
Computer Security and the Internet: Tools and Jewels (2e)

Chapter 5

Operating System Security and Access Control

5.1 Memory protection, supervisor mode, and accountability . . . . . . . . . . . . . . . . . . 127
5.2 The reference monitor, access matrix, and security kernel . . . . . . . . . . . . . . . . . . 130
5.3 Object permissions and file-based access control . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.4 Setuid bit and effective userid (eUID) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.5 Directory permissions and inode-based example . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.6 Symbolic links, hard links and deleting files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.7 Role-based (RBAC) and mandatory access control . . . . . . . . . . . . . . . . . . . . . . . . 144
5.8 ‡Protection rings: isolation meets finer-grained sharing . . . . . . . . . . . . . . . . . . . . 146
5.9 ‡Relating subjects, processes, and protection domains . . . . . . . . . . . . . . . . . . . . . 149
5.10 ‡End notes and further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

The official version of this book is available at
https://www.springer.com/gp/book/9783030834104

ISBN: 978-3-030-83410-4 (hardcopy), 978-3-030-83411-1 (eBook)

Copyright c©2020-2022 Paul C. van Oorschot. Under publishing license to Springer.

For personal use only.

This author-created, self-archived copy is from the author’s web page.

Reposting, or any form of redistribution without permission, is strictly prohibited.

version: 15 Oct 2021

https://www.springer.com/gp/book/9783030834104


Chapter 5

Operating System Security and
Access Control

Mass-produced computers emerged in the 1950s. 1960s time-sharing systems brought se-
curity requirements into focus. 1965-1975 was the golden design age for operating system
(OS) protection mechanisms, hardware protection features and address translation. While
the threat environment was simpler—e.g., computer networks were largely non-existent,
and the number of software authors and programs was far smaller—many challenges were
the same as those we face today: maintaining separation of processes while selectively al-
lowing sharing of resources, protecting programs from others on the same machine, and
restricting access to resources. “Protection” largely meant controlling access to mem-
ory locations. This is more powerful than it first appears. Since both data and programs
are stored in memory, this controls access to running processes; input/output devices and
communications channels are also accessed through memory addresses and files. As files
are simply logical units of data in primary memory and secondary storage, access control
of memory and files provides a general basis for access control of objects and devices.

Initially, protection meant limiting memory addresses accessible to processes, in con-
junction with early virtual memory address translation, and access control lists were devel-
oped to enable resource sharing. These remain protection fundamentals. Learning about
such protection in operating systems provides a solid basis for understanding computer
security. Aside from Unix, we base our discussion in large part on Multics; its segmented
virtual addressing, access control, and protection rings heavily influenced later systems.
Providing security-related details of all major operating systems is not our goal—rather,
considering features of a few specific, real systems allows a coherent coverage highlight-
ing principles and exposing core issues important in any system design. Unix of course has
many flavors and cousins including Linux, making it a good choice. Regarding Multics,
security influenced it from early design (1964-67) through later commercial availability.
It remains among the most carefully engineered commercial systems ever built; an invalu-
able learning resource and distinguishing feature over both early and modern systems is
its rich and detailed technical literature explaining both its motivation and design.

126



5.1. Memory protection, supervisor mode, and accountability 127

5.1 Memory protection, supervisor mode, and accountability

IN THE BEGINNING. Early computers were large and expensive—and simple compared
to later systems. When they were used to run single computer programs one after the
other, the delay between runs wasted valuable computer time. This motivated batch pro-
cessing—programs prepared ahead of time were submitted together as a “batched” job
run by an operator. This reduced idle CPU time and costs, but inconvenienced users. The
time-sharing systems of the early 1960s offered an alternative for shared use of a com-
puter, and gave users the impression of running a program on their own machine in real
time. While programs appeared to run concurrently, the innovation was to organize them
as processes between which the CPU alternated. This is how single-user computers work
today, albeit with one user running multitudes of programs concurrently.

ISOLATION. A security issue arises immediately once more than one process runs
“concurrently”: resource conflicts. An early concern was computer memory—an isola-
tion mechanism was needed to prevent one process writing into another’s memory, lest
benign errors in one program impact another (let’s not mention malicious programs just
yet). Even for computers running single programs one at a time, if a user process could
access the computer’s full memory range, errors might disrupt OS data or code—a lack
of basic protection subjects even a debugging program to disruption by faulty code being
debugged. Another early commercial issue was how to allow one program to execute
proprietary functionality of a second, without the first having read access to the second.

SUPERVISOR, PRIVILEGED BIT, DESCRIPTOR REGISTER. A typical isolation
mechanism began as follows. All memory references went through a hardware descrip-
tor register holding a memory descriptor consisting of a (base, bound) pair of values.
These indicated the lowest physical memory address accessible to the active process, and
the number of addressable memory words from that point. To control the memory address
range visible to a process, only the supervisor program, which ran with a privileged bit set
(supervisor mode), could load the descriptor register. (Earlier machines ran all programs
in this mode—it was the only mode.) User programs could cause the privileged bit to be
set only via a machine instruction that immediately transferred execution to the supervisor
program. The design protected memory descriptors by storing them in memory managed
exclusively by the supervisor. This starting basis for process isolation thus consisted of a
simple three-component memory protection scheme as follows (Fig. 5.1).

1. Descriptor register: constrains the addresses a process can access. The supervisor
maintains a descriptor for each process, and loads this register for the active process.

2. Privileged bit: must be set in order for the descriptor register to be loaded. Only
supervisor code runs with this bit set.

3. Supervisor: no other program can alter the privileged bit. A special machine instruc-
tion can also set the bit and immediately transfer control to the supervisor.

LIMITATIONS OF MEMORY-RANGE BASED PROTECTION. With this basic memory
protection scheme, the supervisor prevents user processes from altering supervisor code
or data by reserving memory that user processes cannot access. This provides an all-or-



128 Chapter 5. Operating System Security and Access Control

Ch.5,	Fig.1.		Two	processes	accessing	one	program.	

U2	
U1	

increasing	mem	addresses	

U2’s		
code	

U1’s		
code	

P’s		
code	

supervisor		
code	

...	

U1	calls	P	 U2	calls	P	

descriptor		
of	ac<ve	process		

is	loaded		base		bound	 �	 �	
�	 �	

Descriptor	Register	 Memory	Descriptors	in		
supervisor	
memory		

Privileged		
Bit	

(set	means	
supervisor)	

Figure 5.1: Two programs calling the same sub-program P (model circa 1970).

nothing mode in the sense of full access to everything as supervisor, or no cross-process
sharing at all. This allows full isolation, but not fine-grained sharing of memory. We
next consider why finer-grained control is desirable, while still preventing unauthorized
use or alteration of one process’s memory by another. Consider a service program P in
memory, to be called by user processes U1 and U2 (Figure 5.1). Both must access P’s
code memory. Simple memory-range limits of a descriptor register no longer suffice, e.g.,
because P needs memory to write temporary results for each of U1, U2. The next step
forward is more specific access permissions allowing separate read, write and execute
permissions for a specified memory region. A description of this enhancement follows.

SEGMENT ADDRESSING WITH ACCESS PERMISSIONS. A memory segment, sup-
ported by segment addressing hardware, is a continuous block of words, representing a
logical unit of information. (Multics segments evolved from the concept of a file, which
had already been introduced.) A memory word is then addressed by a pair of values
(S,W ), the segment number S and word number offset W therein. Thus a level of in-
direction now separates this early virtual memory descriptor from a segment’s physical
address. The OS maintains a special per-process descriptor segment that holds a table of
segment descriptors defining the physical memory addressable by the process.1 The ad-
dressing scheme controls access—a process can’t access a segment that it can’t “see” (i.e.,
reference). A processor descriptor base register (DBR) points to the descriptor segment
of the active process. S is an index into this table, and each segment descriptor therein
details a segment’s physical starting address, current size, and an access control indicator
specifying permission bits for this memory segment, for example (Figure 5.2):

R: read (if 1, a non-supervisor process has read access; if 0, only the supervisor does)

W: write (if 1, the segment may be written into; usually then X=0)

X: execute (if 1, segment is executable; usually then W=0, code not self-modifying)

M: mode (if 1, supervisor mode when executing segment; valid only when X=1)

F: fault (if 1, all access attempts trap to supervisor; overrides all other bits)

Note that by this design, now the same physical address region can be given (for different
processes) different access permissions, through different segment descriptors.

1Segment descriptors thus provided early support for the principle of ISOLATED-COMPARTMENTS (P5).



5.1. Memory protection, supervisor mode, and accountability 129

segment	
length	

Ch.5,	Fig.2.		Segment	descriptors.	When	user	j	is	running,	DBR	points	to	process	j’s	
descriptor	segment,	and	indexes	descriptor	i	therein	as	DBR[i];			the	index	i	
corresponds	to	the	segment	S	in	the	memory	address	pair	(S,	W).	

base	

R	physical	
start	addr	

Descriptor	Segment		
entries	for	process	j			

W	 F	M	X	

bound	=	base	+	length	

Access	Control	Indicators	

[0]			Segment	Descriptor	0		

[i]			Segment	Descriptor	i 

[1]			Segment	Descriptor	1	

...	

Segment		
Descriptor:		

DBR	(Descriptor	
Base	Register)	

�	

Figure 5.2: Multics-style segment descriptors and a descriptor segment holding them.
When process j runs, DBR points to j’s descriptor segment, and indexes descriptor i
therein as DBR[i]. The index i corresponds to segment S in a memory address pair (S,W ).

‡Exercise (Memory protection design). In segment addressing above, the access con-
trol bits are essentially appended to a base-bound pair to form a descriptor. If the access
control indicator bits were instead stored in (a protected part of) the physical storage as-
sociated with the target segment, what disadvantage arises?

‡PERMISSIONS ON VIRTUAL SEGMENTS. The segment descriptors above contain
physical addresses and access permissions. An improvement associates the access per-
missions directly with a (virtual) segment identifier, i.e., a label identifying the segment
independent of physical memory location. As one motivation, permissions logically re-
late to virtual, not physical memory. As another, this facilitates combining the resulting
(physical) descriptor segment with memory allocation schemes in some designs.

ACCOUNTABILITY, USERIDS AND PRINCIPALS. Each user account on a system
has a unique identifier or username, mapped by the OS to a numeric userid (UID). To log
in (access the account), a user enters the username and a corresponding password. The
latter is intended to be known only to the authorized user; an expected username-password
pair is accepted as evidence of being the legitimate user associated with username. This is
the basic authentication mechanism, as discussed in Chapter 3. The term principal is used
to abstract the “entity” responsible for code execution resulting from user (or consequent
program) actions. The OS associates a UID with each process; this identifies the principal
accountable for the process. The UID is the primary basis for granting access privileges to
resources—the permissions associated with the set of objects the process is authorized to
access, or the domain in access control terminology.2 The UID also serves administrative
and billing purposes, and aids debugging, audit trails, and forensics. A separate process
identifier (PID) is used for OS-internal purposes such as scheduling.

ROLES. A user may function in several roles, e.g., as a regular user and occasionally
as an administrator. In this case, by the principle of LEAST-PRIVILEGE (P6), common
practice is to assign the user more than one username, and switch usernames (thus UIDs

2Section 5.9 defines subject (principal) more precisely, and the relationship to processes and domains.



130 Chapter 5. Operating System Security and Access Control

internally) when acting in a role requiring the privileges of a different domain; abstractly,
distinct UIDs are considered distinct principals. Use of the same username by several
users is generally frowned upon as poor security hygiene, hindering accountability among
other drawbacks. To share resources, a preferred alternative is to use protection groups as
discussed in Section 5.3. Section 5.7 discusses role-based access control (RBAC).

5.2 The reference monitor, access matrix, and security kernel

Before moving beyond basic protection, we introduce several concepts needed in later
sections. The first is the reference monitor concept (Figure 5.3), proposed in 1972 as a
model for building secure systems for government use in the context of defending against
malicious users. The basic notion was stated thus: all references by any program to any
program, data or device are validated against a list of authorized types of reference based
on user and/or program function.

Ch.5,	Fig.3.		Reference	monitor	model.	The	policy	check	may	involve,	e.g.,	
consul>ng	an	access	control	matrix.		
	

permi@ed	
by	policy	

request	access	
to	object	

Object2 

Object3 

Object1 

Reference		
monitor	Subject	

Policy	
access	not		
permi@ed	

✗	

✗	
Figure 5.3: Reference monitor model. The policy check consults an access control policy.

ACCESS MATRIX. The reference monitor is a subject-object model. A subject (or
principal, above) is a system entity that may request access to a system object. An object
is any item that a subject may request to use or alter—e.g., active processes, memory
addresses or segments, code and data (pages in main memory, swapped pages, files in
secondary memory), peripheral devices such as terminals and printers (often involving
input/output, memory or media), and privileged instructions.

In the model, a system first identifies all subjects and objects. For each object, the
types of access (access attributes) are determined, each corresponding to an access per-
mission or privilege. Then for each subject-object pair, the system predefines the autho-
rized access permissions of that subject to that object. Examples of types of access are
read or write for a data item or memory address, execute for code, wakeup or terminate
for a process, search for a directory, and delete for a file. The authorization of privileges
across subjects and objects is modeled as an access matrix with rows i indexed by subjects,
columns j by objects, and entries A(i, j), called access control entries (ACEs), specifying
access permissions subject i has to object j (Fig. 5.4). The ACE will typically contain a
collection of permissions, but we may for ease of discussion refer to the entry as a single
permission with value z, and if A(i, j) = z then say that subject i has z-access to object j.

REFERENCE MONITOR IMPLEMENTATION. The reference monitor model is im-



5.2. The reference monitor, access matrix, and security kernel 131

Ch.5,	Fig.4.		Access	control	matrix.	

S2 

Objects	

row	i		
(a)	

Subjects	

S1 

Si 

O1 O2 Oj ... 

... 

... 

... 

Ai, j 

column	j		

R 

RW 

(b)	
Figure 5.4: Access control matrix. A(i, j) is an ACE specifying the permissions that
subject i has on object j. (a) Row i can be used to build a capabilities list (C-list) for
subject i. (b) Column j can be used to build an access control list (ACL) for object j. The
access matrix itself is policy-independent; the access control policy is determined by the
permission content specified in matrix entries, not the matrix structure.

plemented and enforced by a software-hardware reference validation mechanism. It is
conceptualized as a single monitor, but in practice would be a collection of monitors each
protecting different classes of objects. Every access request made to any system object
by any subject is mediated as follows.3 When subject i attempts z-access to object j, the
request information “(i, j, z)” is intercepted by a monitor handling objects of j’s class, and
the monitor checks whether entry A(i, j) permits z, granting access only if authorized.

REQUIREMENTS. To address known threats, the requirements specified as necessary
are that the reference validation mechanism be:
1) tamper-proof;
2) always invoked (not circumventable); and
3) verifiable, or more specifically, “small enough to be subject to analysis and tests, the

completeness of which can be assured”.
These conditions turn out to be difficult to meet in practice. Nonetheless, such a valida-
tion mechanism forms the heart of a secure system, and in the context of these require-
ments is called a security kernel. The idea is to centralize, in this nucleus, the minimal
control structures and code needed to enforce and verify access control and all other core
security-related functions. Even 45 years later, such security kernels are still uncommon—
mainstream operating systems remain typically monolithic.4

Nonetheless, reference monitor ideas have heavily influenced computer security re-
search and practice, helping popularize the key concepts of access control and access
control lists (below).

3This is the basis of principle P4 (COMPLETE-MEDIATION) as introduced in Chapter 1.
4For example, the monolithic design of the Unix kernel goes against principles P7 (MODULAR-DESIGN)

and P8 (SMALL-TRUSTED-BASES).



132 Chapter 5. Operating System Security and Access Control

REFERENCE MONITOR DEPENDENCIES. Aside from a properly functioning refer-
ence validation mechanism, the reference monitor depends heavily on a number of sup-
porting functions: a trustworthy authentication system (the access matrix assumes legiti-
mate identified subjects), properly operating hardware, physical security of this hardware
and system (including storage media and any devices accessing memory), and security of
the input-output communication paths between users and the system. For high confidence
in the security of a computing system, its entire manufacturing chain, including the pro-
duction environment of all software and hardware components, and individuals involved,
must be trustworthy. The challenge is that complex computer systems require integration
of components from countless international suppliers.

ACCESS MATRIX IS A MODEL ONLY. In practice, access control is often imple-
mented by storing permissions within access matrix entries in lists organized either by
rows or columns. Mechanisms doing so pre-date the matrix model. Direct implementa-
tion of a 2D access matrix is inefficient—the matrix itself is typically large and sparse,
while naively storing long lists of entries (i, j,A(i, j)) makes searching inefficient.

CAPABILITY LISTS (C-LISTS). Decomposition by row puts the focus on an indi-
vidual subject, detailing all access privileges it holds. In Fig. 5.4(a), for a fixed row i∗,
taking the non-empty cells (objects j that i∗ can access) as a list of tuples ( j,A(i∗, j))
provides a capabilities list (C-list) for subject i∗. Each entry specifies i∗’s allowed access
permissions on different objects j. Such lists can be held by or associated with individual
subjects, referenced as needed. An exercise (page 133) considers implementation issues.

ACCESS CONTROL LISTS. Decomposition by fixed column j∗ puts the focus on an
individual object; see Fig. 5.4(b). Taking non-empty column cells defines a list of pairs
(i,A(i, j∗)) ranging down all subjects i permitted access to j∗. Such a list, with entries
specifying permitted access modes on j∗ by different subjects i, can be constructed, per-
haps co-located with j∗, and made available for use on requests to access j∗. This and
variations are called access control lists (ACLs) for object j∗. An ACE (entry) might con-
ceptually contain fields (subject; access-type-id = permission-bits) for a file
object, with example values (adamjones; RWX = 001) where a 1-bit grants permission.
Granting privileges to groups of principals rather than individual subjects may be done
using ACEs and Unix-like protection groups (Section 5.3).

‡Exercise (Access control of ACLs). (a) Is an ACE itself subject to access control?
(b) In systems where a file creator controls the file’s ACE, how can a user process alter
the ACE if the ACE is stored in supervisor memory? (c) A disadvantage of creator-owner
schemes is that if the object owner is unavailable to alter permissions, there is no elegant
way to reassign access control. In one hierarchical access control alternative, the principal
creating an object designates a distinct primary access control principal, and a secondary
access control principal subordinate to it in an access control hierarchy. From this sketch,
outline a full working scheme. (Hint: [29, Fig.13].)

CAPABILITIES VS. ID-BASED PROTECTION. Protection mechanisms may be ticket-
oriented or ID-based. The first model—implemented using capabilities—is that of a
ticket or access token (bearer token) allowing entry to an event, regardless of the ticket
holder’s identity, provided that the ticket is recognized as authentic. In the second model,



5.3. Object permissions and file-based access control 133

a guard at the door does an identity check, e.g., using photo ID cards in the physical world,
and any entity whose identity is verified and on an authorized list is allowed access. Ca-
pabilities (tickets) are held by subjects; authorization lists (based on identity) are held by
an object’s guard. Tickets must be unforgeable; identities must be unspoofable.

‡Exercise (Implementing capabilities). To prevent unauthorized copying or tamper-
ing of capabilities by users, capability systems may be implemented using different op-
tions. a) Maintain data structures for capabilities in OS (kernel) memory. b) Maintain
data structures for capabilities in user memory, but with tamper protection by a message
authentication code (MAC) or equivalent. c) Rely on hardware support (one scheme uses
kernel-controlled tag bits designating memory words that hold capabilities). Explain fur-
ther details for each of these mechanism approaches. (Hint: [35]; see also [38].)

‡Exercise (Access control and USB drives). When a USB flash drive is inserted into
a personal computer, which system accounts or processes are given access to the content
on this storage device? When files are copied from the USB drive into the filesystem of an
account on the host, what file permissions result on the copied files (assume a Unix-type
system)? Discuss possible system choices and their implications.

BASIS FOR AUDIT TRAILS. The basic reference monitor idea of mediating every
access provides a natural basis from which to build fine-grained audit trails. Audit logs
support not only debugging and accountability, but intruder detection and forensic inves-
tigations. Whether or not audit records must be tamper-proof depends on intended use.

‡Exercise (Access control through encryption and key release). Access control to
documents can be implemented through web servers and encryption. Give a technical
overview of one such architecture, including how it supports an audit trail indicating ac-
cess times and subjects who access documents. (Hint: [11].)

5.3 Object permissions and file-based access control

The access control indicator bits in Section 5.1 were a good start, helping us understand
basic issues.5 Early protection based on memory segments gave way to setting permis-
sions on abstract objects, and use of access control lists (Section 5.2). For object-based
access control in a subject-object permission framework, after specifying subjects and ob-
jects, the task is to identify the types of access operations (modes) for objects and frame
these as permissions for consideration.

FILE-BASED ACCESS CONTROL. A common approach to learn about object-level
access permissions is to consider logical files—for pedagogical reasons and concrete im-
plementation examples. The next few sections discuss file-based access control as found
in Unix systems. Beyond a file’s data contents, filesystems maintain per-file meta-data
specifying access permissions. In Multics and Unix, an early design principle was to treat
everything as a file, and design a corresponding filesystem; this simplifies input-output
operations across a multitude of peripheral devices. For example, if printing a file is done
by writing a stream of bytes to an address identified with a printing device, then access

5Filesystem management of access control was already mentioned in 1967 [14], related to early Multics.



134 Chapter 5. Operating System Security and Access Control

permissions to the printer are “file permissions”. Thus the study of file permissions gener-
alizes to access control on resources. This explains why file permissions are a main focus
when access control is taught.

ACL ALTERNATIVES. The simple permission mechanisms in early systems pro-
vided basic functionality. Operating systems commonly now support ACLs (Section 5.2)
for system objects including files. ACLs are powerful and offer fine-grained precision—
but also have disadvantages. ACLs can be as long as the list of system principals, con-
suming memory and search time; ACLs may need frequent updates; listing all principals
requiring access to a file can be tedious. A less expressive alternative, the ugo architec-
ture, became popular long ago, and remains widely used; we discuss it after background
on file ownership. Section 5.7 discusses a further alternative: role-based access control.

FILE OWNER AND GROUP. Unix-based systems assign to each file an owner and
a protection group, respectively identified by two numeric values: a userid (UID) and a
groupid (GID). Initial values are set on file creation—in the simplest case, using the UID
and GID of the creating process. Where are these from? The login username for each
account indexes an entry in world-readable Unix file /etc/passwd, of the form:

username:*:UID:GID:fullname or info:home dir:default shell

Here GID identifies the primary group for this username. The * is where the pass-
word hash, salt, and related information was historically stored; it is now typically in
/etc/shadow, readable only by root. Group memberships are defined in a distinct file,
/etc/group, each line of which lists a groupname (analogous to a username), a GID, and
the usernames of all group members.

SUPERUSER VS. ROOT. Other than for login, the system uses UID for access control,
not username. Superuser means a process running with UID=0; such a process is granted
access to all file resources, independent of protection settings. The username convention-
ally associated with UID=0 is “root”, but technically the string “root” could be assigned
to other UIDs. It is the UID value of 0, not the string name, that determines permissions.
Within this book we will assume root is synonymous with superuser (UID=0).

USER-GROUP-OTHERS MODEL. We can now explain the base architecture for Unix
file permissions.6 The ugo permission model assigns privileges based on three categories
of principals: (user, group, others). The user category refers to the principal that is
the file owner. The group category enables sharing of resources among small to medium-
sized sets of users (say, project groups), with relatively simple permissions management.
The third category, others, is the universal or world group for “everyone else”. It defines
permissions for all users not addressed by the first two categories—as a means to grant
non-empty file permissions to users who are neither the file owner nor in the file’s group.
This provides a compact and efficient way to handle an object for which many (but not all)
users should be given the same privileges. This ugo model allows fixed-size filesystem
meta-data entries, and saves storage and processing time. Whereas ACLs may involve
arbitrary-length lists, here permission checking involves bit-operations on sets of just three
categories of principals; the downside is a significant loss in expressiveness.

6This may be viewed as supporting principle P4 (COMPLETE-MEDIATION).



5.3. Object permissions and file-based access control 135

Ch.5.		Symbolic	nota1on	for	\unix{}	file	permissions	(e.g.,	from	``ls	–	l”).	%	long	format	
User	is	also	``owner”.	Other	may	be	called	``all”	or	``world”.	t-bit	is	also	``s1cky	bit”.	
Cf.	Table	5.2.		s	turns	to	S	if	x-bit	is	``-”	(this	is	not	a	useful	combina1on	since	setuid	and	
setgid	have	no	effect	without	x).	

if	directory	

special	bits:	 setgid	setuid	 t-bit	

r	 x	w	 r	 x	w	 r	 x	w	d	

change		
to	“s”	

change		
to	“t”	

user			group		other	

Figure 5.5: Symbolic display of file permissions. user is file owner; t-bit is the sticky bit.
To compactly display a special bit set to 1, x becomes s or t (or resp., - becomes S or T).

META-DATA AND FILE PERMISSIONS. The above user-group-others mechanism
is supported by a per-file filesystem data structure, which also holds other “accounting
details” related to a file, such as the address of the file contents. A commonly used such
data structure contains the following protection-related fields:7

1) user: indicating the userid (UID) of the file owner.
2) group: indicating the groupid (GID) of the file.
3) 9 bits: 3 protection bits for each of (user, group, others) as shown in Fig. 5.5.

For regular files, their meaning is fairly straightforward, as follows.
R (read): the file content may be read.

W (write): an existing file’s content may be modified.
X (execute): a binary file may be run. To run a shell script requires R to read the

file plus X. For a non-executable file, X is not useful (execution fails).
4) 3 bits: special protection bits setuid, setgid, t-bit (Sections 5.4 and 5.5).

USE OF PROTECTION BITS. When a user process requests access to a file, the system
checks whether the process has the requested access privilege, based on the permissions
in this data structure. The checks are made in sequence: user, group, others. The first
qualifying category determines privileges. For a process that seeks R access and is the file
owner, if the user category does not grant R, the request fails even if others grants R.

PERMISSION DISPLAY NOTATION. A common visual display format for file per-
missions is a 10-character string, such as -rwxr-xr-- (Table 5.1). The first character
conveys file type—a leading dash indicates a non-directory file. The next nine characters,
in groups of three, convey permissions for the ugo categories in order. A substring rwx
corresponds to binary 111 indicating read, write and execute, while a dash “-” conveys a
0-bit denoting that the corresponding permission is absent. Additional permissions can be
overlaid onto these ten characters, as shown in Figure 5.5.

PROTECTION BIT INITIAL VALUES (NON-DIRECTORY FILES). A file’s 9 RWX
bits are set at file creation using a 12-bit mode parameter (with the 3 special bits) provided
to the syscall used to create the file. The requested RWX bits are post-modified by the
creator’s 9-bit file creation “unset” mask (umask), typically defined in a user startup file; a
child process inherits its parent’s umask. The mask’s positional 1-bits specify permissions
to turn off or remove (if present). For example for regular files—using octal format, with

7This is based on the Unix inode (index-node), to illustrate concepts concretely in this section. Other
inode fields unrelated to permissions indicate: file size, last-modified time, number (link count) of directory
entries that link to the file, and fields to signal whether the file is a directory or special Unix I/O device file.



136 Chapter 5. Operating System Security and Access Control

Binary (12 bits) Octal Symbolic Meaning
000 100 000 000 0400 - r-- --- --- user (owner) has R
000 010 000 000 0200 - -w- --- --- user (owner) has W
000 001 000 000 0100 - --x --- --- user (owner) has X
000 000 110 000 0060 - --- rw- --- group has R, W
000 000 101 000 0050 - --- r-x --- group has R, X
000 000 011 000 0030 d --- -wx --- group has W, X; file is a directory file
000 000 000 111 0007 - --- --- rwx other has R, W, X
000 110 100 100 0644 - rw- r-- r-- user has R, W; group and other have R

Table 5.1: Symbolic notation to display Unix file permissions R/read, W/write, X/execute.
Combinations shown are to explain notation, rather than useful combinations. In symbolic
notation, a leftmost “d” indicates a directory (rather than a permission). The three special
bits (leftmost) are displayed symbolically by modifying an “x” letter as per Fig. 5.5.

one octal digit for each 3-bit RWX group (Table 5.1)—a common permissions default 666
(RW for all categories), and common mask of 022 (removing W from group and others),
yield a combined initial permission string 644 (RW for user, R only for group and others).

Example (group permissions). Suppose a group identifier accounting is set up to
include userA, userB and userC, and a group executives to include userC, userD and
userE. Then userC will have, e.g., RX access to any file-based resource if the file’s group
is accounting or executives, and the file’s group permissions are also RX.

Exercise (setting/modifying file permissions). The initial value of a Unix mask can
be modified where set in a user startup file, or later by the umask command. (a) Ex-
periment to discover default file permissions on your system by creating a new file with
the command touch, and examining its permissions with ls -l. Change your mask set-
ting (restore it afterwards!) using umask and create a few more files to see the effect.
(b) The command chmod allows the file owner to change a file’s 9-bit protection mode.
Summarize its functionality for a specific flavor of Unix or Linux.

Exercise (modifying file owner and group). Unix commands for modifying file at-
tributes include chown (change owner of file) and chgrp (change a file’s group). Some
systems allow file ownership changes only by superuser; others allow a file owner to
chown their owned files to any other user. Some systems allow a file owner to change the
file’s group to any group that the file owner belongs to; others allow any group whatsoever.
Summarize the functionality and syntax of these commands for a chosen Unix flavor.

Exercise (access control in swapped memory). Paging is common in computer sys-
tems, with data in main memory temporarily stored to secondary memory (“swapped to
disk”). What protection mechanisms apply to swapped memory? Discuss.

FILE PERMISSIONS AUGMENTED BY ACLS. The ugo permission architecture
above is often augmented by ACLs (Section 5.2). On access requests, the OS then checks
whether the associated UID is in an ACL entry with appropriate permissions.

Exercise (file ACL commands). For a chosen Unix-type system (specify the OS ver-
sion), summarize the design of file ACL protection. In particular, explain what informa-
tion is provided by the command getfacl, and the syntax for the setfacl command.



5.4. Setuid bit and effective userid (eUID) 137

5.4 Setuid bit and effective userid (eUID)

SETUID BIT. The setuid bit is one of three “special” permission bits (Fig. 5.5). A
Unix file owner can turn on this bit for any binary executable file owned, say file1. Later
when a process with X permission thereon runs file1, the OS will temporarily set—while
executing file1—that process’ (effective) userid to be that of file1’s owner. This allows
file1 to access resources that the calling process might not itself have sufficient privilege to
access. The bargain made is that the calling process now has more access than it otherwise
would, but only under the constraint of a carefully designed (hopefully trustworthy) fixed-
functionality program. A major use is for programs that access security-critical system
resources. This privilege model makes such programs of special interest to attackers,
especially when the file owner is root.8 A setuid program owned by a regular user is
also of use, e.g., to allow others controlled access to that user’s files; analogous setgid
programs (below) allow shared file access within groups.

REAL USERID AND EFFECTIVE USERID. To support the setuid bit and related
functions, the OS tracks three process-related userid values: a real userid (rUID) denot-
ing the process owner, an effective userid (eUID), and a saved userid (sUID) to facilitate
switching between the previous two, e.g., to selectively drop privileges (changing eUID to
rUID) so that higher privileges are active only while executing code segments that require
them—in line with principle P6 (LEAST-PRIVILEGE). The eUID determines privileges on
resource access requests, and is used to set the file owner on created files. Supporting sys-
tem calls getuid() and geteuid() respectively return rUID and eUID. Privileged functions
setuid(), seteuid() and setreuid() allow setting rUID, eUID and/or sUID; details are beyond
our scope. As a use example, the command su (substitute user identity) executes a new
shell with rUID, eUID, sUID set to the userid of the specified user.

‡Exercise (sudo command). Look up and explain the design and use of the Unix
command sudo (substitute user do), including its effect on rUID, eUID, sUID.

SETGID PERMISSION BIT. For non-directory files, setgid is analogous to setuid,
but conveys privileges for a file’s protection group, using corresponding system values
rGID, eGID, sGID and supporting system calls getgid(), getegid(), setgid(). Section 5.5
explains functionality of the setgid bit for directory files.

Example (setuid and passwd). Unix users initiate password changes with the passwd
command. On many systems, /usr/bin/passwd is root-owned and has the setuid bit set.9

This enables write access to the system password file—but the program checks rUID, to
enforce that only the password entry for the UID of the calling process can be changed.

INHERITING USERIDS. Process creation in Unix occurs by the syscall fork(). This
replicates the original process (parent), creating a child. Both run the same code. The
child inherits the parent userids (rUID, eUID, sUID), but gets a new process ID (PID). If
the child process was forked in order to run a separate executable, it recognizes itself as
a child by seeing a fork() return code of 0 and cedes control, via one of the exec()-family

8Concerns arise from the design principles violated (Section 5.2) by Unix’s monolithic kernel design.
9On other systems this executable itself is not “setuid”; Mac OS X uses an alternate means.



138 Chapter 5. Operating System Security and Access Control

library calls,10 to the specified executable, which continues with the child’s PID and also
inherits its userids (rUID, eUID, sUID) except when the executable is setuid.

Example (userids and login). The Unix command login results in a process running
the root-owned setuid program /bin/login, which prompts for a username-password, does
password verification, sets its process UID and GID to the values specified in the verified
user’s password file entry, and after various other initializations yields control by execut-
ing the user’s declared shell. The shell inherits the UID and GID of this parent process.

DISPLAYING SETUID AND SETGID BITS. If a file’s setuid or setgid bit is set,
this is displayed in 10-character notation by changing the user or group execute letter as
follows (Figure 5.5): an x changes to s, or a “-” changes to S. The latter conveys status, but
is not useful—setuid, setgid have no effect without execute permission. So -rwsr-xr-x
indicates a file executable by all, with setuid bit set; and -rwSr--r-- indicates a file is
setuid, but not executable (which is not useful; the unusual capital S signals this).

‡Exercise (setuid). Explain how the setuid functionality is of use for user access to
a printer daemon, and what general risks setuid creates. (Chapter 6 discusses privilege
escalation related to setuid programs in greater detail.)

5.5 Directory permissions and inode-based example

Here we discuss how the permission bits on directory files have different semantics than
for regular files. Our discussion is informed by an explanation of how Unix filesystems
are implemented, with a detailed example.

UNIX DIRECTORY STRUCTURE. A Unix-style filesystem is a rooted tree with top
named “/”. Regular files are leaf nodes; each interior node is a directory file (dirfile).
Both file types are implemented with meta-data stored in an inode (Section 5.3) plus a
datablock for content. Meta-data relevant to our discussion are: permissions data, a flag
distinguishing dirfiles, and a pointer (datalink) to the datablock. A dirfile’s datablock con-
tains filesystem data for the entries (hierarchical children) of that directory node, struc-
tured as a list of entries dir-entry = (d-name, d-inode). A string value populating
d-name names a (regular or directory) file; the d-inode value identifies that file’s inode.
The first two dir-entries are always for the directory node itself (denoted “.”) and its parent
directory or parent-dir (denoted “..” by convention). See Fig. 5.6 on page 140.

DIRECTORY PERMISSIONS. Section 5.3 introduced the 12 permission bits for reg-
ular (non-directory) files. For directory files, these have very different meanings, perhaps
better reflected by calling them LAT bits (List, Alter, Traverse). We now summarize their
meaning, for a user with the specified permissions on a directory (e.g., having R permis-
sion for the first category user, group or other that applies). Note: as for regular files,
the superuser may access directory files regardless of permission bits.

R: the user may list the directory content, i.e., view the filenames that are d-name fields
of dir-entry items (Fig. 5.6). R alone on a directory gives no access to the content

10Chapter 6 provides further background on fork() and exec().



5.5. Directory permissions and inode-based example 139

of files therein (they have their own permissions), nor their meta-data.

W: the user may alter (edit) directory content—provided X permission is also held.
W (with X) allows renaming or deleting filename entries, and creating new entries
(by creating a new file, or linking to an existing file as explained in Section 5.6);
the system will modify, remove, or newly add a corresponding dir-entry. Thus
removing a file reference (entry) from a directory requires not W permission on the
target file, but W (with X) on the referencing directory.

X: the user may traverse and “search” the directory. This includes setting it as the
working directory for filesystem references; path-access11 to the directory’s listed
files; and access to their inode meta-data, e.g., by commands like find. Lack of X
on a directory denies path-access to its files, independent of permissions on those
files themselves; their filenames (as directory content) remain listable if R is held.

setuid: this bit typically has no meaning for directory files in Unix and Linux.

setgid: if set, the group value initially assigned to a newly created (non-directory or di-
rectory) file is the GID of its directory (rather than the GID of the creating process);
a newly created sub-directory in addition inherits the directory’s setgid bit. The
aim is to make group sharing of files easier, by setting a directory’s setgid bit.

t-bit: (text or sticky bit) this bit set on a directory prevents deletion or renaming of files
therein owned by other users. The directory owner and root can still delete files.
For non-directory files, the t-bit is now little used (its original use is obsolete).

STICKY BIT. A primary use of the t-bit is on world-writable directories, e.g., /tmp.
An attack could otherwise remove and replace a file with a malicious one of the same
filename. When set, a t replaces x in position 10 of symbolic display strings (Fig. 5.5).

Example (Directory permissions). In Fig. 5.6, curry and durant are entries in Warriors.
Path-access to Warriors, including X on the inode it references (Warriors inode), is needed
to make this the current directory (via cd) or access any files below it. R on Warriors inode
allows visibility of filenames curry and durant (e.g., via ls). X on Warriors inode allows
access to the meta-data of curry and durant (e.g., via ls -l or find), but to read their
content requires R on these target file inodes (plus X on Warriors inode, in order to get to
them). In summary: access to a file’s name (which is a directory entry), properties (inode
meta-data including permissions), and content are three distinct items. Access to a (dir or
non-dir) file’s meta-data requires path-access (X) on the inode holding the meta-data, and
is distinct from RWX permission on the file content referenced by the inode.

WORLD-WRITABLE FILES. Some files are writable by all users (world-writable).
This is indicated by w in the second-last character for a display string such as -rwxrwxrwx.
The leading dash indicates a non-directory (regular) file. Some files should not be world-
writable, e.g., a startup file (a script file invoked at startup of a login program, shell,
editor, mail or other executable), lest an attack modify it to invoke a malicious program

11By Unix path-based permissions, to read a file’s content requires X on all directories on a path to it plus
R on the file; path-access does not require R on directories along the path if the filename is already known.



140 Chapter 5. Operating System Security and Access Control

Ch.5,	Fig.5.		Directory	structure	and	example.	
PPT:	no-shadow,	0.75	solid	lines,	1.0	doBed	lines,	
shape->freeform->hold	down	CTRL	for	straight	segments,		
click	to	drop	a	corner,	double-click	to	end	

�	

“NBAeast” 
“NBAwest” 

“.” 
“..” �	

�	
�	

“/” datablock	

“/” inode	

�	

�	

“Lakers” 
“Spurs” 

“.” 
“..” �	

�	
�	
�	“Warriors” 

NBAwest 
inode	

�	

NBAwest	datablock	
(dir	file)	

�	“.” 
“..” �	

...
	NBAeast 

inode	

�	

NBAeast	datablock	
(dir	file)	

�	

“curry” 
“durant” 

“.” 
“..” �	

�	
�	
�	“thompson” 

Warriors	
inode	

�	

Warriors	datablock	
(dir	file)	

pathlink2 
pathlink1 

�	 �	

inodes	&	datablocks	for	
files	“Lakers” and “Spurs” 

curry	
inode	

(non-dir)	

�	
thompson	
inode	

�	
durant	
inode	

�	

data	files	holding	
player	staTsTcs 

d-name	d-inode dir-entry:	

inode	of	type		
“dir” (directory)	

inode	of	type		
(regular)	“file” 

filesystem	
root	node	

Figure 5.6: Directory structure and example (Unix filesystem with inodes). See inline
discussion regarding the roles of pathlink1 and pathlink2. Compare to Fig. 5.7.

on each startup. A world-writable root-owned setuid executable is spectacularly bad—
any process could replace the contents with a malicious file, which would run with root
privileges regardless of who invoked it. (Chapter 6 has a further example on this topic.)

‡Exercise (finding world-writable files). The Unix find command can search for files
with specific properties, including permissions. Explore your own system for world-
writable files using: find /users/yourhome -perm -2 -print (replace /users/yourhome
with a directory to explore; start at one with a relatively small subtree, as the output is of-
ten extensive). The search will be denied access to directories that you lack X permission
for; the command will continue with the next directory in a recursive tree search.

‡Example (inode details). The following, and Figure 5.6, explain the internal ac-
tions that occur in creating a new directory node, and provide a detailed example of the
filesystem (directory) structure summarized above. This may help in understanding how



5.5. Directory permissions and inode-based example 141

directory-node RWX permissions work. Suppose that in an existing directory /NBAwest,
we wish to create a new sub-directory /NBAwest/Warriors. Peer sub-directories Lakers and
Spurs already exist. While in current directory /NBAwest, a user types the shell command:
mkdir Warriors. The resulting OS actions begin with a system call to mknod() with pa-
rameters indicating filepath /NBAwest/Warriors and that this should be a new directory.
The following OS actions then also occur.

1) Creation of a new inode instance for Warriors, flagged as a directory, initially with
null datalink. Let pathlink1 be a pointer to this new inode.

2) Creation of a new datablock with two directory entries, (".", NULL) and ("..",
NULL). The null datalink of the inode at pathlink1 is set to point to this datablock.

3) So that the new directory node for Warriors can be reached from its parent-dir, the
entry ("Warriors", pathlink1) is added to the list of dir-entries in the datablock
of that parent-dir. This datablock will already have entries for "." and "..", plus
peers "Lakers" and "Spurs" as noted above. The system can obtain a pointer (call it
pathlink2, for use also below) to the parent-dir inode from available parameters.

4) The system makes two system calls to link() to fix the two null dir-entry pointers above.
The first results in the datablock pointer for "." in the Warriors datablock dir-entry be-
ing set to pathlink1, i.e., pointing to its own inode; the second results in the datablock
pointer for ".." in the Warriors datablock dir-entry being set to pathlink2, i.e., point-
ing to its parent inode, the inode for NBAwest. So the datablock entries are now (".",
pathlink1) and ("..", pathlink2).

The user now creates (regular) files named curry, durant, thompson, etc., for storing player
statistics. This ends our example—wasn’t reading through all that great fun! If you found
it hard to follow, read it once more—but start with a blank sheet in front of you, and draw
out what happens at each step. (Who knew computer security could be so enjoyable!)

UNEXPECTED DETAIL. The string "Warriors" appeared nowhere in the two data
structures representing the logical file Warriors. It appears only in the parent’s dir-entry
for this file. Thus one file can be given different names by different parents (Section 5.6).

PROTECTION BIT INITIAL VALUES (DIRECTORY FILES). As for regular files
(above), when a new Unix directory is created, its 9 RWX bits are assigned. A common
system default for directories is 777, and for the common default mask 022, the combined
default permission for a directory is then 755 (RWX for user, RX for group and others).

Example (Directory listings). Typing ls -l to a Unix shell lists the contents of a
directory (-l for long format, including permissions); use ls -ld for meta-data on the
directory node itself. As before, the output is a sequence of lines each beginning with
a 10-character sequence such as drwxrwxr-x, each line giving information about a file
listed. A leading d signals a directory file. The next nine characters, in groups of three,
reflect permissions for the categories user, group, others; dash indicates no privilege.
The string drwxrwsr-x indicates a setgid bit set for a directory file.

Exercise (viewing directory properties). On a Unix-like system, explore the properties
and protection bits of various directories using the ls (list) command and various options



142 Chapter 5. Operating System Security and Access Control

Ch.5,	Fig.6.		Common	mental	model	of	directory	structure.	
Note	that	in	the	actual	implementa;on,	the	inode	and		
block	do	not	actually	contain	a	filename.		

curry durant thompson 		regular	
						file	
(inode	+	datablock) 

Lakers Spurs Warriors 

Common	mental	model	 Actual	implementa;on	

Lakers Spurs Warriors 

1 

NBAwest	NBAeast	

/	 NBAwest	NBAeast	

curry durant thompson 

directory	
file	

(details)	

2 

3 

4 files	
�	 �	

�	

�	

�	

�	

thompson curry durant 
�	 �	 �	

directory	file	filesystem	root	

Figure 5.7: Common mental model of a Unix directory structure. As typically imple-
mented, a file’s inode and datablock themselves contain no filename. Instead, they are
data structures referenced by a directory entry, which specifies the filename from one
specific directory-file’s view; this allows the same structure to be referenced by different
names from distinct (multiple) directory entries. The poor fit of mental model to imple-
mentation may lead to misunderstanding directory permissions. Compare to Fig. 5.6.

like ls -l. (Note: on a Mac system, to get a command interpreter shell to the underlying
Unix system, run the Terminal utility, often found in Applications/Utilities.)

Exercise (access control outside of filesystem). Suppose a copy of a filesystem’s data
(as in Figure 5.6) is backed up on secondary storage or copied to a new machine. You
build customized software tools to explore this data. Are your tools constrained by the
permission bits in the relevant inode structures? Explain.

‡Exercise (chroot jails). A chroot jail provides modest isolation protection, support-
ing principle P5 (ISOLATED-COMPARTMENTS) through restricted filesystem visibility. It
does so using the Unix system call chroot(), whose argument becomes the filesystem root
(“/”) of the calling process. Files outside this subsystem are inaccessible to the process.
This restricts resources and limits damage in the case of compromise. Common uses in-
clude for network daemons and guest users. a) Summarize the limitations of chroot jails.
b) Describe why the newer jail() is preferred, and how it works. (Hint: [17].)

5.6 Symbolic links, hard links and deleting files

A number of security issues arise related to file links, motivating discussion of them here.
In Unix, the same non-directory file can appear in multiple directories, optionally with
different names. This is done by linking using the ln command. A link can be either a
symlink (symbolic/soft link or indirect alias) or a hard link (direct alias).

Example (Hard link). Consider a file with pathname existing. Then the command
ln existing new1 results in a dir-entry specifying the string new1 as the name of



5.6. Symbolic links, hard links and deleting files 143

a file object whose directory entry references the inode for existing. Since a file’s name
is not part of the file itself, distinct directory entries (here, now two) may name the file
differently. Also, this same command syntax may allow a directory-file to be hardlinked
(i.e., existing may be a directory), although for technical reasons, hardlinking a directory
is usually discouraged or disallowed (due to issues related to directory loops).

Example (Symlink). For a symlink the -s option is used: ln -s existing new2
results in a dir-entry for an item assigned the name new2 but in this case it references a
new inode, of file type symlink, whose datablock provides a symbolic name representing
the object existing, e.g., its ASCII pathname string. When new2 is referenced, the filesys-

Ch.5,	Fig.7.		Hard	link	vs.	symbolic	link.	

“/users/chezpan” 

�	

Pre-exisAng	dir-entry1: 

(a)													dir-entry2: 
Results	from		
ln /users/chezpan new1 

for	file	pathname	/users/chezpan
�	“chezpan” 

inode			 

datablock	 

file	content 

�	“new1” hardlink		
(ptr	to	an	inode)	

(b)													dir-entry3: 
Results	from		
ln –s /users/chezpan new2

�	“new2” 

symlink	file	(“linkfile”	)	

�	

s	�	

soOlink	(symlink)	
								via	dir-entry1	

s	 inode	for	file	of	type	“symlink”	(symbolic	link)						

Figure 5.8: Comparison of (a) hardlink, and (b) symbolic link. A symbolic link can be
thought of as a file whose datablock itself points to another file.

... what happens to:
If ↓ then ... Hardlink file Symlink file
target file deleted dir-entry1 is removed, but file softlink will fail (dir-entry3
(“rm dir-entry1” content does not disappear of symlink remains but is

in Figure 5.8) since its link count is above 0 stale, i.e., can’t be resolved)
target file renamed hardlink remains intact, as inode softlink will fail as target
or moved to a has not changed (nor moved); pathname can’t be resolved
new pathname only the dir-entry1 changes
symlink file’s target file referred to by linkfile inode, its data
dir-entry deleted symbolic link is unaffected and dir-entry3 disappear,
(“rm new2”) but target file is unchanged

Figure 5.9: Results of deleting, renaming/moving, and removing linked files. “Deleting”
a file removes its dir-entry, but does not always result in the file content objects being
deleted (see table). Here the “target file” is /users/chezpan in Figure 5.8.



144 Chapter 5. Operating System Security and Access Control

tem uses this symbolic name to find the inode for existing. If the file is no longer reachable
by pathname existing (e.g., its path or that directory entry itself is changed due to renam-
ing, removed because the file is moved, or deleted from that directory), the symbolic link
will fail, while a hardlink still works. Examining Figure 5.8 may help clarify this.

DELETING LINKS AND FILES. “Deleting” a file removes the filename from a direc-
tory’s list, but the file itself (inode and datablock) is removed from the filesystem only if
this was the last directory entry referencing the file’s inode.12 Figures 5.8 and 5.9 con-
sider the impact of deletion with different types of links. Deleting a symlink file (e.g.,
new2 directory entry in Fig. 5.8) does not delete the referred-to “file content”. Deleting
a hardlinked file by specifying a particular dir-entry eliminates that directory entry,
but the file content (including inode) is deleted only when its link count (the number of
hardlinks referencing the inode) drops to zero. While at first confusing, this follows di-
rectly from the filesystem design: an inode itself does not “live” in any directory but rather
exists independently; directory entries simply organize inodes into a structure.

5.7 Role-based (RBAC) and mandatory access control

Here we give a brief overview of role-based access control, discuss how the discretionary
access control approach commonly found in commodity operating systems differs from
mandatory access control, and mention SELinux as an example of the latter.

MANDATORY AND DISCRETIONARY ACCESS CONTROL. Access control policy
rules are enforced by the operating system. Multics and Unix-style file permissions are ex-
amples of discretionary access control (D-AC), whereby it is at the resource owner’s dis-
cretion what permissions to grant others regarding that resource. In contrast, in mandatory
access control (M-AC) systems, a security policy administrator defines, for every object
(resource), which subjects have which permissions on it. One type of M-AC system, the
multi-level security (MLS) model of the U.S. government (Dept. of Defense), assigns to
each user (subject) a security clearance level, and correspondingly classifies documents:

(Top Secret, Secret, Confidential, Controlled Unclassified, Unclassified)
A subject may access a document if their clearance is equal to or exceeds the document’s
classification. For this type of M-AC, and D-AC, the basis on which permissions are as-
signed is commonly subject identity (userid). In the system discussed next, permissions
are assigned based on user roles, in what is neither purely a M-AC nor a D-AC system
(and can possibly support either).

RBAC. The idea of role-based access control (Figure 5.10) is that a user, represented
as a subject, is assigned one or more roles in each active session. Each role is pre-assigned
a set of permissions. A subject’s current roles then determine its permissions. This reflects
how permissions are often assigned in larger organizations (enterprises).

Example (RBAC). Suppose the role GradAdmin is assigned read and write access to
department files related to current students, new applicants, and office supply budgets; and

12Misunderstanding file deletion has implications for principle P16 (REMNANT-REMOVAL). Also, when a
filesystem itself releases a file, file memory is typically not overwritten, i.e., secure deletion is not guaranteed.



5.7. Role-based (RBAC) and mandatory access control 145

Ch.5,	Fig.3.		RBAC.	A	user	is	represented	as	a	subject,	and	for	each	login	session	one	
or	more	roles,	which	are	pre-assigned	to	a	subject	is	ac@vated.	RBAC	reference	
model:	subject,	object	(opera@on	on),	permissions,	roles.	An	administrator	
associates	permissions	with	each	role.	
	

subject	

permissions	

role	
object 

opera@ons 

Figure 5.10: Role-based access control (RBAC) model. A user, represented as a subject,
is pre-assigned one or more roles by an administrator. The administrator also assigns
permissions to each role. For each login session, a subset of roles is activated for the user.

the role GrantManager is assigned read access to files for department member grants. A
new staff member Alex who is assigned both these roles will then acquire both sets of per-
missions. When Alex moves to another department and Corey takes over, Corey gets the
same permissions by being assigned these two roles; if individual file-based permissions
were used, a longer list of individual permissions might have to be reassigned. Roles may
be hierarchically defined, e.g., so that a SeniorManager role is the union of all roles en-
joyed by junior managers, plus some roles specific to the higher position. RBAC system
administrators make design choices as to which tasks (and corresponding permissions)
are associated with different job functions, and define roles accordingly.

M-AC AND SELINUX. The remainder of this section introduces efforts related to
SELinux: the Flask operating system architecture on which it was built, the Linux Security
Module framework that provides support for it (and other M-AC approaches) within Linux,
and the SEAndroid version of it for the Google Android OS.

‡Exercise (Flask). The Flask security architecture was designed as a prototype during
the 1990s to demonstrate that a commodity OS could support a wide range of (mandatory)
access control policies. a) Summarize the motivation and goals of Flask. b) Describe the
Flask architecture, including a diagram showing how its Client, Object Manager, and
Security Server interact. c) Explain Flask object labeling (include a diagram), and how
the data types security context and security identifier (SID) fit in. (Hint: [34].)

‡Exercise (SELinux). Security-Enhanced Linux (SELinux) is a modified version of
Linux built on the Flask architecture and its use of security labels. SELinux supports
mandatory security policies and enforcement of M-AC policies across all processes. It
was originally integrated into Linux as a kernel patch, and reimplemented as an LSM
(below). a) Summarize details of the SELinux implementation of the Flask architecture,
including the role security labels play and how they are supported. b) Describe the secu-
rity mechanisms provided by SELinux, including mandatory access controls for process
management, filesystem objects, and sockets. c) Describe the SELinux API. d) Give an
overview of the SELinux example security policy configuration that serves as a customiz-
able foundation from which to build other policy specifications. (Hint: [22].)

‡Exercise (LSMs). Linux Security Modules (LSMs) are a general framework by
which the Linux kernel can support, and enforce, diverse advanced access control ap-
proaches including SELinux. This is done by exposing kernel abstractions and operations



146 Chapter 5. Operating System Security and Access Control

to an LSM; different modules can then implement distinct approaches. a) Describe in
greater detail the general problem that the LSM project addresses. b) Summarize the
technical details of the LSM design. (Hint: [40].)

‡Exercise (SEAndroid). Security-Enhanced Android (SEAndroid) brings mandatory
access control to Google’s Android OS, through an Android kernel that supports SELinux.
a) Summarize the main challenges in supporting SELinux on Android. b) Summarize the
technical means by which these challenges were overcome. c) Summarize the security
benefits offered by SEAndroid. (Hint: [33].)

5.8 ‡Protection rings: isolation meets finer-grained sharing

Practical requirements call for an efficient middleground between the security of full iso-
lation (complete containment, no sharing) and the convenience of shared objects. Pro-
tection rings generalize the (supervisor, user mode) hardware model to multiple privilege
levels and domains. They also offer concrete examples for principles P4 (COMPLETE-
MEDIATION), P5 (ISOLATED-COMPARTMENTS) and P7 (MODULAR-DESIGN).

PROTECTION RINGS. Section 5.1 introduced isolation, and selective (basic) shar-
ing across processes. A third desirable feature is layered protection within processes—
affording user-space processes separation analogous to supervisor-user separation, and
sharing of protected subsystems. This can be provided by protection rings, introduced
by Multics in the mid-1960s including eventual hardware support for eight rings. Rings
overlay additional access control on Multics segmented memory, and generalize privi-
lege classes from two (supervisor, user) to n. Rings selectively allow complete isolation
of processes, controlled sharing between programs (e.g., for reuse of common code and
data), and layered protection for varying degrees of separation. The idea is that segments
in stronger rings are protected from access by weaker rings; these conditions are then
relaxed to provide greater flexibility, when authorized.

RING NUMBERS AND SUPPORT. Consider a set of rings 0 to n− 1 as a nested,
ordered set of levels, per Fig. 5.11a. Ring 0 (center) is the most privileged. Privilege de-
creases moving outward—to aid memory, think “the core is strong”. As low ring numbers

ring	0	
2	

1	

n-1	

(strongest)		

...	

a)	Concentric	rings		

b)	Segment	Descriptor	(basic	ring-num)	

physical	
start	addr	

seg	
length	 ring-num	

	

c)	Program	Counter	with	ring	number	

PC	
ring-num	

procedure	
segment	S	

word	
number	W	

Figure 5.11: Protection rings and supporting descriptors. To support protection rings,
ring numbers are added to segment descriptors and to the program counter.



5.8. ‡Protection rings: isolation meets finer-grained sharing 147

having high privileges may be confusing, we also use the terms stronger (inner) rings and
weaker (outer) rings. We add to every segment descriptor (Section 5.1) a new ring-num
field (ring number) per Figure 5.11b, and to the CPU Program Counter (instruction ad-
dress register) a PCring-num for the ring number of the executing process, per Fig. 5.11c.
For access control functionality, we associate with each segment an access bracket (n1,n2)
denoting a range of consecutive rings, used as explained below.

PROCEDURE SEGMENT ACCESS BRACKETS. A user process may desire to transfer
control to programs designed to execute in stronger rings (e.g., for privileged functions,
such as input-output functions, or to change permissions to a segment’s access control list
in supervisor memory); or weaker rings (e.g., for simple shared services). A user process
P1 may wish to allow another user’s process P2, operating in a weaker ring, access to data
memory in P1’s ring, but only under the condition that such access is through a program
(segment) provided by P1, and verified to have been accessed at a pre-authorized entry
point, specified by a memory address. Rings allow this, but now transfers that change
rings (cross-ring transfers) require extra checks. In the simple “within-bracket” case,
a calling process P1 executing in ring i requests a transfer to procedure segment P2 with
access bracket (n1,n2) and n1≤ i≤ n2. Transfer is allowed, without any change of control
ring (PCring-num remains i).13 The more complicated “out-of-bracket” case is when i is
outside P2’s access bracket. Such transfer requests trigger a fault; control goes to the
supervisor to sort out, as discussed next.

PROCEDURE SEGMENT GATE EXTENSION. Suppose a process in ring i > n2 at-
tempts transfer to a stronger ring bracketed (n1,n2). Processes are not generally permitted
to call stronger-ring programs, but to allow flexibility, the design includes a parameter,
n3, designating a gate extension for a triple (n1,n2,n3). For case n2 < i ≤ n3, a transfer
request is now allowed, but only to pre-specified entry points. A list (gate list) of such en-
try points is specified by any procedure segment to be reachable by this means. So i > n2
triggers a fault and a software fault handler handles case n2 < i≤ n3. The imagery is that
gates are needed to cross rings, mediated by gatekeeper software as summarized next.

RING GATEKEEPER MEDIATION. When a ring-i process P1 requests transfer to
procedure segment P2 having ring bracket (n1,n2,n3), a mediation occurs per Table 5.2.

Case Meaning Action
n1 ≤ i≤ n2 within access bracket allow transfer†
i < n1 or n2 < i triggers fault for gatekeeper resolution (based on subcase)

subcase: i < n1 calling weaker ring allow transfer†
subcase: n2 < i≤ n3 within gate extension allow if transfer address on gatelist
subcase: n3 < i above gate extension error, unauthorized transfer

Table 5.2: Mediation by ring gatekeeper. †On transfer to a weaker ring P2, the gatekeeper
should check that all arguments passed will be accessible (P2 may be unable to access
higher-privilege memory); one option is to copy arguments into accessible memory.

13It would be unclear which value in the access bracket (n1,n2) to change the PCring-num to, as the
bracket declares the program suitable in the full range. This suggests that many programs might naturally
designate a single-ring access bracket, namely the ring best suiting the program.



148 Chapter 5. Operating System Security and Access Control

CROSS-RING RETURNS. Cross-ring returns (e.g., P2 returning to P1) likewise trigger
mediation, and may involve return gates, which we do not discuss further. The gatekeeper
enforces that returns match stack expectations, using details stored on the standard call
stack such as segment descriptors of return segments (including previous ring-num).

RING NUMBER AFTER TRANSFER FROM OUTSIDE-BRACKET. After an outside-
bracket transfer into bracket (n1,n2), what value x should be assigned to PCring-num?
The easy case is n2 < i≤ n3: LEAST-PRIVILEGE (P6) suggests x= n2, temporarily increas-
ing privileges by the least necessary. For i < n1, privileges should be reduced, with strict
least-privilege dictating x = n2, while the “fewest-hops” choice x = n1 may be slightly
more compelling for overall simplicity, given that an “in-bracket” transfer from ring n2
would leave the ring of execution at n2. Thus “fewest-hops” provides a reasonable choice
for x in both cases. Another choice would be for the segment, including possibly its gate
entry, to specify a new ring of execution.

Exercise (Address arguments passed to stronger segment). Suppose weaker program
segment Pw calls stronger program segment Ps, passing an argument involving a memory
address A that Ps is sufficiently privileged to access, but which Pw is not. Pw does not itself
try to access A (so there is no access fault). Is it possible that Ps could, as a result, disrupt
the integrity of its own data segment, or damage other segments in its ring? Are additional
gatekeeper actions, therefore, necessary for inward calls? If so, explain. (Hint: [31].)

EXECUTE, READ AND WRITE BRACKETS. We now consider read access brack-
ets and write access brackets, with semantics as explained below. Our discussion of
cross-ring execution privileges involved access bracket and gate extension parameters
(n1,n2,n3). These values might be stored in hardware registers R1, R2, R3 respectively,
populated from corresponding values in Multics segment descriptors, defining an execute
bracket (R1,R2) and gate extension (R2 +1,R3). To define corresponding read and write
access brackets respectively delimited by integer pairs (d1,d2) and (w1,w2), it would be
convenient to reuse the same registers. Consider these choices (explained next), per Figure
5.12a: read bracket (0,R2), write bracket (0,R1), with R1 ≤ R2 ≤ R3.

REASONING FOR CHOICES. The read and write lower bounds stem from reasoning
that ring 0 processes should have access if any less privileged rings do. Equating the write
bracket top and execute bracket bottom allows a single ring, R1, in which a segment can be
both written and executed (arguably, ruling out some possible programming errors while
retaining flexibility). Setting equal the read and execute bracket tops appears reasonable
(to deny R access, turn the R bit off). This provides a complete ruleset for RWX access to
a segment. Access requires both (1) the requesting process’ ring be within the segment’s
bracket, and (2) the segment descriptor’s relevant RWX flag be on. See Figure 5.12b.

Ch.5,	Fig.10.		Illustra3ve	read,	write	and	execute	brackets	

R1≤R2≤R3	

(0,	R1)	 (R1,	R2)	

Gate	Extension		
(R2+1,	R3)	

Read	bracket		
(0,	R2)	

0	 R1	 R2	 R2+1	 R3	 b)	Segment	descriptor	with	ring	brackets	

physical	
start	addr	

seg	
length	 R2	R1	 X	R	R3	 W	

Write	bracket	 Execute	bracket	 a)	Read,	write	and	execute	brackets	

Figure 5.12: a) Brackets defined by three registers. b) Descriptor with ring registers.



5.9. ‡Relating subjects, processes, and protection domains 149

ALTERNATE BRACKET RULESET. For a data segment D implemented using the
same registers R1, R2, R3 as above, suppose parameters (n1,n2) are interpreted differ-
ently, to define the following alternative ruleset, for a process running in ring i:

1) write bracket (0,n1): can write into D if i≤ n1 (and D’s descriptor allows W)
2) read bracket (n1 +1,n2): can read D if n1 < i≤ n2 (and D’s descriptor allows R)

For example then, for (n1,n2) = (2,3), a ring-i process has access as follows: for i = 1,2,
can only write to D; for i = 3, can only read from D; and for i = 4, can neither read nor
write D. By this ruleset, in no case can the ring-i process both read from and write to D;
to do both, a process would have to alternate between rings.

Exercise (Ruleset discussion). Is the alternate bracket ruleset useful, i.e., does it offer
advantages over other possible rulesets? (Hint: [14]. Note that a ruleset has implications
for subsystem design, e.g., in which rings to locate program functionality. Different per-
missions can be specified in different segment descriptors, but a single ruleset is fixed for
all processes.)

SEGMENT DESCRIPTORS FROM ACCESS CONTROL ENTRIES. To complete the
Multics story of access control through segment descriptors, consider how these them-
selves originate. When a user logs in, a new process P is created for the user activity.
The virtual memory that P can see—its universe of addressable memory—is limited to
memory reachable by the segment descriptors in P’s descriptor segment. The supervisor
creates P’s virtual memory space by populating this descriptor segment. Recall that the
descriptor base register (DBR, Fig. 5.2) points to the base of P’s descriptor segment table.
How does the supervisor select which segments to give P descriptors for? Segments (as
objects) have corresponding ACL entries in the system, specifying which subjects may
access them. From such entries, the supervisor constructs P’s descriptor segment.

Exercise (Supervisor creation of descriptor segment). A user logs in to their account.
The supervisor creates a new process P for the user activity, and sets out to create the
descriptor segment for P. Abstractly, there is an access control matrix with subjects as
rows, and objects (including segments) as columns. a) Discuss which implementation
more efficiently supports the supervisor task of creating P’s descriptor segment: a matrix
stored by row in the form of capabilities, or by column in the form of ACLs. b) Where does
the supervisor find information from which to appropriately populate the access control
indicators necessary in segment descriptors? (Hint: [13].)

5.9 ‡Relating subjects, processes, and protection domains

Protections rings are an example of protection domains, sometimes also called protection
contexts or protection environments. Here we define domains and subjects more precisely.

SUBJECTS AND DOMAINS. We first refine our definition of subject, a term used
as row index of the access matrix in the subject-object permission model (Section 5.2).
Access control controls access to objects, requested by subjects. We define a subject S as
a tuple including a process P executing on its behalf, and a domain D (explained next):

S = (P ,D)



150 Chapter 5. Operating System Security and Access Control

The domain of a process—introduced in Section 5.1 as the permission set associated with
the objects a process can access—can change over time. When a Unix process calls a root-
owned setuid program it retains its process identifier (PID), but temporarily runs with a
different eUID, acquiring different access privileges. Viewing the domain as a room, the
objects in the room are accessible to the subject; when the subject changes rooms, the
accessible objects change. For a more precise definition of protection domain D , the ring
system and segmented virtual addressing of Multics can be used as a basis. We define the
domain of a subject S = (P ,D) associated with process P as

D = (r,T )
Here r is the execution ring of the segment g that P is running in, and T is P ’s descriptor
segment table containing segment descriptors (including for g), each including access
indicators. This yields a more detailed description of a subject as

S = (P ,r,T ) = (processID, ring-number, descriptor-seg-ptr)

NOTES. These definitions for subject and domain lead to the following observations.

1) A change of execution ring changes the domain, and thus the privileges associated
with a subject S. At any specific execution point, a process operates in one domain or
context; privileges change with context (mode or ring).

2) A transfer of control to a different segment, but within the same ring (same process,
same descriptor segment), changes neither the domain nor the subject.

3) Access bracket entry points specify allowed, gatekeeper-enforced domain changes.

4) Virtual address translation maps constrain physical memory accessible to a domain.

5) A system with n protection rings defines a strictly ordered set of n protection domains,
D(i) = (i,T ), 0≤ i≤ n−1. Associating these with a process P and its fixed descriptor
segment defined by T , defines a set of subjects (P ,0,T ), ...,(P ,n−1,T ).

6) Informally, C-lists (Section 5.2) define the environment of a process. Equating C-lists
with domains allows substitution in the definition S = (P ,D).

Exercise (Ring changes vs. switching userid). It is recommended that distinct accounts
be set up on commodity computers to separate regular user and administrative activities.
Tasks requiring superuser privileges employ the administrative account. Discuss how this
compares, from an OS viewpoint, to a process changing domains by changing rings.

HARDWARE-SUPPORTED CPU MODES UNUSED BY SOFTWARE. Many comput-
ers in use run operating systems supporting only two CPU modes (supervisor, user) de-
spite hardware support for more—thus available hardware support for rings goes unused
(Figure 5.13). Why so? If an OS vendor seeks maximum market share via deployment
on all plausible hardware platforms, the lowest-functionality hardware (here, in terms of
CPU modes) constrains all others. The choices are to abandon deployment on the low-
functioning hardware (ceding market share), incur major costs of redesign and support
for multiple software streams across hardware platforms, or reduce software functional-
ity across all platforms. Operating systems custom-built for specific hardware can offer
richer features, but fewer hardware platforms are then compatible for deployment.



5.10. ‡End notes and further reading 151

ring	3:	
		user	space	(applica0ons)	

rings	1,	2	
		(typically	unused	in	
				commodity	systems)	

ring	0:	kernel,			
system	drivers	

Figure 5.13: Underuse of hardware-supported protection rings. Widely used Intel x86
hardware supports four modes (rings); Windows systems running on it use rings 0 and 3.
For example, device drivers might be put in ring 1, albeit adding context-switching costs.

Exercise (Platforms supporting more than two modes). Discuss, with technical de-
tails, how many CPU modes, privilege levels, or rings are supported by the ARMv7 pro-
cessor architecture. Likewise discuss for operating systems OpenVMS and OS/2. Do any
versions of Windows support more than two modes?

5.10 ‡End notes and further reading

Jaeger [16] is recommended as a recent short book covering OS security, SELinux, se-
curity kernels, and Multics including rings directly supporting multi-level security (MLS)
policies. Curry [4] addresses Unix security concisely. Ritchie [26] gives an early overview
of Unix. Recommended books on operating systems include Saltzer and Kaashoek [28]
(for security design principles), Silberschatz [32, Chapter 14-15], and Tanenbaum [35]
for conciseness and clarity. See Watson [39] for Capsicum capabilities, which extend
Unix file descriptors, and CHERI [38] for hardware-software support of capability-based
memory protection. Gruenbacher [15] summarizes ACL support in Unix-like systems; for
the Multics origin of ACLs and hierarchical directory files, see Daley [5]. Dittmer [7],
and earlier Chen [3], explore inconsistent implementations of setuid() and related system
calls; see also Dowd [8, Chapter 9]. Loscocco [23] discusses limitations of D-AC (largely
those that motivated SELinux), and argues for renewed interest in secure operating sys-
tems, as necessary to support computer security in general. For SELinux, see McCarty
[24]. For RBAC, see Ferraiolo [9], Sandhu [30], and the RBAC reference model [10].
RBAC supports [9] the principles of LEAST-PRIVILEGE P6, MODULAR-DESIGN P7 and
related separation of duty. For better compartmentalization than available via chroot(),
Kamp [17] introduced jail() to FreeBSD; Bellovin [2, §10.3] offers thoughts on the more
general concept of sandboxing.

Lampson’s 1971 conference paper [19] unified early access control mechanisms under
the access matrix model. Section 5.1 draws from Graham [14] and Saltzer and Schroeder
[29] (see also for capabilities). For an insightful short Multics survey including security
features omitted herein, see Saltzer [27]; for a comprehensive technical exposition of
the early-Multics design plans with details of internal mechanisms, see Organick [25].



152 Chapter 5. Operating System Security and Access Control

Dennis [6] is credited for segmented addressing (although protection features of Multics-
style segmentation were designed out of later commercial systems). Graham [14] gives
an authoritative view of protection rings (including early identification of race condition
issues); see also Graham and Denning [13] (which Section 5.9 follows), and Schroeder
and Saltzer [31] for a Multics-specific discussion of hardware-supported rings and related
software issues. Interest in using hardware-supported rings recurs—for example, Lee [20]
leverages unused x86 rings for portable user-space privilege separation.

The 1970 Ware report [37] explored security controls in resource-sharing computer
systems. The 1972 Anderson report [1, pages 8-14] lays out the central ideas of the
reference monitor concept, access matrix, and security kernel; it expressed early concerns
about requiring trust in the entire computer-manufacturing supply chain, and the ability to
determine that “compiler and linkage editors are either certified free from ‘trap-doors’,
or that their output can be checked and verified independently”—attacks later more fully
explained in Thompson’s Turing-award paper [36] detailing C-code for a Trojan horse
compiler. The 1976 RISOS report [21, p.57] defined a security kernel as “that portion
of an operating system whose operation must be correct in order to ensure the security
of the operating system” (cf. Chapter 1, principle of SMALL-TRUSTED-BASES P8). Their
small-size requirement, originally specified as part of the validation mechanism for the
reference monitor, has made microkernels a focus for security kernels (cf. Jaeger above).
These 1970-era reports indicate longstanding awareness of computer security challenges.

Lampson’s 1973 note on the confinement problem [18] raises the subject of untrusted
programs leaking data over covert channels. Gasser’s lucid 1988 book [12], a practi-
tioner’s integrated treatment on how to build secure computer systems, includes discus-
sion of reference monitors, security kernels, segmented virtual memory, MLS/mandatory
access control, and covert channels.



References (Chapter 5)

[1] J. P. Anderson. Computer Security Technology Planning Study (Vol. I and II, “Anderson report”). James
P. Anderson and Co., Fort Washington, PA, USA, Oct 1972.

[2] S. M. Bellovin. Thinking Security: Stopping Next Year’s Hackers. Addison-Wesley, 2016.

[3] H. Chen, D. Wagner, and D. Dean. Setuid demystified. In USENIX Security, 2002.

[4] D. A. Curry. UNIX System Security: A Guide for Users and System Administrators. Addison-Wesley,
1992.

[5] R. C. Daley and P. G. Neumann. A general-purpose file system for secondary storage. In AFIPS Fall
Joint Computer Conference, pages 213–229, Nov 1965.

[6] J. B. Dennis. Segmentation and the design of multiprogrammed computer systems. Journal of the ACM,
12(4):589–602, 1965.

[7] M. S. Dittmer and M. V. Tripunitara. The UNIX process identity crisis: A standards-driven approach
to setuid. In ACM Comp. & Comm. Security (CCS), pages 1391–1402, 2014.

[8] M. Dowd, J. McDonald, and J. Schuh. The Art of Software Security Assessment: Identifying and
Preventing Software Vulnerabilities. Addison-Wesley, 2006.

[9] D. Ferraiolo and R. Kuhn. Role-based access controls. In National Computer Security Conf. (NCSC),
pages 554–563, Oct. 1992.

[10] D. F. Ferraiolo, R. S. Sandhu, S. I. Gavrila, D. R. Kuhn, and R. Chandramouli. Proposed NIST standard
for role-based access control. ACM Trans. Inf. Systems and Security, 4(3):224–274, 2001.

[11] W. Ford and M. J. Wiener. A key distribution method for object-based protection. In ACM Comp. &
Comm. Security (CCS), pages 193–197, 1994.

[12] M. Gasser. Building a Secure Computer System. Van Nostrand Reinhold, 1988. PDF available online.

[13] G. S. Graham and P. J. Denning. Protection—principles and practice. In AFIPS Spring Joint Computer
Conference, pages 417–429, May 1972.

[14] R. M. Graham. Protection in an information processing utility. Comm. ACM, 11(5):365–369, 1968.
Appeared as the first paper, pp.1-5, first ACM Symposium on Operating System Principles, 1967.

[15] A. Gruenbacher. POSIX access control lists on LINUX. In USENIX Annual Technical Conf., pages
259–272, 2003.

[16] T. Jaeger. Operating System Security. Morgan and Claypool, 2008.

[17] P.-H. Kamp and R. N. M. Watson. Jails: Confining the omnipotent root. In System Admin. and Net-
working Conf. (SANE), 2000. Cf. “Building systems to be shared, securely”, ACM Queue, Aug 2004.

[18] B. W. Lampson. A note on the confinement problem. Comm. ACM, 16(10):613–615, 1973.

[19] B. W. Lampson. Protection. ACM Operating Sys. Review, 8(1):18–24, 1974. Originally published in
Proc. 5th Princeton Conf. on Information Sciences and Systems, 1971.

[20] H. Lee, C. Song, and B. B. Kang. Lord of the x86 rings: A portable user mode privilege separation
architecture on x86. In ACM Comp. & Comm. Security (CCS), pages 1441–1454, 2018.

153



154 References (Chapter 5)

[21] T. Linden. Security Analysis and Enhancements of Computer Operating Systems (“RISOS report”),
Apr 1976. NBSIR 76-1041, The RISOS Project, Lawrence Livermore Laboratory, Livermore, CA.

[22] P. Loscocco and S. Smalley. Integrating flexible support for security policies into the Linux operating
system. In USENIX Annual Technical Conf., pages 29–42, 2001. FREENIX Track. Full technical report,
62 pages, available online.

[23] P. A. Loscocco, S. D. Smalley, P. A. Muckelbauer, R. C. Taylor, S. J. Turner, and J. F. Farrell. The
inevitability of failure: The flawed assumption of security in modern computing environments. In
National Info. Systems Security Conf. (NISSC), pages 303–314, 1998.

[24] B. McCarty. SELinux: NSA’s Open Source Security Enhanced Linux. O’Reilly Media, 2004.

[25] E. I. Organick. The Multics System: An Examination of Its Structure. MIT Press (5th printing, 1985),
1972.

[26] D. M. Ritchie and K. Thompson. The UNIX time-sharing system. Comm. ACM, 17(7):365–375, 1974.

[27] J. H. Saltzer. Protection and the control of information sharing in Multics. Comm. ACM, 17(7):388–402,
1974.

[28] J. H. Saltzer and M. F. Kaashoek. Principles of Computer System Design. Morgan Kaufmann, 2010.

[29] J. H. Saltzer and M. D. Schroeder. The protection of information in computer systems. Proceedings of
the IEEE, 63(9):1278–1308, September 1975.

[30] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access control models. IEEE
Computer, 29(2):38–47, 1996.

[31] M. D. Schroeder and J. H. Saltzer. A hardware architecture for implementing protection rings. Comm.
ACM, 15(3):157–170, 1972. Earlier version in ACM SOSP, pages 42–54, 1971.

[32] A. Silberschatz, P. B. Galvin, and G. Gagne. Operating System Concepts (seventh edition). John Wiley
and Sons, 2005.

[33] S. Smalley and R. Craig. Security Enhanced (SE) Android: Bringing Flexible MAC to Android. In
Netw. Dist. Sys. Security (NDSS), 2013.

[34] R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. Andersen, and J. Lepreau. The Flask security
architecture: System support for diverse security policies. In USENIX Security, 1999.

[35] A. S. Tanenbaum. Modern Operating Systems (3rd edition). Pearson Prentice Hall, 2008.

[36] K. Thompson. Reflections on trusting trust. Comm. ACM, 27(8):761–763, 1984.

[37] W. H. Ware (Chair). Security Controls for Computer Systems: Report of Defense Science Board Task
Force on Computer Security. RAND Report R-609-1 (“Ware report”), 11 Feb 1970. Office of Director
of Defense Research and Engineering, Wash., D.C. Confidential; declassified 10 Oct 1975.

[38] R. N. M. Watson and 14 others. CHERI: A hybrid capability-system architecture for scalable software
compartmentalization. In IEEE Symp. Security and Privacy, pages 20–37, 2015.

[39] R. N. M. Watson, J. Anderson, B. Laurie, and K. Kennaway. Capsicum: Practical capabilities for UNIX.
In USENIX Security, pages 29–46, 2010.

[40] C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah-Hartman. Linux security modules: General
security support for the Linux kernel. In USENIX Security, pages 17–31, 2002.


	Operating System Security and Access Control
	Memory protection, supervisor mode, and accountability
	The reference monitor, access matrix, and security kernel
	Object permissions and file-based access control
	Setuid bit and effective userid (eUID)
	Directory permissions and inode-based example
	Symbolic links, hard links and deleting files
	Role-based (RBAC) and mandatory access control
	*Protection rings: isolation meets finer-grained sharing
	*Relating subjects, processes, and protection domains
	*End notes and further reading


