSA implementations the public-key operation is relatively inex-
pensive compared to the private-key operation (because for technical reasons, short public
exponents can be used); the reverse is true for ECC, a drawback in certificate-based in-
frastructures where signature verification (using the public key) is far more frequent than
signing (using the private key). ECC involves more complex mathematics, but this is eas-

11This follows the principle of DEFENSE-IN-DEPTH P13 (Chapter 1).
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ily overcome by the availability of standard toolkits and libraries. In this book, we use
RSA and Diffie-Hellman examples that do not involve ECC.

2.9 ‡End notes and further reading

The classic treatment of cryptography through the ages is Kahn [14]; Singh [39] gives a
shorter, highly entertaining history. Diffie and Hellman [8] give an academic introduc-
tion, and introduced public-key cryptography [7] including DH key agreement (Chapter
4). RSA encryption and signatures are due to Rivest, Shamir and Adleman [36]. Boneh
[5, 6] surveys attacks on RSA, and explains the difference between theory and practice in
implementing public-key algorithms. For extensive background in applied cryptography,
see Menezes [22]; its section 7.3 reviews classical “toy ciphers” and how simple, ele-
gant attacks defeat historical transposition ciphers and polyalphabetic substitution, e.g.,
using the method of Kasiski and related index of coincidence. Such attacks clarify how
the one-time pad fails if the key is reused (it is not a two-time pad). Other recommended
books include Ferguson [9] for practical cryptography, and Menezes [21, 10] for ellip-
tic curve cryptography. Welchman [42] provides a first-person account of WW2 British
code-breaking at Bletchley Park, including insights on human errors in key management
undermining the strength of Enigma codes.

For triple-DES and its status circa 2017, see NIST [31]; newer alternatives are pre-
ferred. The CMAC block cipher construction improves on CBC-MAC; for details and sup-
porting literature (approving its use with AES and also three-key triple-DES), see NIST
800-38B [24], and RFC 4493 for AES-CMAC. See RFC 7539 [23] for the ChaCha20
stream cipher and Poly1305 MAC, their combined AEAD algorithm due to Langley, and
motivation (advantages over AES); the original proposals are by Bernstein [2, 3]. Use of
HMAC [17, 28] with MD5, i.e., HMAC-MD5, is discouraged [40] towards ending MD5’s
ongoing use (especially for signature applications). The widely implemented RC4 stream
cipher is now prohibited by TLS [32]. FIPS 186–4 [29] specifies the Digital Signature
Algorithm (DSA) and ECDSA, its elliptic curve variant. Digital signatures with appendix
(Section 2.4) require the message itself for signature verification. Digital signatures with
message recovery [22, p.430] (suitable only for short messages) do not—the verification
process recovers the original message (the tag conveys both signature and message), but
whereas a hash function is not needed, a customized redundancy function is.

Preneel [33] undertook the first systematic study of cryptographic hash functions;
Chapter 9 of Menezes [22] gives an early overview. For finding hash function collisions
in practice, see van Oorschot [41]. Rogaway [37] formalized AEAD (authenticated en-
cryption with associated data); for interface definitions per Table 2.2, see RFC 5116 [19].
NIST-specified AEAD modes include CCM [25] (see Jonsson [12] for security analysis,
and the original Whiting [43] proposal) and GCM [27] (see also McGrew [20]); the OCB
mode of Rogaway [38] is faster than both (Krovetz [18] compares the three), but patent
entanglement issues impaired adoption of it and several earlier methods. Table 2.3’s rec-
ommended keylength pairings are from NIST [30].
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