Chapter 2

Cryptographic Building Blocks

2.1 Encryption and decryption (generic concepts) 30
2.2 Symmetric-key encryption and decryption ... 32
2.3 Public-key encryption and decryption ... 37
2.4 Digital signatures and verification using public keys 39
2.5 Cryptographic hash functions .. 41
2.6 Message authentication (data origin authentication) 45
2.7 §Authenticated encryption and further modes of operation 47
2.8 §Certificates, elliptic curves, and equivalent keylengths 49
2.9 §End notes and further reading ... 51
References .. 52

The official version of this book is available at

ISBN: 978-3-030-83410-4 (hardcopy), 978-3-030-83411-1 (eBook)

Copyright ©2020-2022 Paul C. van Oorschot. Under publishing license to Springer.

For personal use only.

This author-created, self-archived copy is from the author’s web page.

Reposting, or any form of redistribution without permission, is strictly prohibited.
Chapter 2

Cryptographic Building Blocks

This chapter introduces basic cryptographic mechanisms that serve as foundational building blocks for computer security: symmetric-key and public-key encryption, public-key digital signatures, hash functions, and message authentication codes. Other mathematical and crypto background is deferred to specific chapters as warranted by context. For example, Chapter 3 provides background on (Shannon) entropy and one-time password hash chains, while Chapter 4 covers authentication protocols and key establishment including Diffie-Hellman key agreement. Digital certificates are introduced here briefly, with detailed discussion delayed until Chapter 8.

If computer security were house-building, cryptography might be the electrical wiring and power supply. The framers, roofers, plumbers, and masons must know enough to not electrocute themselves, but need not understand the finer details of wiring the main panel-board, nor all the electrical footnotes in the building code. However, while our main focus is not cryptography, we should know the best tools available for each task. Many of our needs are met by understanding the properties and interface specifications of these tools—in this book, we are interested in their input-output behavior more than internal details. We are more interested in helping readers, as software developers, to properly use cryptographic toolkits, than to build the toolkits, or design the algorithms within them.

We also convey a few basic rules of thumb. One is: do not design your own cryptographic protocols or algorithms. Plugging in your own desk lamp is fine, but leave it to a master electrician to upgrade the electrical panel.

2.1 Encryption and decryption (generic concepts)

An algorithm is a series of steps, often implemented in software programs or hardware. Encryption (and decryption) algorithms are a fundamental means for providing data confidentiality, especially in distributed communications systems. They are parameterized by a cryptographic key; think of a key as a binary string representing a large, secret number.

1This follows principle P9 (TIME-TESTED-TOOLS) from Chapter 1. The example on page 33 illustrates.
2.1. Encryption and decryption (generic concepts)

PLAINTEXT AND CIPHERTEXT. Encryption transforms data (*plaintext*) into an unintelligible form (*ciphertext*). The process is reversible: a *decryption key* allows recovery of plaintext, using a corresponding decryption algorithm. Access to the decryption key controls access to the plaintext; thus (only) authorized parties are given access to this key. It is generally assumed that the algorithms are known, but that only authorized parties have the secret key. Sensitive information should be encrypted before transmission (assume communicated data is subject to eavesdropping, and possibly modification), and before saving to storage media if there is concern about adversaries accessing the media.

It is generally assumed that the algorithms are known, but that only authorized parties have the secret key. Sensitive information should be encrypted before transmission (assume communicated data is subject to eavesdropping, and possibly modification), and before saving to storage media if there is concern about adversaries accessing the media.

![Diagram](image)

Figure 2.1: Generic encryption (E) and decryption (D). For symmetric encryption, E and D use the same shared (symmetric) key $k = k'$, and are thus inverses under that parameter; one is sometimes called the “forward” algorithm, the other the “inverse”. The original Internet threat model (Chapter 1) and conventional cryptographic model assume that an adversary has no access to endpoints. This is false if malware infects user machines.

Exercise (Caesar cipher). Caesar’s famous cipher was rather simple. The encryption algorithm simply substituted each alphabetic plaintext character by that occurring three letters later in the alphabet. Describe the algorithms E and D of the Caesar cipher mathematically. What is the cryptographic key? How many other keys could be chosen?

In the terminology of mathematicians, we can describe an encryption-decryption system (*cryptosystem*) to consist of: a set \mathcal{P} of possible plaintexts, set \mathcal{C} of possible ciphertexts, set \mathcal{K} of keys, an encryption mapping E: $(\mathcal{P} \times \mathcal{K}) \to \mathcal{C}$ and corresponding decryption mapping D: $(\mathcal{C} \times \mathcal{K}) \to \mathcal{P}$. But such notation makes it all seem less fun.

EXHAUSTIVE KEY SEARCH. We rely on cryptographers to provide “good” algorithms E and D. A critical property is that it be infeasible to recover m from c without knowledge of k'. The best an adversary can then do, upon intercepting a ciphertext c, is to go through all keys k from the *key space* \mathcal{K}, parameterizing D with each k sequentially, computing each $D_k(c)$ and looking for some meaningful result; we call this an *exhaustive key search*. If there are no algorithmic weaknesses, then no algorithmic “shortcut” attacks

\(^2\)This follows the OPEN-DESIGN principle P3 from Chapter 1.
exist, and the whole key space must be tried. More precisely, an attacker of average luck is expected to come across the correct key after trying half the key space; so, if the keys are strings of 128 bits, then there are 2^{128} keys, with success expected after 2^{127} trials. This number is so large that we will all be long dead (and cold!)\(^3\) before the key is found.

Example (DES key space). The first cipher widely used in industry was DES, standardized by the U.S. government in 1977. Its key length of 56 bits yields 2^{56} possible keys. To visualize key search on a space this size, imagine keys as golf balls, and a 2400-mile super-highway from Los Angeles to New York, 316 twelve-foot lanes wide and 316 lanes tall. Its entire volume is filled with white golf balls, except for one black ball. Your task: find the black ball, viewing only one ball at a time. (By the way, DES is no longer used, as modern processors make exhaustive key search of spaces of this size too easy!)

\(^\dagger\)**C**IPHER ATTACK MODELS.\(^4\) In a ciphertext-only attack, an adversary tries to recover plaintext (or the key), given access to ciphertext alone. Other scenarios, more favorable to adversaries, are sometimes possible, and are used in evaluation of encryption algorithms. In a known-plaintext attack, given access to some ciphertext and its corresponding plaintext, adversaries try to recover unknown plaintext (or the key) from further ciphertext. A chosen-plaintext situation allows adversaries to choose some amount of plaintext and see the resulting ciphertext. Such additional control may allow advanced analysis that defeats weaker algorithms. Yet another attack model is a chosen-ciphertext attack; here for a fixed key, attackers can provide ciphertext of their choosing, and receive back the corresponding plaintext; the game is to again deduce the secret key, or other information sufficient to decrypt new ciphertext. An ideal encryption algorithm resists all these attack models, ruling out algorithmic “shortcuts”, leaving only exhaustive search.

PASSIVE VS. ACTIVE ADVERSARY. A passive adversary observes and records, but does not alter information (e.g., ciphertext-only, known-plaintext attacks). An active adversary interacts with ongoing transmissions, by injecting data or altering them, or starts new interactions with legitimate parties (e.g., chosen-plaintext, chosen-ciphertext attacks).

2.2 Symmetric-key encryption and decryption

We distinguish two categories of algorithms: symmetric-key or symmetric encryption (also called *secret-key*), and asymmetric encryption (also called *public-key*). In symmetric-key encryption, the encryption and decryption keys are the same, i.e., $k = k'$ in equation (2.1). In public-key systems they differ, as we shall see. We introduce symmetric encryption with the following example of a stream cipher.

Example (Vernam cipher). The Vernam cipher encrypts plaintext one bit at a time (Figure 2.2). It needs a key as long as the plaintext. To encrypt a t-bit message $m_1m_2...m_t$,

\(^3\)Our sun’s lifetime, approximately 10 billion years, is $< 2^{60}$ seconds. Thus even if $10^{15} \approx 2^{50}$ keys were tested per second, the time to find the correct 128-bit key would exceed $2^{17} = 128,000$ lifetimes of the sun. Nonetheless, for **SUFFICIENT-WORK-FACTOR** (P12), and mindful that serious attackers harness enormous numbers of processors in parallel, standards commonly recommend symmetric keys be at least 128 bits.

\(^4\)The symbol ‡ denotes research-level items, or notes that can be skipped on first reading.
using key \(k = k_1k_2...k_t \), the algorithm is bitwise exclusive-OR: \(c_i = m_i \oplus k_i \) yielding ciphertext \(c = c_1c_2...c_t \). Plaintext recovery is again by exclusive-OR: \(m_i = c_i \oplus k_i \). If \(k \) is randomly chosen and never reused, the Vernam stream cipher is called a one-time pad.

One-time pads are known to provide a theoretically unbreakable encryption system. As a proof sketch, consider a fixed ciphertext \(c = c_1c_2...c_t \). For every possible plaintext \(m = m_1m_2...m_t \), there is a key \(k \) such that \(c \) decrypts to \(m \), defined by \(k_i = c_i \oplus m_i \); thus \(c \) may originate from any possible plaintext. (Convince yourself of this with a small example, encoding lowercase letters a-z using 5 bits each.) Observing \(c \) tells an attacker only its length. Despite this strength, one-time pads are little-used in practice: single-use, long keys are difficult to distribute and manage, and if you can securely distribute a secret key as long as the message, you could use that method to deliver the message itself.

![Diagram of Vernam cipher](image)

Example (One-time pad has no integrity). The one-time pad is theoretically unbreakable, in that the key is required to recover plaintext from its ciphertext. Does this mean it is secure? The answer depends on your definition of “secure”. An unexpected property is problematic here: *encryption alone does not guarantee integrity*. To see this, suppose your salary is $65,536, or in binary \((00000001 00000000 00000000)\). Suppose this value is stored in a file after one-time pad encryption. To tamper, you replace the most significant ciphertext byte by the value obtained by XORing a 1-bit anywhere other than with its low-order bit (that plaintext bit is already 1). Now on decryption, the keystream bit XOR’d onto that bit position by encryption will be removed (Fig. 2.2), so regardless of the keystream bit values, your tampering has flipped the underlying plaintext bit (originally 0). Congratulations on your pay raise! This illustrates how intuition can mislead us, and motivates a general rule: use only cryptographic algorithms both designed by experts, and having survived long scrutiny by others; similarly for cryptographic protocols (Chapter 4). As experienced developers know, even correct use of crypto libraries is challenging.

Cipher attacks in practice. The one-time pad is said to be *information-theoretically secure* for confidentiality: even given unlimited computing power and time, an attacker without the key cannot recover plaintext from ciphertext. Ciphers commonly used in practice offer only *computational security*, protecting against attackers modeled as having fixed computational resources, and thus assumed to be unable to exhaustively try all keys in huge key spaces. Such ciphers may fail due to algorithmic weaknesses, or

5 Computational security is also discussed with respect to hash functions in Section 2.5.
Chapter 2. Cryptographic Building Blocks

Figure 2.3: AES interface (block cipher example). For a fixed key k, a block cipher with n-bit blocklength is a permutation that maps each of 2^n possible input blocks to a unique n-bit output block, and the inverse (or decrypt) mode does the reverse mapping (as required to recover the plaintext). Ideally, each k defines a different permutation.

STREAM CIPHERS. The Vernam cipher is an example of a stream cipher, which in simplest form, involves generating a keystream simply XOR’d onto plaintext bits; decryption involves XORing the ciphertext with the same keystream. In contrast to block ciphers (below), there are no requirements that the plaintext length be a multiple of, e.g., 128 bits. Thus stream ciphers are suitable when there is a need to encrypt plaintext one bit or one character at a time, e.g., user-typed characters sent to a remote site in real time. A simplified view of stream ciphers is that they turn a fixed-size secret (symmetric key) into an arbitrary-length secret keystream unpredictable to adversaries. The mapping of the next plaintext bit to ciphertext is a position-varying transformation dependent on the input key.

BLOCK CIPHERS, BLOCKLENGTH, KEY SIZE. A second class of symmetric ciphers, block ciphers, processes plaintext in fixed-length chunks or blocks. Each block, perhaps a group of ASCII-encoded characters, is encrypted with a fixed transformation dependent on the key. From a black-box (input-output) perspective, a block cipher’s main properties are blocklength (block size in bits) and keylength (key size in bits). When using a block cipher, if the last plaintext block has fewer bits than the blocklength, it is padded with “filler” characters. A common non-ambiguous padding rule is to always append a 1-bit, followed by zero or more 0-bits as necessary to fill out the block.

AES BLOCK CIPHER. Today’s most widely used block cipher is AES (Figure 2.3), specified by the Advanced Encryption Standard. Created by researchers at Flemish university KU Leuven, the algorithm itself (Rijndael) was selected after an open, multi-year competition run by the (U.S.) National Institute of Standards and Technology (NIST). A similar NIST competition resulted in the SHA-3 hash function (Section 2.5). Table 2.2 (Section 2.7) compares AES interface parameters with other algorithms.
2.2. Symmetric-key encryption and decryption

MESSAGE EXPANSION. Symmetric ciphers are typically length-preserving, i.e., the ciphertext consumes no more space than the plaintext, in which case in-place encryption is possible (e.g., in a storage context, plaintext may be replaced by ciphertext without requiring additional memory). Often however, to provide integrity guarantees (Section 2.7), the ciphertext is accompanied by an authentication tag incurring message expansion. Extra space may also be needed for related parameters (e.g., IVs below; nonces page 48).

Whenever a message is divided into blocks of length n, the encryption of each block depends on the previous block. In ECB mode, the encryption of each block depends only on the key and the block itself. In CBC mode, the encryption of each block depends on the previous block as well. The figure below illustrates these modes of operation.

ECB encryption and modes of operation. Let E denote a block cipher with blocklength n, say $n = 128$. If a plaintext m has bitlength exactly n also, equation (2.1) is used directly with just one 128-bit “block operation”. Longer plaintexts are broken into 128-bit blocks for encryption—so a 512-bit plaintext is processed in four blocks. The block operation maps each of the 2^{128} possible 128-bit input blocks to a distinct 128-bit ciphertext block (this allows the mapping to be reversed; the block operation is a permutation). Each key defines a fixed such “code-book” mapping. In the simplest case (Figure 2.4a), each encryption block operation is independent of adjacent blocks; this is called electronic code-book (ECB) mode of the block cipher E. If a given key k is used to encrypt several identical plaintext blocks m_i, then identical ciphertext blocks c_i result; ECB mode does not hide such patterns. This information leak can be addressed by including random bits within a reserved field in each block, but that is inefficient and awkward. Instead, various methods called modes of operation (below) combine successive n-bit block operations such that the encryption of one block depends on other blocks.

BLOCK CIPHER MODE EXAMPLES: CBC, CTR. For reasons noted above, ECB mode is discouraged for messages exceeding one block, or if one key is used for multiple messages. Instead, standard block cipher modes of operation are used to make block encryptions depend on adjacent blocks (the block encryption mapping is then context-
Counter (CTR) mode

Message \(m = m_1, m_2, \ldots, m_t \) is encrypted to yield ciphertext \(c = c_1, c_2, \ldots, c_t \).

Blocks \(m_i, c_i \) are \(n \) bits

\[
E_k(N_i) + m_i \oplus c_i = m_i E_k(N_i) + N_{i+1} = N_i + 1
\]

Figure 2.5: Counter (CTR) mode of operation. \(E \) denotes a block cipher (encrypt operation) with blocklength \(n \), commonly \(n = 128 \). CTR mode ECB-encrypts an incrementing index (counter) to generate a keystream of blocks to XOR onto corresponding plaintext blocks. To reverse the process, decryption regenerates the same keystream using ECB encryption (note that the “inverse” algorithm, or ECB decryption, is not used in this case).

Figure 2.6: Block cipher (left) vs. stream cipher (right). Plaintext blocks might be 128 bits. The stream cipher encryption may operate on symbols (e.g., 8-bit units) rather than individual bits; in this case the units output by the keystream generator match that size.

‡Exercise (ECB leakage of patterns). For a picture with large uniform color patterns, obtain its uncompressed bitmap image file (each pixel’s color is represented using, e.g., 32 or 64 bits). ECB-encrypt the bitmap using a block cipher of blocklength 64 or 128 bits. Report on any data patterns evident when the encrypted bitmap is displayed.

‡Exercise (Modes of operation: properties). Summarize the properties, advantages and disadvantages of the following long-standing modes of operation: ECB, CBC, CTR, CFB, OFB (hint: [22, pages 228–233] or [26]). Do the same for XTS (hint: [11]).

Encryption in practice. In practice today, symmetric-key encryption is almost always accompanied by a means to provide integrity protection (not just confidentiality). Such authenticated encryption is discussed in Section 2.7, after an explanation of message authentication codes (MACs) in Section 2.6.
2.3 Public-key encryption and decryption

For symmetric-key encryption, \(k \) denoted a key shared between two parties. For public-key encryption, we label keys with a subscript denoting the single party they belong to. In fact each party has a **key pair**, e.g., \((e_B, d_B)\) for Bob, consisting of an **encryption public key** \(e_B\), which can be publicized as belonging to Bob, and a **decryption private key** \(d_B\), which Bob should keep secret and share with no one. (Of course, it may be prudent for Bob to back up \(d_B\); and neither the primary copy, nor the backup, should ever appear in plaintext form in untrusted storage. Practical issues start to complicate things quickly!)

To public-key encrypt a message \(m \) for Bob, Alice obtains Bob’s public key \(e_B \), uses it to parameterize the associated public-key encryption algorithm \(E \), encrypts \(m \) to ciphertext \(c \) per (2.2), and sends \(c \) to Bob (Figure 2.7). Bob recovers \(m \) using the corresponding known public-key decryption algorithm \(D \), parameterized by his private key \(d_B \).

\[
c = E_{e_B}(m); \quad m = D_{d_B}(c)
\] (2.2)

INTEGRITY OF PUBLIC KEY IS IMPORTANT. A public key can be published, for example like a phone number in an old-style phonebook. It need not be kept secret. But its integrity (and authenticity) is critical—for, if Charlene could replace Bob’s public key by her own, then someone who thought they were encrypting something under a public key for Bob’s eyes only, would instead be making the plaintext recoverable by Charlene.

KEY DISTRIBUTION: SYMMETRIC VS. PUBLIC KEY. If a group of \(n \) users wish to use symmetric encryption for pairwise confidential communications, each pair should use (shared between the pair) a different symmetric key. This requires \(\binom{n}{2} = n(n-1)/2 \) keys, i.e., \(O(n^2) \) keys. For \(n = 4 \) this is just 6, but for \(n = 100 \) this is already 4950. As \(n \) grows, keys become unwieldy to distribute and manage securely. In contrast, for public-key encryption, each party needs only one set of (public, private) keys in order to allow all other parties to encrypt for them—thus requiring only \(n \) key pairs in total.

Figure 2.7: Symmetric-key vs. public-key encryption. The symmetric-key case uses the same shared key to encrypt and decrypt. The public-key (asymmetric) case uses distinct encrypt and decrypt keys—one public, one private. Some people use “private key” to refer to secrets in asymmetric systems, and “secret key” for those in symmetric-key systems.
Hybrid encryption. Symmetric-key algorithms are typically faster than public-key algorithms. On the other hand, public-key methods are convenient for establishing shared secret keys between endpoints (as just noted). Therefore, to send encrypted messages, often public-key methods are used to establish a shared symmetric key \(k \) (session key) between communication endpoints, and \(k \) is then used in a symmetric-key algorithm for efficient “bulk encryption” of a payload message \(m \). See Fig. 2.8. Thus a primary use of RSA encryption (below) is to encrypt relatively short data keys or session keys, i.e., for key management (Chapter 4), rather than for bulk encryption of messages themselves.

Math details: RSA Public-Key Encryption. Here we outline the technical details of RSA, the first popular public-key encryption method. Per notation above, a party \(A \) has a public key \(e_A \) and private key \(d_A \). When used to parameterize the corresponding algorithms \(E \) and \(D \), the context is clear and we can use \(E_A \) and \(D_A \) to denote the parameterized algorithms, e.g., \(E_{e_A}(m) \equiv E_A(m) \). For RSA, \(e_A = (e,n) \). Here \(n = pq \), and parameters \(e,d,p,q \) must satisfy various security properties. Those of present interest are that \(p \) and \(q \) are secret large primes (e.g., 1000 bits), and \(e \) is an integer chosen such that:

\[
gcd(e,\phi(n)) = 1 \quad \text{where } \phi(n) = (p-1)(q-1) \text{ in this case.}
\]

\(\phi \) is the greatest common divisor function, and \(\phi(n) \) is the *Euler phi function*, the number of integers in \([1,n]\) relatively prime to \(n \); its main properties of present interest are that for a prime \(p \), \(\phi(p) = p-1 \), and that if \(p \) and \(q \) have no factors in common other than 1 then \(\phi(pq) = \phi(p) \cdot \phi(q) \). For RSA, \(d_A = (d,n) \) where \(d \) is computed to satisfy \(ed \equiv 1 \pmod{\phi(n)} \), i.e., \(ed = 1 + (\text{some integer multiple of } \phi(n)) \). Now let \(m \) be a message whose binary representation, interpreted as an integer, is less than \(n \) (e.g., 2000 bits).

- **RSA encryption of plaintext \(m \):** \(c = m^e \pmod{n} \), i.e., reduced modulo \(n \)
- **RSA decryption of ciphertext \(c \):** \(m = c^d \pmod{n} \)

By this we mean, assign to \(c \) the number resulting from the modular exponentiation of \(m \) by the exponent \(e \), reduced modulo \(n \). Operations on numbers of this size require special “big number” support, provided by crypto libraries such as OpenSSL. Using RSA in
practice is somewhat more complicated, but the above gives the basic technical details.

‡Exercise (RSA toy example). You’d like to explain to a 10-year-old how RSA works. Using $p = 5$ and $q = 7$, encrypt and decrypt a “message” (use a number less than n). Here $n = 35$, and $\phi(n) = (p - 1)(q - 1) = (4)(6) = 24$. Does $e = 5$ satisfy the rules? Does that then imply $d = 5$ to satisfy the required equation? Now with pencil and paper—yes, by hand!—compute the RSA encryption of $m = 2$ to ciphertext c, and the decryption of c back to m. The exponentiation is commonly done by repeated multiplication, reducing partial results mod n (i.e., subtract off multiples of the modulus 35 in interim steps). This example is so artificially small that the parameters “run into each other”—so perhaps for a 12-year-old, you might try an example using $p = 11$ and $q = 13$.

‡Exercise (RSA decryption). Using the above equations defining RSA, show that RSA decryption actually works, i.e., recovers m. (Hint: [22, page 286].)

2.4 Digital signatures and verification using public keys

Digital signatures, typically computed using public-key algorithms, are tags (bitstrings) that accompany messages. Each tag is a mathematical function of a message (its exact bitstring) and a unique-per-sender private key. A corresponding public key, uniquely associated with the sender, allows automated verification that the message originated from that individual, since only that individual knows the private key needed to create the tag.

The name originates from the idea of a replacement (for digital documents) for handwritten signatures, with stronger assurances. The late 1990s saw considerable international effort towards deploying digital signatures as an actual (legally binding) replacement for handwritten signatures, but many legal and technical issues arose; in current practice, digital signatures are most commonly used for authentication purposes.

Signature properties. Digital signatures provide three properties:

1. **Data origin authentication:** assurance of who originated (signed) a message or file.
2. **Data integrity:** assurance that received content is the same as that originally signed.
3. **Non-repudiation:** strong evidence of unique origination, making it hard for a party to digitally sign data and later successfully deny having done so. This is an important advantage over MACs (Section 2.6), and follows from signature verification not requiring the signer’s private key—verifiers use the signer’s public key.

Non-repudiation in practice. This property assumes that only the legitimate party has access to their own signing private key. One might try to deny having executed a signature by claiming “my private key spilled onto the street—someone else must be using it!” This assertion will raise suspicion if repeated, but highlights a critical requirement for digital signatures: ordinary users must somehow have the ability, by appropriate technology or training, to prevent others from accessing their private keys. Arguably, this has posed a barrier to digital signatures replacing handwritten signatures on legal documents, while their use for computer-related authentication applications faces lower barriers.

Details of public-key signatures. Public-key methods can be used to implement digital signatures by a process similar to encryption-decryption, but with subtle
Figure 2.9: Public-key signature generation-verification vs. encryption-decryption. For Alice to encrypt for Bob, she must use his encryption public key; but to sign a message for Bob, she uses her own signature private key. In a), Alice sends to Bob a pair \((m, t)\) providing message and signature tag, analogous to the (message, tag) pair sent when using MACs (Figure 2.12). Internal details on signature algorithm \(S\) are given in Figure 2.11.

Differences (which thoroughly confuse non-experts). The public and private parts are used in reverse order (the originator uses the private key now), and the key used for signing is that of the message originator, not the recipient. The details are as follows (Figure 2.9).

In place of encryption public keys, decryption private keys, and algorithms \(E, D\) (encrypt, decrypt), we now have signature private keys for signature generation, verification public keys to validate signatures, and algorithms \(S, V\) (sign, verify). To sign message \(m\), Alice uses her signing private key \(s_A\) to create a tag \(t_A = S_{s_A}(m)\) and sends \((m, t_A)\). Upon receiving a message-tag pair \((m', t'_A)\) (the notation change allowing that the pair sent might be modified en route), any recipient can use Alice’s verification public key \(v_A\) to test whether \(t'_A\) is a matching tag for \(m'\) from Alice, by computing \(V_{v_A}(m', t'_A)\). This returns \(VALID\) if the match is confirmed, otherwise \(INVALID\). Just as for MAC tags (later), even if verification succeeds, in some applications it may be important to use additional means to confirm that \((m', t'_A)\) is not simply a replay of an earlier legitimate signed message.

Exercise (Combining signing and encrypting). Alice wishes to both encrypt and sign a message \(m\) for Bob. Specify the actions that Alice must carry out, and the data values to be sent to Bob. Explain your choice of whether signing or encryption should be done first. Be specific about what data values are included within the scope of the signature operation, and the encryption operation; use equations as necessary. Similarly specify the actions Bob must carry out to both decrypt the message and verify the digital signature. (Note the analogous question in Section 2.7 on how to combine MACs with encryption.)

Distinct terminology for signatures and encryption. Even among university professors, great confusion is caused by misusing encryption-decryption terminology to describe operations involving signatures. For example, it is common to hear and read that signature generation or verification involves “encrypting” or “decrypting” a message or its hash value. This unfortunate wording unnecessarily conflates distinct functions (signatures and encryption), and predisposes students—and more dangerously, software
developers—to believe that it is acceptable to use the same (public, private) key pair for signatures and confidentiality. (Some signature algorithms are technically incompatible with encryption; the RSA algorithm can technically be used to provide both signatures and encryption, but proper implementations of these two functions differ considerably in detail, and it is prudent to use distinct key pairs.) Herein, we carefully avoid the terms encryption and decryption when describing digital signature operations, and also encourage using the terms public-key operation and private-key operation.

Digital signatures in practice. For efficiency reasons, digital signatures are commonly used in conjunction with hash functions, as explained in Section 2.5. This is one of several motivations for discussing hash functions next.

2.5 Cryptographic hash functions

Cryptographic hash functions help solve many problems in security. They take as input any binary string (e.g., message or file) and produce a fixed-length output called a hash value, hash, message digest or digital fingerprint. They typically map longer into shorter strings, as do other (non-crypto) hash functions in computer science, but have special properties. Hereafter, “hash function” means cryptographic hash function (Figure 2.10).

![Figure 2.10: Cryptographic hash function. A base requirement is a “one-wayness” property. Depending on the application of use, additional technical properties are required.](image)

A hash value is ideally an efficiently computable, compact representation intended, in practice, to be associated with a unique input. For a good hash function, changing a single binary digit (bit) of input results in entirely unpredictable output changes (50% of output bits change on average). Hashes are often used as a type of secure checksum whose mappings are too complex to predict or manipulate—and thus hard to exploit.

Properties of cryptographic hash functions. We use H to denote a hash function algorithm. It is generally assumed that the details of H are openly known. We want functions H such that, given any input m, the computational cost to compute $H(m)$ is relatively small. Three hash function security properties are often needed in practice:

- **(H1) one-way property** (or preimage resistance): for essentially all possible hash values h, given h it should be infeasible to find any m such that $H(m) = h$.

...
(H2) **second-preimage resistance**: given any first input m_1, it should be infeasible to find any distinct second input m_2 such that $H(m_1) = H(m_2)$. (Note: there is free choice of m_2 but m_1 is fixed. $H(m_1)$ is the target image to match; m_1 is its *preimage*.)

(H3) **collision resistance**: it should be infeasible to find any pair of distinct inputs m_1, m_2 such that $H(m_1) = H(m_2)$. (Note: here there is free choice of both m_1 and m_2. When two distinct inputs hash to the same output value, we call it a *collision*.)

The properties required vary across applications. As examples will elaborate later, H1 is required for password hash chains (Chapter 3) and also for storing password hashes; for digital signatures, H2 suffices if an attacker cannot choose a message for others to sign, but H3 is required if an attacker can choose the message to be signed by others—otherwise an attacker may get you to sign m_1 and then claim that you signed m_2.

Computational security. The one-way property (H1) implies that given a hash value, an input that produces that hash cannot be easily found—even though many, many inputs do indeed map to each output. To see this, restrict your attention to only those inputs of exactly 512 bits, and suppose the hash function output has bitlength 128. Then H maps each of these 2^{512} input strings to one of 2^{128} possible output strings—so on average, 2^{384} inputs map to each 128-bit output. Thus enormous numbers of collisions exist, but they should be hard to find in practice; what we have in mind here is called **computational security**. Similarly, the term “infeasible” as used in (H1)-(H3) means computationally infeasible in practice, i.e., assuming all resources that an attacker might be able to harness over the period of desired protection (and erring on the side of caution for defenders).\(^6\)

Comment on black magic. It may be hard to imagine that functions with properties (H1)-(H3) exist. Their design is a highly specialized art of its own. The role of security developers is not to design such functions, but to follow the advice of cryptographic experts, who recommend appropriate hash functions for the tasks at hand.

‡**Exercise** (CRC vs. cryptographic hash). Explain why a cyclical redundancy code (CRC) algorithm, e.g., a 16- or 32-bit CRC commonly used in network communications for integrity, is not suitable as a cryptographic hash function (hint: [22, p.363]).

Hash functions fall into two broad service classes in security, as discussed next.

One-way hash functions. Applications in which “one-wayness” is critical (e.g., password hashing, below), require property H1. In practice, hash functions with H1 often also provide H2. We prefer to call the first property *preimage resistance*, because traditionally functions providing both H1 and H2 are called **one-way hash functions**.

Collision-resistant hash functions. A second usage class relies heavily on the requirement (property) that it be hard to find two inputs having the same hash. If this is not so, then in some applications using hash functions, an attacker finding such a pair of inputs might benefit by substituting a second such input in place of the first. As it turns out, second-preimage resistance (H2) fails to guarantee collision resistance (H3); for an attacker trying to find two strings yielding the same hash (i.e., a collision), fixing one string (say m_1 in H2) makes collision-finding significantly more costly than if given

\(^6\)In contrast, in *information-theoretic security*, the question is whether, given unlimited computational power or time, there is sufficient information to solve a problem. That question is of less interest in practice.
free choice of both m_1 and m_2. The reason is the *birthday paradox* (page 44). When it is important that finding collisions be computationally difficult even for an attacker free to choose both m_1 and m_2, *collision resistance* (H3) is specified as a requirement. It is easy to show that H3 implies second-preimage resistance (H2). Furthermore, in practice, hash functions with H2 and H3 also have the one-way property (H1), providing all three. Thus as a single property in a hash function, H3 (collision resistance) is most advanced.

Example (Hash function used as modification detection code). As an example application involving properties H1–H3 above, consider an executable file corresponding to program P with binary representation p, faithfully representing legitimate source code at the time P is installed in the filesystem. At that time, using a hash function H with properties H1–H3, the operating system computes $h = H(p)$. This “trusted-good” hash of the program is stored in memory that is safe from manipulation by attackers. Later, before invoking program P, the operating system recomputes the hash of the executable file to be run, and compares the result to stored value h. If the values match, there is strong evidence that the file has not been manipulated or substituted by an attacker.

The process in this example provides a *data integrity* check for one file, immediately before execution. Data integrity for a designated set of system files could be provided as an ongoing background service by similarly computing and storing a set of trusted hashes (one per file) at some initial time before exposure to manipulation, and then periodically recomputing the file hashes and comparing to the *allowlist* of known-good stored values.\(^8\)

‡**Exercise (Hash function properties—data integrity).** In the above example, was the collision resistance property (H3) actually needed? Give one set of attack circumstances under which H3 is necessary, and a different scenario under which H needs only second-preimage resistance to detect an integrity violation on the protected file. (An analogous question arises regarding necessary properties of a hash function when used in conjunction with digital signatures, as discussed shortly.)

Example (Using one-way functions in password verification). One-way hash functions H are often used in password authentication as follows. A userid and password p entered on a client device are sent (hopefully over an encrypted link!) to a server. The server hashes the p received to $H(p)$, and uses the userid to index a data record containing the (known-correct) password hash. If the values match, login succeeds. This avoids storing, at the server, plaintext passwords, which might be directly available to disgruntled administrators, anyone with access to backup storage, or via server database breakins.

Exercise (Hash function properties—password hashing). In the example above, would a hash function having the one-way property, but not second-preimage resistance, be useful for password verification? Explain.

Exercise (Password hashing at the client end). The example using a one-way hash function in password verification motivates storing password hashes (vs. clear passwords) at the server. Suppose instead that passwords were hashed at the client side, and the

\(^7\)There are pathological examples of functions having H2 and H3 without the one-way property (H1), but, in practice, collision resistance (H3) almost always implies H1 [22, p.330].

\(^8\)An example of such a service is *Tripwire* [15].
Table 2.1: Common hash functions and example parameters. Additional SHA-2 variants include SHA-224 (SHA-256 truncated to 224 bits), SHA-384 (SHA-512 truncated), and further SHA-512 variations, which use specially computed initial values and truncate to 224 or 384 bits resp., giving SHA-512/224 and SHA-512/256. **NOTE 1:** SHA-3’s most flexible variation allows arbitrary bitlength output; SHA-3 is based on the Keccak family. For context: Bitcoin computations execute about 2^{90} SHA-2 hashes per year (circa 2019).

<table>
<thead>
<tr>
<th>Family name</th>
<th>Year</th>
<th>Output size</th>
<th>Alternate names and notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>bitlength</td>
<td>bytes</td>
</tr>
<tr>
<td>SHA-3</td>
<td>2015</td>
<td>224, 256</td>
<td>28, 32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>384, 512</td>
<td>48, 64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SHA3-224, SHA3-256</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(NOTE 1) SHA3-384, SHA3-512</td>
</tr>
<tr>
<td>SHA-2</td>
<td>2001</td>
<td>256, 512</td>
<td>32, 64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SHA-256, SHA-512</td>
</tr>
<tr>
<td>SHA-1</td>
<td>1995</td>
<td>160</td>
<td>20</td>
</tr>
<tr>
<td>MD5</td>
<td>1992</td>
<td>128</td>
<td>16</td>
</tr>
</tbody>
</table>

Deprecated (2017) for browser certificates

Widely deprecated, for many applications

Password hash was sent to the server (rather than the password itself). Would this be helpful or not? Should the password hash be protected during transmission to the server?

Example (Hash examples). Table 2.1 shows common hash functions in use: SHA-3, SHA-2, SHA-1 and MD5. Among these, the more recently introduced versions, and those with longer outputs, are generally preferable choices from a security viewpoint. (Why?)

Birthday paradox. What number n of people are needed in a room before a shared birthday is expected among them (i.e., with probability $p = 0.5$)? As it turns out, only about 23 (for $p = 0.5$). A related question is: Given n people in a room, what is the probability that two of them have the same birthday? This probability rises rapidly with n: $p = 0.71$ for $n = 30$, and $p = 0.97$ for $n = 50$. Many people are surprised that n is so small (first question), and that the probability rises so rapidly. Our interest in this **birthday paradox** stems from analogous surprises arising frequently in security: attackers can often solve problems more efficiently than expected (e.g., arranging hash function collisions as in property H3 above). The key point is that the “collision” here is not for one pre-specified day (e.g., your birthday); any matching pair will do, and as n increases, the number of pairs of people is $C(n, 2) = n(n − 1)/2$, so the number of pairs of days grows as n^2. From this it is not surprising that further analysis shows that (here with $m = 365$) a collision is expected when $n ≈ \sqrt{m}$ (rather than $n ≈ m$, as is a common first impression).

Digital signatures with hash functions. Most digital signature schemes are implemented using mathematical primitives that operate on fixed-size input blocks. Breaking a message into blocks of this size, and signing individual pieces, is inefficient. Thus commonly in practice, to sign a message m, a hash $h = H(m)$ is first computed and h is signed instead. The details of the hash function H to be used are necessary to complete the signature algorithm specification, as altering these details alters signatures (and their validity). Here, H should be collision resistant (H3). Figure 2.11 illustrates the process.

‡**Exercise (Hash properties for signatures).** For a hash function H used in a digital signature, outline distinct attacks that can be stopped by hash properties (H2) and (H3).

‡**Exercise (Precomputation attacks on hash functions).** The definition of the one-way property (H1) has the curious qualifying phrase “for essentially all”. Explain why this
2.6 Message authentication (data origin authentication)

Message authentication is the service of assuring the integrity of data (i.e., that it has not been altered) and the identity of the party that originated the data, i.e., data origin authentication. This is done by sending a special data value, or tag, called a message authentication code (MAC), along with a message. The algorithm computing the tag, i.e., the MAC function, is a special type of hash function whose output depends not only on the input message but also on a secret number (secret key). The origin assurance derives from the assumption that the key is known only to the originator who computes the tag, and any party they share it with to allow tag verification; thus the recipient assumes that the originator is a party having access to, or control of, this MAC key.

If Alice sends a message and matching MAC tag to Bob (with whom she shares the MAC key), then he can verify the MAC tag to confirm integrity and data origin. Since the key is shared, the tag could also have been created by Bob. Between Alice and Bob, they know who originated the message, but if Alice denies being the originator, a third party may be unable to sort out the truth. Thus, MACs lack the property of non-repudiation, i.e., they do not produce evidence countering repudiation (false denial of previous actions). Public-key signatures provide both data origin authentication and non-repudiation.

Figure 2.11: Signature algorithm with hashing details. The process first hashes message m to $H(m)$, and then applies the core signing algorithm to the fixed-length hash, not m itself. Signature verification requires the entire message m as input, likewise hashes it to $H(m)$, and then checks whether an alleged signature tag t for that m is VALID or INVALID (e.g., returning boolean values TRUE or FALSE). s_A and v_A are Alice’s signature private key and signature verification public key, respectively. Compare to Figure 2.9.

‡Exercise (Merkle hash trees). Explain what a Merkle hash tree is, and how BitTorrent uses this construction to efficiently verify the integrity of data pieces in peer-to-peer downloads. (Hint: Chapter 13 or [22, p.558], and the Wikipedia entry on “Torrent file”.)

‡Exercise (biometrics and fuzzy commitment). For password-based authentication, rather than storing cleartext user passwords w directly, systems commonly store the hash $H(w)$ as noted earlier. Can templates for biometric authentication be similarly protected using one-way hash functions? What role might error-correcting codes play? (Hint: [13].)
MAC details. Let M denote a MAC algorithm and k a shared MAC key. If Alice wishes to send to Bob a message m and corresponding MAC tag, she computes $t = M_k(m)$ and sends (m, t). Let (m', t') denote the pair actually received by Bob (allowing that the legitimate message might be modified en route, e.g., by an attacker). Using his own copy of k and the received message, Bob computes $M_k(m')$ and checks that it matches t'. Beyond this basic check, for many applications further means should ensure “freshness”—i.e., that (m', t') is not simply a replay of an earlier legitimate message. See Figure 2.12.

Example (MAC examples). An example MAC algorithm based on block ciphers is CMAC (Section 2.9). In contrast, HMAC gives a general construction employing a generic hash function H such as those in Table 2.1, leading to names of the form HMAC-H (e.g., H can be SHA-1, or variants of SHA-2 and SHA-3). Other MAC algorithms as noted in Table 2.2 are Poly1305-AES-MAC and those in AEAD combinations in that table.

Exercise (MACs from hash functions). It may seem that a MAC is easily created by combining a hash function and a key, but this is non-trivial. a) Given a hash function H and symmetric keys k_1, k_2, three proposals for creating a MAC from H are the secret prefix, secret suffix, and envelope method: $H_1 = H(k_1 || x)$, $H_2 = H(x || k_2)$, and $H_3 = H(k_1 || x || k_2)$. Here “$||$” denotes concatenation, and x is data to be authenticated. Explain why all three methods are less secure than might be expected (hint: [35]). b) Explain the general construction by which HMAC converts an unkeyed hash function into a MAC (hint: [17]).

‡In practice, CMAC is recommended over CBC-MAC (see notes in Section 2.9).
2.7 Authenticated encryption and further modes of operation

Having explained MACs, we discuss how they are commonly combined with symmetric-key encryption, and then consider a few further symmetric-key cipher modes of operation.

AUTHENTICATED ENCRYPTION. Encryption, when stated as a requirement, usually implies encryption with guaranteed integrity, i.e., the combination of encryption and data origin authentication. This allows detection of unauthorized ciphertext manipulation, including alteration and message forgery. The combined functionality, called authenticated encryption (AE), can be achieved by using a block cipher for encryption, and a separate MAC algorithm for authentication; this is called generic composition (Exercise below). However, a different approach, preferred for technical reasons, is to use a custom-built algorithm that does both. Such integrated AE algorithms are designed to allow safe use of a single symmetric key for both functions (whereas using one crypto key for two purposes is generally discouraged as bad practice\(^\text{10}\)). Integrated AE algorithms are identified by naming a block cipher and an AE family—see Table 2.2 (page 49).

AUTHENTICATED ENCRYPTION WITH ASSOCIATED DATA (AEAD). In practice, the following situation is common: message data is to be encrypted, and accompanying data should be authenticated (e.g., to detect any tampering) but not encrypted—e.g., packet payload data must be encrypted, but header fields containing protocol or routing information may be needed by (visible to) intermediate networking nodes. Rather than use a separate MAC to detect integrity violations of such information, a special category of AE algorithms, called authenticated encryption with associated data (AEAD) algorithms, accommodate such additional or associated data (AD) as shown in Figure 2.13.

CCM MODE OF OPERATION. An AEAD method called Counter mode with CBC-MAC (CCM) combines the CTR mode of operation (Fig. 2.5) for encryption—in essence a stream cipher—with CBC-MAC (above) for authentication. The underlying block cipher used is commonly AES. Use in practice requires agreement on application-specific details for security and interoperability, e.g., input formatting and MAC tag postprocessing (reducing its length in some cases); Sect. 2.9 gives references to CCM-related standards.

\(^{10}\)An example of what can go wrong is relatively easy to follow [22, p.367, Example 9.88].
AEAD decrypt-verify Ch. 2. AEAD. If the MAC tag T is 128 bits, then the ciphertext C' is 128 bits longer than the plaintext. A particular protocol could put the tag T into a pre-allocated field in message sub-header H'.

AEAD functionality may be provided by generic composition, e.g., generating C' using a block cipher in CBC mode, and T by an algorithm such as CMAC (Section 2.9) or HMAC-SHA-2. The extra, i.e., associated data (AD) need not be physically adjacent to the plaintext as shown (provided that logically, they are covered by MAC integrity in a fixed order). The nonce N, e.g., 96 bits in this application, is a number used only once for a given key K; reuse puts confidentiality at risk. If P is empty, the AEAD algorithm is essentially a MAC algorithm.

AEAD encrypt-generate

Figure 2.13: Authenticated encryption with associated data (AEAD). If the MAC tag T is 128 bits, then the ciphertext C' is 128 bits longer than the plaintext. A protocol may pre-allocate a field in sub-header H' for tag T. AEAD functionality may be provided by generic composition, e.g., generating C' using a block cipher in CBC mode, and T by an algorithm such as CMAC (Section 2.9) or HMAC-SHA-2. The extra, i.e., associated data (AD) need not be physically adjacent to the plaintext as shown (provided that logically, they are covered by MAC integrity in a fixed order). The nonce N, e.g., 96 bits in this application, is a number used only once for a given key K; reuse puts confidentiality at risk. If P is empty, the AEAD algorithm is essentially a MAC algorithm.

AEAD decrypt-verify

Data to be authenticated

H (packet header) → data to be encrypted

H' N AD P

C' T

Tag fails

"Authentication failed, sorry no plaintext"
P (original plaintext is returned)

data to be authenticated

H' N AD P

C' T

Tag verifies

“Authentication failed, sorry no plaintext” P (original plaintext is returned)

AD: associated data
C: ciphertext
P: plaintext
N, K: nonce, key
T: MAC tag

AEAD encrypt-generate

AEAD decrypt-verify

Figure 2.13: Authenticated encryption with associated data (AEAD). If the MAC tag T is 128 bits, then the ciphertext C' is 128 bits longer than the plaintext. A protocol may pre-allocate a field in sub-header H' for tag T. AEAD functionality may be provided by generic composition, e.g., generating C' using a block cipher in CBC mode, and T by an algorithm such as CMAC (Section 2.9) or HMAC-SHA-2. The extra, i.e., associated data (AD) need not be physically adjacent to the plaintext as shown (provided that logically, they are covered by MAC integrity in a fixed order). The nonce N, e.g., 96 bits in this application, is a number used only once for a given key K; reuse puts confidentiality at risk. If P is empty, the AEAD algorithm is essentially a MAC algorithm.

Example (Symmetric algorithms and parameters). Table 2.2 gives examples of well-known symmetric-key algorithms with blocklengths, keylengths, and related details.

Exercise (Authenticated encryption: generic composition). To implement authenticated encryption by serially combining a block cipher and a MAC algorithm, three options are: 1) MAC-plaintext-then-encrypt (MAC the plaintext, append the MAC tag to the plaintext, then encrypt both); 2) MAC-ciphertext-after-encrypt (encrypt the plaintext, MAC the resulting ciphertext, then append the MAC tag); and 3) encrypt-and-MAC-plaintext (the plaintext is input to each function, and the MAC tag is appended to the ciphertext). Are all of these options secure? Explain. (Hint: [1, 16, 4], and [37, Fig.2].)
2.8. Certificates, elliptic curves, and equivalent keylengths

Table 2.2: Common ciphers, AEAD algorithms, and example parameters. Blocklength \(n \), keylength \(y \), nonce/IV bitlength \(v \), MAC tag bitlength \(t \) (*may be reduced by post-processing). Triple-DES involves three rounds of DES under three distinct keys, and remains of interest for legacy reasons. GCM is Galois/Counter Mode (Section 2.9).

<table>
<thead>
<tr>
<th>Name of cipher, MAC or AEAD combination</th>
<th>Cipher specs</th>
<th>Other specs, notes</th>
<th>Cipher details</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES-128, AES-192, AES-256</td>
<td>128</td>
<td>128-256</td>
<td>–</td>
</tr>
<tr>
<td>ChaCha20</td>
<td>–</td>
<td>256</td>
<td>96</td>
</tr>
<tr>
<td>Poly1305-AES-MAC</td>
<td>128</td>
<td>256</td>
<td>custom</td>
</tr>
<tr>
<td>AEAD_AEADAES_128_CCM</td>
<td>128</td>
<td>128</td>
<td>CCM</td>
</tr>
<tr>
<td>AEAD_AES_256_CCM</td>
<td>–</td>
<td>256</td>
<td>–</td>
</tr>
<tr>
<td>AEAD_AES_128_GCM</td>
<td>128</td>
<td>128</td>
<td>GCM</td>
</tr>
<tr>
<td>AEAD_AES_256_GCM</td>
<td>–</td>
<td>256</td>
<td>–</td>
</tr>
<tr>
<td>DES</td>
<td>64</td>
<td>56</td>
<td>core of triple-DES</td>
</tr>
<tr>
<td>triple-DES (3-key)</td>
<td>64</td>
<td>3x56</td>
<td>NIST SP 800-67r2</td>
</tr>
<tr>
<td>RC4</td>
<td>–</td>
<td>–</td>
<td>legacy use</td>
</tr>
</tbody>
</table>

Certificates. A **public-key certificate** is a data structure whose primary fields are a subject name, a public key asserted to belong to that subject, and a digital signature (over these and other fields) by a third party called a **certification authority** (CA). The intent is that the signature conveys the CA’s attestation that it has verified that the named subject is the legitimate party associated with that public key, thus binding subject and public key. Parties that rely on the certificate (**relying parties**) require an authentic copy of the CA’s verification public key to verify the CA’s signature, and thus the certificate’s integrity.

Certification Authorities. The CA’s role is critical for trustworthy certificates. Before signing a certificate, the CA is expected to carry out appropriate due diligence to confirm the identity of the named subject, and their association with the public key. For example, to obtain evidence of control of the corresponding private key, the CA may send the subject a challenge message whose correct response requires use of that private key (without disclosing it); the CA uses the purportedly corresponding public key in creating the challenge, or verifying the response. Digital certificates allow relying parties to gain trust in the public keys of many other parties, through pre-existing trust in the public key of a signing CA. Trust in one key thus translates into trust in many.

Certificate revocation. Certificates also include: a serial number to uniquely identify the certificate, an expiry date, identity information for the CA, algorithm identifiers (for the embedded public key, and the CA’s signature), and revocation information. The latter allows a certificate’s validity, which by default continues until the expiry date, to be terminated earlier (e.g., if the private key is reported compromised, or the named subject ceases to continue in the role for which the public key was certified). The revocation information indicates how relying parties can get further details, e.g., a signed list of **revoked certificates**, or the URL of a trusted site to contact for a real-time status check of
a certificate’s validity. Certificates and CAs are discussed in greater detail in Chapter 8.

NIST-recommended keylengths. For public U.S. government use, NIST recommended (in November 2015) at least 112 bits of “security strength” for symmetric-key encryption and related digital signature applications. Here “strength” is not the raw symmetric-key bitlength, but an estimate of security based on best known attacks (e.g., triple-DES has three 56-bits keys, but estimated strength only 112 bits). To avoid obvious “weak-link” targets, multiple algorithms used in conjunction should be of comparable strength.\(^\text{11}\) Giving “security strength” estimates for public-key algorithms requires a few words. The most effective attacks against strong symmetric algorithms like AES are exhaustive search attacks on their key space—so a 128-bit AES key is expected to be found after searching \(2^{127}\) keys, for a security strength of 127 bits (essentially 128). In contrast, for public-key cryptosystems based on RSA and Diffie-Hellman (DH), the best attacks do not require exhaustive search over private-key spaces, but instead faster number-theoretic computations involving integer factorization and computing discrete logarithms. This is the reason that, for comparable security, keys for RSA and DH must be much larger than AES keys. Table 2.3 gives rough estimates for comparable security.

<table>
<thead>
<tr>
<th>Symmetric-key security strength</th>
<th>RSA modulus</th>
<th>DH modulus</th>
<th>DH private key</th>
<th>ECC</th>
</tr>
</thead>
<tbody>
<tr>
<td>112 (triple-DES)</td>
<td>2048</td>
<td>2048</td>
<td>224</td>
<td>224-255</td>
</tr>
<tr>
<td>128 (AES)</td>
<td>3072</td>
<td>3072</td>
<td>256</td>
<td>256-383</td>
</tr>
</tbody>
</table>

Table 2.3: Recommended keylengths for comparable algorithm strengths. Numbers denote parameter bitlengths. A symmetric key of 128 bits corresponds to the lowest of three keylengths supported by AES. For RSA and DH, the modulus implies the size of the public key. RSA entries are for encryption, signatures, and key agreement/key transport (Chapter 4). These are recommended pairings, rather than exact security equivalents.

Elliptic curve public-key systems. Public-key systems are most easily taught using implementations over number systems that students are already somewhat familiar with, e.g., arithmetic modulo \(n = pq\) (for RSA), and modulo a large prime \(p\) for Diffie-Hellman (DH) later in Chapter 4. By their underlying mathematical structures, RSA and DH are respectively classified as integer factorization cryptography (IFC) and finite field cryptography (FFC). Public-key functionality—encryption, digital signatures, and key agreement—can analogously be implemented using operations over sets of elements defined by points on an elliptic curve. Such elliptic curve cryptography (ECC) implementations offer as a main advantage computational and storage efficiencies due to smaller key sizes (Table 2.3). In certain situations ECC also brings disadvantages. To mention one, in many RSA implementations the public-key operation is relatively inexpensive compared to the private-key operation (because for technical reasons, short public exponents can be used); the reverse is true for ECC, a drawback in certificate-based infrastructures where signature verification (using the public key) is far more frequent than signing (using the private key). ECC involves more complex mathematics, but this is eas-

\(^{11}\)This follows the principle of DEFENSE-IN-DEPTH P13 (Chapter 1).
ily overcome by the availability of standard toolkits and libraries. In this book, we use RSA and Diffie-Hellman examples that do not involve ECC.

2.9 End notes and further reading

The classic treatment of cryptography through the ages is Kahn [14]; Singh [39] gives a shorter, highly entertaining history. Diffie and Hellman [8] give an academic introduction, and introduced public-key cryptography (Chapter 4). RSA encryption and signatures are due to Rivest, Shamir and Adleman [36]. Boneh [5, 6] surveys attacks on RSA, and explains the difference between theory and practice in implementing public-key algorithms. For extensive background in applied cryptography, see Menezes [22]; its section 7.3 reviews classical “toy ciphers” and how simple, elegant attacks defeat historical transposition ciphers and polyalphabetic substitution, e.g., using the method of Kasiski and related index of coincidence. Such attacks clarify how the one-time pad fails if the key is reused (it is not a two-time pad). Other recommended books include Ferguson [9] for practical cryptography, and Menezes [21, 10] for elliptic curve cryptography. Welchman [42] provides a first-person account of WW2 British code-breaking at Bletchley Park, including insights on human errors in key management undermining the strength of Enigma codes.

For triple-DES and its status circa 2017, see NIST [31]; newer alternatives are preferred. The CMAC block cipher construction improves on CBC-MAC; for details and supporting literature (approving its use with AES and also three-key triple-DES), see NIST 800-38B [24], and RFC 4493 for AES-CMAC. See RFC 7539 [23] for the ChaCha20 stream cipher and Poly1305 MAC, their combined AEAD algorithm due to Langley, and motivation (advantages over AES); the original proposals are by Bernstein [2, 3]. Use of HMAC [17, 28] with MD5, i.e., HMAC-MD5, is discouraged [40] towards ending MD5’s ongoing use (especially for signature applications). The widely implemented RC4 stream cipher is now prohibited by TLS [32]. FIPS 186–4 [29] specifies the Digital Signature Algorithm (DSA) and ECDSA, its elliptic curve variant. Digital signatures with appendix (Section 2.4) require the message itself for signature verification. Digital signatures with message recovery [22, p.430] (suitable only for short messages) do not—the verification process recovers the original message (the tag conveys both signature and message), but whereas a hash function is not needed, a customized redundancy function is.

Preneel [33] undertook the first systematic study of cryptographic hash functions; Chapter 9 of Menezes [22] gives an early overview. For finding hash function collisions in practice, see van Oorschot [41]. Rogaway [37] formalized AEAD (authenticated encryption with associated data); for interface definitions per Table 2.2, see RFC 5116 [19]. NIST-specified AEAD modes include CCM [25] (see Jonsson [12] for security analysis, and the original Whiting [43] proposal) and GCM [27] (see also McGrew [20]); the OCB mode of Rogaway [38] is faster than both (Krovetz [18] compares the three), but patent entanglement issues impaired adoption of it and several earlier methods. Table 2.3’s recommended keylength pairings are from NIST [30].
References (Chapter 2)

