
Computer Security and the Internet: Tools and Jewels (2e)

Chapter 8

Public-Key Certificate Management and Use Cases

8.1 Certificates, certification authorities and PKI . 214
8.2 Certificate chain validation and certificate extensions . 217
8.3 ‡Certificate revocation . 221
8.4 CA/PKI architectures and certificate trust models . 224
8.5 TLS web site certificates and CA/browser trust model . 229
8.6 Secure email overview and public-key distribution . 235
8.7 ‡Secure email: specific technologies . 238
8.8 ‡End notes and further reading . 241
References . 242

The official version of this book is available at
https://www.springer.com/gp/book/9783030834104

ISBN: 978-3-030-83410-4 (hardcopy), 978-3-030-83411-1 (eBook)

Copyright c©2020-2022 Paul C. van Oorschot. Under publishing license to Springer.

For personal use only.

This author-created, self-archived copy is from the author’s web page.

Reposting, or any form of redistribution without permission, is strictly prohibited.

version: 29 June 2021

https://www.springer.com/gp/book/9783030834104

Chapter 8

Public-Key Certificate Management
and Use Cases

This chapter explains certificate management and public-key infrastructure (PKI), what
they provide, technical mechanisms and architectures, and challenges. Two major certifi-
cate use cases are also considered here as examples: TLS as used in HTTPS for secure
browser-server communications, and end-to-end encrypted email. Additional applications
include SSH and IPsec (Chapter 10), DNSSEC (Chapter 11), and trusted computing.

In distributed systems, cryptographic algorithms and protocols provide the founda-
tions for access control to remote computing resources and data services, and for autho-
rization to change or store data, and to remotely execute commands. Authentication is
a common first step in authorization and access control. When passwords are used for
remote authentication, they typically travel over a channel itself secured by authentica-
tion and confidentiality based on cryptographic keys. These keys protect not only data in
transit but also data at rest (stored). Key management—the collection of mechanisms and
protocols for safely and conveniently distributing such keys—includes managing not only
session keys per Chapter 4, but public keys (as discussed herein) and their corresponding
long-term private keys.

8.1 Certificates, certification authorities and PKI

We first discuss certificates and certification authorities, and then give a quick overview
of public-key infrastructure.

INTEGRITY OF PUBLIC KEYS. Public keys are used in cryptographic algorithms
and protocols.1 As their name suggests, they need not be kept secret—a defining property
is that knowing a public key does not allow deduction of the corresponding private key.
However, the authenticity (and related integrity) of a public key is essential for security—
by this, we mean knowing to whom a public key “belongs”, since that is the party assumed

1Chapter 2 provides background on public-key cryptography, and briefly introduces certificates.

214

8.1. Certificates, certification authorities and PKI 215

to know, and protect, the corresponding private key. The danger is that if the encryption
public key of an intended recipient B is substituted by that of an opponent, the opponent
could use their own private key to recover the plaintext message intended for B.

PUBLIC-KEY CERTIFICATES. A public-key certificate is used to associate a public
key with an owner (i.e., the entity having the matching private key, and ideally the only
such entity). The certificate is a data structure that binds a public key to a named Subject,
by means of a digital signature generated by a trusted third party called a Certification
Authority (CA). The signature represents the CA’s assertion that the public key belongs to
the named Subject; having confidence in this assertion requires trust that the CA making
it is competent and reliable on such statements. Any party that relies on the certificate—
i.e., any relying party—places their trust in the issuing CA, and requires the corresponding
valid public key of that CA in order to verify this signature. Verifying the correctness of
this signature is one of several steps (Section 8.2) that the relying party’s system must
carry out as part of checking the overall validity of the target public-key certificate.

NAMES IN CERTIFICATES. The certificate fields Subject (owner) and Issuer
(signing CA) in Table 8.1 are of data type Name. Name is a set of attributes, each a pair
<attribute name, value>. Collectively, the set provides a unique identifier for the named
entity, i.e., serves as a distinguished name (DN). Commonly used attributes include:
Country (C), Organization (O), Organizational Unit (OU), and Common-Name (CN).
Examples are given later in the chapter (Figures 8.9 and 8.11).

Field name Contents or description
Version X.509v3 or other versions
Serial-Number uniquely identifies certificate, e.g., for revocation
Issuer issuing CA’s name
Validity-Period specifies dates (Not-Before, Not-After)
Subject owner’s name
Public-Key info specifies (Public-Key-Algorithm, Key-Value)
extension fields (optional) Subject-Alternate-Name/SAN-list,

Basic-Constraints, Key-Usage,
CRL-Distribution-Points (and others)

Signature-Algorithm (algorithmID, parameters)
Digital-Signature signature of Issuer

Table 8.1: X.509v3 public-key certificate fields.

CERTIFICATE FIELDS. Beyond the public key, Subject and Issuer names, and
CA signature, a certificate contains other attribute fields that allow proper identification
and safe use of the public key (Table 8.1). These include: format version, serial number,
validity period, and signature algorithm details. The public-key field has two components,
to identify the public-key algorithm and the public-key value itself. X.509v3 certificates,
which are the certificates most commonly used in practice, have both these basic fields and
extension fields (Section 8.2). The CA signature is over all fields for integrity protection,
i.e., the hash value digitally signed encompasses all bits of all fields in the certificate.

216 Chapter 8. Public-Key Certificate Management and Use Cases

CA CHECKS BEFORE ISSUING CERTIFICATE. Before a CA issues a certificate to
a requesting party, it is expected to exercise due diligence. A CA is vouching not for the
character or integrity of the entity named in the certificate, but rather for an association
between an entity name and a public key. Related to a certificate’s Public-Key and
Subject or Subject-Alternate-Name, three aspects deserve special attention:

1. Evidence of knowledge of the corresponding private key. A malicious party should
not be able to acquire a certificate associating its name with another entity’s public
key. The requesting party should thus be required to provide a proof of knowledge of
the private key, e.g., by the CA sending a fresh challenge and verifying a response,
wherein the CA uses the public key and the requesting party uses the private key.

2. Evidence of ownership or control of computer-addressable identities related to the
Subject field in the pending certificate. For example, control of an asserted domain
name, email address or phone number should be demonstrated to the CA.

3. Confirmation of asserted natural-world names (for high-quality certificates). If an
organization name is asserted, the CA should carry out cross-checks to confirm the
requesting party is legitimately affiliated with, or authorized by the organization to
acquire the pending certificate; if an individual name is asserted and intended to rep-
resent a natural-world person (rather than an explicitly identified pseudonym), then
suitable personal identification may be requested.

The extent of these and other checks made depends on the operational policy of the CA.
For TLS certificates, three grades of certificate result (Section 8.5).

ACQUIRING A CERTIFICATE. Protocols have been standardized for an end-entity
to request a certificate from a CA (exercise below). An end-entity sends the CA a cer-
tification request including a DN, public key, and optional additional attributes. This is
typically preferred over the CA itself generating the end-entity’s public-private key pair,
in which case the CA must be trusted not to disclose or abuse the private key.

‡Exercise (Certificate management protocol). Summarize the protocols of RFC 4210,
by which an end-entity requests and receives a certificate from a CA. (Hint: [1]. This RFC
allows certificate requests per the earlier PKCS #10 of RFC 2986 [37].)

PKI. A public-key infrastructure (PKI) is a collection of technologies and processes
for managing public keys, their corresponding private keys, and their use by applications.
Its primary end-goal is to facilitate use of long-term keys used to authenticate entities,
and to enable establishment of authenticated session keys. In this way, PKI facilitates
encryption, data integrity, and also digital signatures for entity authentication, data origin
authentication and (in theory, but far less commonly in practice) non-repudiable, legally
recognized signatures. PKI involves (Fig. 8.1):

1. data structures related to key management (e.g., certificates, formatted keys);

2. use of cryptographic toolkits and related methods for automating key management;

3. architectural components such as CAs and (public-key) certificate directories; and

4. procedures and protocols for approving, acquiring and updating keys and certificates.

8.2. Certificate chain validation and certificate extensions 217

Ch.8.	PKI	lifecycle	

publicly	available	informa8on	

1	

cer8ficate	
policies	

user	registra8on	

key	
recovery	

CA	
(with	RA)	

cer8ficate	
directory	backup	

&	
archival	

user	ini8aliza8on	

key	installa8on	

normal	key	use	

session	key		
establishment	

public	key		
registra8on	

cert	
status	
info	

cer8ficate	revoca8on	

new	keys	

key		
revoca8on	

key	genera8on	

1	 key	loss	without	compromise	

2	

2	 key	compromise	or	early	termina8on	

key	update	

3	 private	key	management	

3	 cer8ficate	request	protocol	4	

4	

Figure 8.1: PKI components and lifecycle.

Standardization of PKI elements, e.g., X.509v3 certificate profiles (describing common
certificate fields and how they are used), has aided interoperability and use of supporting
components and software libraries across vendors and products. PKI support for public-
key cryptography improves automation, scalability, security and convenience compared
to infrastructures based on symmetric keys only, and older practices (manual sharing,
manual entry, and hard-coding of symmetric keys and passwords).

‡ADDITIONAL PKI ASPECTS. A challenging aspect often overlooked is manage-
ment of long-term private keys. If stored encrypted under keys derived from user-chosen
passwords, they are at risk to offline password-guessing attacks (Chapter 3). Lifecycle
support for non-repudiable signatures adds significant complexity (beyond common capa-
bilities, and e.g., requiring notary services), to reconstruct time-relevant revocation infor-
mation. CAs may also use a Registration Authority (RA) to facilitate certificate requests.

‡Exercise (PKI components and lifecycle management). Figure 8.1 outlines major
PKI components. Summarize the tasks each addresses (hint: [35, Fig. 13.10 on p. 579]).

8.2 Certificate chain validation and certificate extensions

VALIDATING CERTIFICATES AND CERTIFICATE CHAINS. CAs issue certificates for
end-entities, e.g., human users in the case of email certificates, web servers in the case
of TLS certificates. A CA may also issue a certificate for the public key of another CA,
sometimes called an intermediate CA, e.g., when the first CA is a trust anchor or atop a
hierarchy (Section 8.4). This results in the concept of a certificate chain (Fig. 8.2). Before
the public key in a certificate is relied on for some intended purpose, the relying party
should validate the certificate, i.e., check to ensure that “everything is in order”. The
steps for validating a certificate include checking that the target certificate:

1. has not expired, and the current date is in the range [Not-Before, Not-After];

218 Chapter 8. Public-Key Certificate Management and Use Cases

✔	

Start	with	trust		
in	anchor	key	

self-signed	
anchor	key	
of	CA1	

signed	
by	CA1	

intermediate	
CA2	public	key	

✔	
signed	
by	CA2	

target	
public	key	

Finally		
trust		
target		
public	key	

Figure 8.2: Certificate chain validation.

2. has not been revoked (Section 8.3);

3. has a signature that verifies (mathematically), using the signing CA’s public key;

4. is signed by a CA whose public key is (available and) itself trusted;

5. has a Subject or Subject-Alternate-Name matching the semantics of use. For
example, if it is supposedly a TLS certificate from a browsed-to domain, the domain
name in the certificate should match the URL domain the browser is visiting. If the
certificate is for encrypting email to party B, the email address that the mail client
believes corresponds to B should match that given in the certificate.2

6. use is consistent with all constraints specified in certificate extension fields or policies
(e.g., path length, key usage restrictions, name constraints—explained on page 220).

7. if not directly signed by a trust anchor CA, then a valid chain of certificates from a
trust anchor to the target certificate must be available, with all the above steps checked
for every certificate in the chain (Fig. 8.2). Trust anchors are defined on page 219.

Example (Passport analogy to certificate policy constraints). Countries issue pass-
ports. Most other countries recognize these (and in new e-passports, now verify the issuing
government using public keys). Recognizing that a passport validly identifies a citizen of
another country does not obligate a country to allow entry of that individual. Independent
of such recognition, one country can decide to disallow entry of travellers from another.

OUT-OF-BAND CHANNELS & CHECKING FINGERPRINTS. Trust is often initially
established by information sent over a channel that by assumption, an attacker does not
have access to (if confidential) or cannot alter (if integrity is required)—sometimes called
an out-of-band channel. The term also arises in a process called checking fingerprints.
An example is retrieving a public key over an untrusted Internet channel such as email or
HTTP, locally computing a cryptographic hash of the retrieved data, and cross-checking
the data’s integrity by comparing the computed hash to a hash value (believed to be the
authentic one) obtained over an out-of-band channel.3 Such hash values may be repre-
sented as hexadecimal strings, or images uniquely derived from them. The out-of-band
channel might be paper via postal mail or courier, or data exchanged in person, by voice
over phone or from an HTTPS web site. The term out-of-band derives from telephony,
where in-band signaling means sending control data over the same channel as voice data.

2This is an example of principle P19 (REQUEST-RESPONSE-INTEGRITY).
3This combines P17 (TRUST-ANCHOR-JUSTIFICATION) and P18 (INDEPENDENT-CONFIRMATION).

8.2. Certificate chain validation and certificate extensions 219

SELF-SIGNED CERTIFICATES & BROWSER TRUST ANCHORS. A public-key cer-
tificate is commonly validated using an in-hand trusted public key to verify the certificate’s
signature. In contrast, self-signed certificates are signed by the private key corresponding
to the certificate’s own public key. This does not allow deriving trust in one public key
from another, but serves as a convenient structure for packaging a public key and related
attributes. Trust in a self-signed certificate should be established by a reliable out-of-band
channel. Some browsers have a trusted certificate store of self-signed certificates of a
large number of established CAs, vetted by the browser vendor; other browsers rely on a
similar store maintained by the host operating system, and either option may use a small
set stored locally, with a larger set hosted online by the vendor to dynamically augment
the local set. This dictates which TLS (server) certificates the browser, on behalf of the
user, will recognize as valid. Such CA public keys relied on as pre-trusted starting points
for certificate chains are called trust anchors.

ACCEPTING UNTRUSTED CERTIFICATES. A browser visiting a web site may be
sent a self-signed certificate (Figure 8.3). The browser software may reject it, or present
a dialogue allowing the user to accept it as “trusted” despite the software not recognizing

Figure 8.3: Self-signed site certificate—browser warning (Chrome 56.0.2924.87). The
“Back to safety” tab discourages clicking-through to the site despite the browser being
unable to verify the certificate chain (this happens when one or more certificates are signed
by CAs unrecognized by the browser, i.e., not verifiable using the browser’s trust anchors).

220 Chapter 8. Public-Key Certificate Management and Use Cases

it as such—in this case ideally also presenting the user information allowing a certificate
fingerprint check as discussed (Fig. 8.10, page 232, shows two fingerprints). Users may
accept the certificate without bothering to check, or may have insufficient information or
understanding to check properly—but if they accept, they do so at their own risk, even if
they do not understand this or the consequences of doing so.

An analogous situation arises if the received certificate is CA-signed but the receiving
software has no trust anchor or chain allowing its programmatic verification. Again, the
client application may be programmed to allow users to accept (“trust”) such certificates
“by manual decision”. This violates a basic usable security4 principle—users should not
be asked to take decisions that they do not have sufficient information to make properly—
but it is a common shortcut when software designers don’t have better design ideas.

TRUST ON FIRST USE (TOFU). If a self-signed certificate is accepted (relied on
as “trusted”) the first time it is received from a remote party, without any cross-check or
assurance that it is authentic, this is called trust on first use (TOFU). To emphasize the
risk, and lack of cross-check, it is also called blind TOFU or leap-of-faith trust. Some
software interfaces ask the user whether the key should be accepted for one-time use only,
or trusted for all future uses; the latter is sometimes assumed silently with the public key
stored (within its certificate packaging), associated with that party, application or domain,
and checked for a match (key continuity) on subsequent uses. If an active attacker provided
a forged certificate on this first occurrence, the gamble is lost; but otherwise, the gamble
is won and subsequent trust is justified. If a fingerprint is cross-checked once before first
use, rather than “TOFU” we may call it check on first use (COFU).

TRUST ANCHOR JUSTIFICATION. TOFU is common when SSH (Chapter 10) is
configured for authentication with user password and server public key. On first visit to an
SSH server, the SSH client receives the server public key and is given an option to accept
it. If the user accepts (after optionally cross-checking its fingerprint), the client stores
the public key (for future use) and uses it to establish a secure channel; a user-entered
password is then sent over this channel for user authentication to the server. On return
visits to this server, the newly received public key is (silently) cross-checked with the
stored key. This highlights a critical point: many PKI tools are designed to fully automate
trust management after initial keys are set as trusted, proceeding thereafter without user
involvement, silently using any keys or trust anchors accepted or configured in error. The
importance of attention and correctness in such manual trust decisions motivates principle
P17 (TRUST-ANCHOR-JUSTIFICATION). This applies when accepting keys or certificates
as trusted, especially by non-technical users, in applications such as browsers (HTTPS
certificates), secure email clients (PGP, S/MIME certificates), and SSH as above.

X.509V3 EXTENSIONS. Version 3 of the X.509 certificate standard added certificate
extension fields. These are marked either critical or non-critical. An older system may
encounter an extension field that it is unable to interpret. If the field is marked non-critical,
the system can ignore the field and process the rest of the certificate. If a field is marked
critical and a system cannot process it, the certificate must be rejected. Some examples of

4Usable security is discussed in Section 9.8.

8.3. ‡Certificate revocation 221

extensions follow.

• Basic-Constraints: this extension has the fields (cA, pathLenConstraint). The
first field is boolean—TRUE specifies that the public key is for a CA, FALSE specifies
that the key is not valid for verifying certificates. The second field limits the remaining
allowed certificate chain length. A length of 0 implies the CA can issue only end-
entity, i.e., leaf certificates (this CA key cannot be used to verify chain links).

• Key-Usage: this specifies allowed uses of a key, e.g., for signatures, encryption, key
agreement, CRL signatures (page 222). A separate extension, Extended-Key-Usage,
can specify further key uses such as code signing (vendor signing of code to allow
subsequent verification of data origin and integrity) and TLS server authentication.

• Subject-Alternate-Name: this may include for example an email address, domain
name, IP address, URI, or other name forms. If the Subject field is empty (which is
allowed), the alternate name must be present and marked as a critical extension.

• Name-Constraints: in CA-certificates (below), these allow CA control of Subject
names in subsequent certificates when using hierarchical name spaces. By specifying
prefixes in name subtrees, specified name spaces can be excluded, or permitted.

CROSS-CERTIFICATE PAIRS. ITU-T X.509 standardized a data structure for a pair
of cross-certificates between CAs, each issuing a certificate for the other’s public key—
one issued-to-this-CA, one issued-by-this-CA. For example, a cross-certificate pair
can allow CAs at the roots of two hierarchies (Section 8.4) to enable secure email be-
tween their communities. This data structure can aid discovery and assembly of certificate
chains. Single (unilateral) cross-certificates are also possible strictly within one hierarchy,
but in this case, CA-certificate is a less confusing term for one CA issuing a certificate to
another. Constraints placed on cross-certificates and CA-certificates via certificate exten-
sions take on greater importance when extending trust to an outside community.

Exercise (Transitivity of trust). Certificate chains, depending on constraints, treat trust
as if it is transitive. Is trust transitive in real life? Consider the case of movie recommen-
dations from a friend. (On what subject matter do you trust your friend? From whom do
you seek legal relief if something goes wrong in a long trust chain?)

8.3 ‡Certificate revocation

Certificates have a predefined expiration date, from their validity field. A typical period is
1–2 years. Analogous to conventional credit cards, the validity period may be terminated
ahead of time, i.e., the certificate can be revoked. In centralized systems where certificates
are signed by CAs, it is expected that the CA issuing a certificate is responsible for making
information about revoked certificates available to relying parties; the issuing party is
recognized as the revocation authority for that certificate.

REVOCATION REASONS. For public-key certificates, the most serious revocation
reason is the compromise, or suspected compromise, of the Subject’s private key. Other
reasons may include that the key has been superseded by another key prior to the planned

222 Chapter 8. Public-Key Certificate Management and Use Cases

expiry; the key owner is discontinuing use of the key; or the Subject (owner) changed
job titles or affiliation and requires a new key for the new role.

We next discuss some of the main approaches used for revoking certificates.
METHOD I: CERTIFICATE REVOCATION LISTS (CRLS). A CA periodically is-

sues (e.g., weekly, perhaps more frequently) or makes available to relying parties in its
community, a signed, dated list of serial numbers of all unexpired-but-revoked certificates
among those it has issued. The CRL may be sent to members of a defined community
(push model), or published at an advertised location (pull model). Individual certificates
may themselves indicate the retrieval location. An issue with CRLs is that depending
on circumstances, their length may become cumbersome. Shortening certificate validity
periods shortens CRLs, since expired certificates can be removed from CRLs.

METHOD II: CRL FRAGMENTS—PARTITIONS AND DELTAS. Rather than pub-
lishing full CRLs, several variations aim to improve efficiency by using CRL fragments,
each a dated, signed sublist of serial numbers. CRL distribution points, also called parti-
tioned CRLs, break full CRLs into smaller pieces, e.g., corresponding to predefined serial
number ranges. Different ranges might be retrieved from different locations. Different
distribution points might be used for different categories of revocation reasons. A CRL
distribution point extension field (in the certificate) indicates where a relying party should
seek CRL information, and the retrieval protocol or method (e.g., LDAP, HTTP).

In contrast, the idea of delta CRLs is to publish updates to earlier lists (from the same
CA); relying parties accumulate the updates to build full CRLs. When the CA next issues
a consolidated CRL, subsequent updates are relative to this new, specified base list. To
offload the effort required to assemble and manage delta CRLs, this variation may be
supported by CRL aggregator services.

METHOD III: ONLINE STATUS CHECKING. In online-checking methods such as
the online certificate status protocol (OCSP), relying parties consult a trusted online server
in real time to confirm the validity status of a certificate (pull model). The appeal is in
obtaining a real-time response—ideally based on up-to-date information (a real-time re-
sponse is not necessarily based on fresh status information from the relevant CA; it might
be no fresher than a CRL). In a push-model variation called OCSP-stapling, certificate
holders frequently obtain signed, timestamped assertions of the validity of their own cer-
tificates, and include these when providing certificates to relying parties (e.g., when TLS
servers send certificates to browsers).

COMPROMISE TIMELINE: FROM COMPROMISE TO VISIBILITY. CRLs require
no OCSP-style online revocation service, but suffer delays between when a revocation is
made, and when a relying party acquires that knowledge. Heavy focus on the urgency to
instantaneously broadcast revocation information may reduce legal liability, but overlooks
other aspects. Consider the event timeline of a private key compromise in Figure 8.4.

METHOD IV: SHORT-LIVED CERTIFICATES. This approach seeks to avoid the
need for revocation entirely, by instead issuing certificates with relatively short validity
periods—e.g., consider 1–4 days. The idea is that the maximum exposure window of a
short-lived certificate is its full validity period, which is perhaps similar to or less than
the exposure window of alternate methods. A drawback is the overhead of frequently

8.3. ‡Certificate revocation 223

Revoca'on	'meline:	from	compromise	to	visibility.	
Possible	delays	at	T4	are	mechanism	dependent,	e.g.,	CRLs	are	typically	issued	at	periodic	intervals.	

'me	

key	compromised	

T1	 T2	 T3	 T4	 T5	 T7	T6	

compromise	detected	

revoca'on	effected	at	CA	
report	received,	being	processed	

relying	party	sees	
revoca'on	informa'on	

revoca'on	publicly	available	
reported	to	CA	

Figure 8.4: Certificate revocation timeline: from compromise to visibility. Possible de-
lays at T4 are mechanism-dependent, e.g., CRLs are typically issued at periodic intervals.
A benefit of OCSP mechanisms (over CRLs) is to remove the T6-to-T7 delay.

re-issuing certificates. In the limit, short-lived certificates are created on-demand, at the
expense of real-time contact with the authority who speaks for the key’s validity, and the
full-time load this places on that authority.

METHOD V: SERVING TRUSTED PUBLIC KEYS DIRECTLY. Continuing this line
of thought leads to considering entirely eliminating not only revocation, but possibly even
signed certificates, instead relying on a trusted key server to serve only valid keys.5 This
approach is best suited to a closed system with a single administrative domain; a real-
time trusted connection to the server authoritative on the validity of each target public key
requires relying parties have keying relationships with all such servers (or that one server
acts as a clearinghouse for others)—raising key management issues that motivated use of
certificates and related trust models in the first place. This approach also increases load on
servers and availability requirements, compared to end-entities interacting with a trusted
server only infrequently for new certificates. Thus significant tradeoffs are involved.

REVOKED CERTIFICATES: CA VS. END-ENTITY. Both CA and leaf certificates
can be revoked. Consider a CA issuing (a leaf) TLS certificate for a server, to secure
browser-server connections. The server may have one or more TLS certificates from one
or more CAs. One or all of these server certificates may be revoked. The certificate of the
CA signing these certificates may also be revoked. These would all be distinct from the
certificate of an end-user being revoked. (Recall that TLS supports mutual authentication,
but in practice is used primarily for unilateral authentication of the server to the browser,
i.e., the server presents its certificate to the browser.) X.509v3 standards include Certi-
fication Authority revocation lists (CARLs), i.e., CRLs specifically dedicated to revoked
CA certificates; proper certificate chain validation includes revocation checks on CA keys
throughout the chain, excluding trust anchors. This leaves the question of how to handle
revocation of trust anchors, which albeit rare, may be by separate means, e.g., modifica-
tion of trusted certificate stores in browsers or operating systems by software updates, and
dynamic or manual changes to such stores.

DENIAL OF SERVICE ON REVOCATION. A standard concern in certificate revoca-
tion is denial of service attacks. If a request for revocation information is blocked, the

5For related discussion of public-key servers, see Fig. 8.14 on page 237.

224 Chapter 8. Public-Key Certificate Management and Use Cases

relying party’s system either fails closed (deciding that the safest bet is to treat the certifi-
cate as revoked), or fails open (assumes the certificate is unrevoked). In the latter case,
which violates principle P2 (SAFE-DEFAULTS), an attacker blocking revocation services
may cause a revoked certificate to be relied on.

8.4 CA/PKI architectures and certificate trust models

This section explains how trust relationships between CAs, and the use of trust anchor
lists, define PKI models suitable for TLS, secure email, and other applications.6

TRUST MODEL DEFINITION. There are many different meanings of trust and trust
models. For our purposes, a certificate trust model is a system—its design, procedures,
and rules as instantiated by software and other processes—by which applications recog-
nize public-key certificates as valid, and if so, the allowed uses of their public keys as
dictated by certificate fields or implied by relying systems. Of course such trust models,
as technical mechanisms, cannot determine whether entities are trustworthy.

MODEL PHILOSOPHY VS. TECHNICAL ABILITY. It is helpful to think of a trust
model as constraining a technology to implement a particular philosophy or achieve spe-
cific goals. Making a set of arbitrarily configurable software components available does
not define a trust model; useful models facilitate specific purposes or applications. “What
trust model is best?” is not a well-defined question. It is more useful to ask: “For a given
application (with objectives X , Y and Z), what trust model is most suitable?” The answer
differs by application, goals, and to whom the system is designed to give control.

‡TOOLBOX SHAPED TO MEET GOALS. Data structures associated with standard
ITU-T:X.500, X.509 certificates, and customizations via IETF RFCs provide a toolbox
allowing different communities (or applications) to build customized trust models suiting
specific needs and ecosystems. Different trust models should be expected for automo-
tive manufacturers (e.g., the use of VPN/IPsec technology by the Automotive Network
eXchange/ANX), federal governments (e.g., the S/MIME-based U.S. Bridge CA secure
email project), and business-to-consumer applications (e.g., TLS-based information ex-
changes between banks and online customers). PKI infrastructures intended for business-
to-business partners may be underpinned by pairwise or network-wide formal business
contracts and proprietary software; web-based e-commerce, on the other hand, may in-
volve commodity browsers supporting TLS and click-wrap agreements that few read.

We discuss various trust models with examples to build our understanding—single-
CA communities, linking them, CA hierarchies, linking multiple hierarchies, and finally
hybrid models offering finer-grained configurability at the price of greater complexity.

MODEL I (BASE): SINGLE-CA DOMAINS AND LINKING THEM. The simplest
systems involve single-CA domains (i.e., no hierarchies or intermediate CAs) with no
trust connections between the distinct communities. Each is a single closed system with
respect to trust, although possibly a very large administrative domain. This is the model of

6Instructors who are time-constrained may wish to focus on Model IV, as background for Section 8.5.

8.4. CA/PKI architectures and certificate trust models 225

Solid	arrow	points	from	certificate	Signer	to	Subject.	Double	arrow	indicates	CA-certificates	in	both	directions.	
Dotted	arrow	indicates	trust	anchor.		

(a) Separate	domains	
															(no	trust	connections)	

...	

Hub	

End-entity	(leaf)	
CA	

...	

...	

...
	...	

(b)	Ring-mesh	of	single	CAs	

...
	...	

...	 ...
	

(c)	Bridge-CA	model	

...	

Figure 8.5: Model I: Single-CA systems (a) and linking them. Solid arrow points from
certificate issuer to certificate subject. Double arrow indicates CA-certificates in both
directions (i.e., cross-certificate pair). Dotted arrow indicates the trust anchor embedded
in leaf’s software. Case (b) shows that for n= 3 CAs, a ring of cross-certificate pairs (each
pair of CAs signing a certificate for the public key of the other) is the same as a complete
network (all CAs directly connected to all others). For n≥ 4, options include maintaining
a ring structure (with each CA cross-certified only with immediate neighbors in a ring
structure), or a complete network (all CAs pairwise cross-certified with all others). The
hub-and-spoke model (c) reduces the inter-connect complexity from order n2 to n.

current end-to-end secure instant messaging systems (e.g., WhatsApp Messenger). Figure
8.5 illustrates simple topologies for linking single-CA domains.

Example (Linking single-CA systems). Consider an enterprise company with three
divisions in distinct countries. Each division administers a CA for in-country employ-
ees. Each end-entity is configured to have as trust anchor its own CA’s key; see Figure
8.5(a). To enable entities of each division to trust certificates from other divisions, all
being equal trusted peers, each pair of CAs can create certificates for each other, as indi-
cated by double-arrows in Figure 8.5(b); the resulting ring-mesh of single CAs connects
the formerly disjoint single-CA systems. As the caption notes, an n = 3 ring-mesh of
CAs is a complete network, but at n = 4 CAs, the situation becomes more complex due
to combinatorics: the number of CA pairs (4 choose 2) is now 6, and as a general pattern
grows as the square of n. While direct cross-certifications between all CAs that are close
business partners may still be pursued and desirable in some cases, it comes at the cost of
complexity. This motivates an alternative: a bridge CA.

BRIDGE CA. The bridge CA trust model, also known as a hub-and-spoke model, is
an alternative for large sets of equal peers or trading partners (as demonstrated in the U.S.
Federal Bridge CA project, above). A dedicated bridge CA or hub node is introduced
specifically to reduce the cross-connect complexity. Figure 8.5(c) shows this with single-
CA subsystems; Model III’s multi-CA subsystems can likewise be bridged at their roots.
Note that the bridge CA is not a trust anchor for any end-entity (thus not a root).

MODEL II: STRICT HIERARCHY. A strict CA hierarchy is a system with multiple
CAs organized as a tree with multiple levels of CAs, typically a closed system (single
community). At the top is a single CA (depicted as the root of an inverted tree), followed
by one or more levels of intermediate CAs; see Fig. 8.6(a). CAs at a given tree level issue

226 Chapter 8. Public-Key Certificate Management and Use Cases

(a)	

Certificate	trust	models.	Strict	hierarchy	(a),	and	hierarchy	with	reverse	certificates	(b).		
Nodes	represent	certificates.	Solid	arrow	points	from	certificate	signer	to	subject.		
Double-arrow	indicates	CA-certificates	in	both	directions.	Dotted	arrow	indicates	trust	anchor.	

e3	
...	

e2	

CA2	

CA1	

e1	
...	

CA3	

Root	CA	

End-entity	
(leaf)	

Intermediate	
CA	

(a)	

e3	
...	

e2	

CA2	

CA1	

e1	
...	

CA3	

(b)	

Figure 8.6: Model II, (a) Strict CA hierarchy trust model. (b) Hierarchy with reverse
certificates. Nodes are certificates. Solid arrow points from certificate issuer to subject.
Double-arrow means CA-certificates in both directions. Dotted arrow shows trust anchor.

certificates for the public keys of CAs at the next-lower level, until at a final leaf-node
level, the keys in certificates are (non-CA) end-entity public keys. Typically, end-entities
within the community have their software clients configured with the root CA public key
as their trust anchor. A major advantage of a strict hierarchy is clearly defined trust chains
starting from the root. In figures showing both trust anchors and certifications, the visual
trust chain begins by following a dotted arrow from a leaf to a trust anchor, and then a
path of solid arrows to another leaf. As a practice example, in Fig. 8.6(a), trace out the
trust chain path from e3 to e2; then do so in Fig. 8.6(b).

HIERARCHY WITH REVERSE CERTIFICATES. A generalization of the strict hier-
archy is a hierarchy with reverse certificates. The tightly structured hierarchical design is
retained, with two major changes. 1) CAs issue certificates not only to their immediate
children CAs in the hierarchy, but also to their parent (immediate superior); these reverse
certificates go up the hierarchy. Figure 8.6(b) shows this by using double-ended arrows.
2) A leaf is given as trust anchor the CA that issued its certificate (not the root CA), i.e.,
its “local” CA, closest in the hierarchy. Trust chains therefore start at the local CA and
progress up the hierarchy and back down as necessary.

MODEL III: RING-MESH OF TREE ROOTS. Returning to the base of multiple
single-CA domains, suppose each single-CA domain is now a multi-CA system formed
as a tree or hierarchy. The distinct trees are independent, initially with no trust cross-
connects. Now, similar to connecting single-CA systems per Fig. 8.5, connect instead the
root CA nodes of these trees. As before, topologies to consider include complete pairwise
cross-connects, rings, and a bridge CA model. We collectively call these options a ring-
mesh of tree roots. The end result is a system joining multiple hierarchical trees into a trust
community by CA-certificates across subsets of their top CAs. If there are, say, 10 multi-
CA trees, a fully-connected graph with all (10 choose 2) pairs of roots cross-certifying
is possible, but in practice all such cross-certificate pairs might not be populated—e.g.,
not all 10 communities may wish to securely communicate with each other (indeed, some
may not trust each other). If root CAs are equal peers, the bridge CA topology may be
preferred. For Model III, the trust anchor configured into end-entities is often the root
key of their original tree (and/or their local CA key); from this, trust chains including
CA-certificates allow derived trust in the leaf nodes of other trees.

8.4. CA/PKI architectures and certificate trust models 227

Browser	trust	model	(b),	built	from	(a)	multiple	disjoint	hierarchical	trees.	
Solid	arrow	points	from	certificate	signer	to	subject.	Note	the	absence	of	cross-certificates.	

(a)	 CA1	

e1	

CA2	 CA3	 (b)		 CA1	

e1	

CA2	 CA3	 Trust	anchor		
list	embedded		
into	browsers		

servers		
Figure 8.7: Model IV: Browser trust model. Built from multiple disjoint hierarchical trees
(a), there are no CA cross-certificates in the browser trust model (b), and leaf certificates
are for web servers (e.g., e1). Solid arrow points from certificate signer to subject.

MODEL IV: FOREST OF HIERARCHICAL TREES (BROWSER MODEL). Starting
as in Model III with a forest of (disjoint) hierarchical trees, an alternative to joining com-
munities through cross-certificates is to use trust anchor lists (Fig. 8.7). End-entities get
as trust anchors not just a single root key, but a (typically large) set of public keys cor-
responding to a collection of root CAs. Despite no cross-certificates across the tops of
disjoint trees, an end-entity can derive trust in the leaf nodes of each tree for which it has
a trust anchor. This is the approach of the browser trust model (Section 8.5), used not to
authenticate end-users, but rather to allow users’ browsers to recognize TLS-supporting
servers; thus tree leaf nodes correspond to certificates of servers (domains).

MODEL V: DECENTRALIZED CA TRUST (ENTERPRISE PKI MODEL). This
model, also called a network PKI or mesh PKI architecture, may be viewed as putting
bottom-level CAs in control, i.e., the CAs that issue certificates to end-entities. The trust
anchor configured into an end-entity client is the public key of the CA that issued its cer-
tificate (based on reasoning that a leaf system has strongest trust affiliation with the CA
“closest” to it in a trust graph). Variations allow importing—often under system control
in an enterprise deployment—additional trust anchors or trust anchor lists. The model al-
lows cross-certificates to link PKI components and facilitates peer relationships (Fig. 8.8),

Solid	arrow	points	from	cer2ficate	Signer	to	Subject.		Cross-cer2fying	peer	departments	lower	in	the	hierarchy	may	allow	a		
finer-grained	trust	peering	than	cross-cer2fying	at	the	root.		See	text	for	further	explana2on.	

...	 ...	

company-X	

Cross-cer2fy	

company-Y	

e1	

e3	e2	

CA2	 CA3	

Dept.2	 Dept.3	

CAX	
CAY	

Leaf	
CA	

Figure 8.8: Model V: Enterprise PKI model. Cross-certifying peer departments lower in
a hierarchy allows finer-grained trust peering than cross-certifying at the root.

228 Chapter 8. Public-Key Certificate Management and Use Cases

complete networks, hierarchies, ring-meshes and bridge CAs. While not recommended,
arbitrarily complex trust graphs are allowed—albeit complexity is limited to the CA net-
work graph, whereas Model VI extends complexity further to include the end-user layer.
The useful resulting architectures are those easily understood by administrators and users.

MOTIVATION OF ENTERPRISE PKI MODEL. In practice, PKIs are often built
bottom-up, rather than fully planned before roll-out begins. Commercial products have
focused on tools suitable for use within and between corporations or government depart-
ments, i.e., enterprise products. Companies may build a PKI first within a small depart-
ment, then a larger division, then across international branches, and perhaps later wish
to extend their community to allow secure communications with trusted partner compa-
nies. Practical trust models, and associated tools and architectures, accommodate this. A
central idea is building (enlarging) communities of trust—keeping in mind that a vague
definition of trust is unhelpful. In building a PKI and selecting a trust model, a helpful
question to ask is: What is the PKI aiming to accomplish or deliver?

Example (Decentralized model: cross-certifying subsidiaries). An example of the
enterprise PKI model is for cross-certification of two subsidiaries. Consider companies X
and Y with their own strict hierarchies disjoint from each other (Figure 8.8). End-entity
clients have as trust anchor the root CA of their own company. Suppose there is a desire
for selected entities in one company to recognize some certificates from the other. Adding
root CAY of CompanyY as a trust anchor to end-entity e2 of CompanyX is a coarse-grained
solution by which e2 will recognize all certificates from CompanyY; this could likewise
be accomplished by having CAX and CAY cross-certify, but in that case it would hold
for all employees of each company (e.g., e1), not just e2. As a finer-grained alternative,
suppose the motivation stems from e2 being in a division Dept2 that has need for frequent
secure communication with Dept3 of CompanyY (as peer accounting departments). If
these divisions have their own CAs, CA2 and CA3, those CAs could cross-certify as peer
departments lower in the hierarchy. This allows e2 and e3 to trust each other’s certificates
via CA2-CA3 cross-certificates. Does e1 have a trust path to e3? Yes if end-entities have
their own tree’s root key as a trust anchor; no if end-entities only have their local CA
keys as trust anchors. CompanyX can use extension fields (Section 8.2) in the certificate
CA2 issues for CA3, to impose name, pathlength, and policy constraints (perhaps limiting
key usage to email, ruling out VPN) to limit the ability of CompanyY’s CA3 to issue
certificates that CompanyX would recognize.

Example (Decentralized model: single enterprise). Consider a single, large corpora-
tion with a deep multi-CA strict hierarchy with reverse certificates (each division has its
own CA). End-entities are configured with their local CA as trust anchor. Trust chains
between all pairs of end-entities will exist, but adding direct cross-certificates between
two divisions that communicate regularly results in shorter (simpler) chains.

MODEL VI: USER-CONTROL TRUST MODEL (WEB OF TRUST). This model has
no formal CAs. Each end-user is fully responsible for all trust decisions, including act-
ing as their own CA (signing their own certificates and distributing them), and making
individual, personal decisions on which trust anchors (other users’ certificates or public
keys) to import as trusted. The resulting trust graphs are ad hoc graphs connecting end-

8.5. TLS web site certificates and CA/browser trust model 229

entities. This is the PGP model, proposed circa 1995 for secure email among small groups
of technically oriented users, as discussed further in Section 8.7.

CA-CERTIFICATES VS. TRUST ANCHOR LISTS. To conclude this section, we note
that it has highlighted two aspects that distinguish PKI trust architectures:

1. the trust anchors that end-entity software clients are configured with (e.g., the public
keys of CAs atop hierarchies, vs. local CAs); and

2. the relationships defined by CA-certificates (i.e., which CAs certify the public keys of
which other CAs).

These aspects define how trust flows between trust domains (communities of trust), and
thus between end-users.

8.5 TLS web site certificates and CA/browser trust model

The preceding sections discussed generic aspects of certificates and PKI. We now discuss
their specific application to TLS—building on the browser trust model of Figure 8.7.

TRANSPORT LAYER SECURITY. TLS is the world’s most widely deployed security
protocol, and de facto standard means for securing web browser-server traffic. The 1994
predecessor of TLS, namely SSL, was designed for use with HTTP (to facilitate HTTPS),
but also with the intent that almost any protocol using TCP could be easily modified to be
run “over” TLS/SSL to add security. By 2000, SSL had already been used to add security
to FTP (file transfer), SMTP (email), telnet (remote terminals) and LDAP (directory ac-
cess). TLS/SSL had two original security goals: encryption of traffic between endpoints
(confidentiality), and server authentication (through public-key certificates) to help assure
that, e.g., a credit card number went to an intended server. From the outset, TLS also
supported certificate-based client authentication (but this remains little used).

“TRUSTED” CERTIFICATE. The term trusted certificate means that a browser, or
other client as a relying party, carries out certificate validation checks (Section 8.2) and
concludes that from its viewpoint, the certificate is valid. A certificate trusted by one
relying party might not be trusted by another (and might not be trustworthy).

GRADES OF TLS CERTIFICATES. As discussed (Section 8.1), before issuing a
certificate, a CA should demand proof of knowledge of the requesting party’s private key,
and for TLS, test control or ownership of a domain or domain name. Whether and how
a CA confirms the natural-world name of an organization results in three quality-related
grades of TLS server certificates as follows, in increasing order of CA due diligence.

DV CERTIFICATES. For Domain Validated (DV) certificates, the Subject is vali-
dated minimally by demonstration of administrative control of the domain, e.g., the ability
to respond to an email sent to a designated domain account (such as admin@domain.com),
or the ability to publish a CA-specified string in a DNS domain record. No assurance is
provided that the requesting party is associated with any real-world entity. DV certificates
are inexpensive (e.g., $10–$50, or even free), and their issuance is often fully automated.

230 Chapter 8. Public-Key Certificate Management and Use Cases

OV CERTIFICATES. Obtaining an Organization Validated (OV) certificate requires
demonstration of domain control plus the requesting party passing further manual checks
(e.g., confirmation of a claimed street address and organization business name), depend-
ing on a CA’s Certificate Practice Statement (CPS) specifying the policy it operates under.
The CA may cross-check a claimed business name with a commercial database (e.g., Dun
& Bradstreet’s list of 300 million businesses) and call-back to a publicly listed phone num-
ber from such a database. Browsers relying on OV certificates may display organization-
related information to users who seek certificate-related information. Software can extract
information from the certificate Subject field, whose populated subfields may include
as noted earlier, e.g., Common Name, Organizational Unit, Organization, and Country.
Most end-users notice no difference between DV and OV certificates (any differences in
browser cues may be too obscure or not understood, as discussed further in Section 9.8).

EV CERTIFICATES. Extended Validation (EV) certificates were motivated by loss
of confidence after low-assurance DV certificates emerged—for example, browser-trusted
DV certificates from phishing sites result in the same visual assurances to end-users as
do DV certificates from non-phishing sites, e.g., a TLS closed-lock icon in browser URL
bars. Before issuing an EV certificate, the issuing CA is expected to manually verify:
1. the real-world existence of the legal entity named as Subject;
2. the registration of an associated organization in government-recognized databases;
3. a physical, operational existence matching the location indicated in the certificate;
4. the requesting individual’s identity and their authority to represent the organization;
5. exclusive control of the specified domain name.
The Subject DN must be fully qualified (wildcard domains like *.google.com are dis-
allowed in EV certificates). An X.509v3 extension field Certificate-Policies is used,
and includes a CA-specific policy object identifier (OID) and a URL pointing to a Cer-
tificate Practice Statement; the policy requires “timely” responses to browser revocation
checks, among other things. The CA registers the OID with browser vendors as its EV
identifier. On receiving an EV certificate from a visited site, the browser checks that the
EV OID therein matches that pre-registered by the CA.

IV CERTIFICATES. In addition to DV, OV and EV grades, IV certificates (Individual
Validated) are those that a user has chosen to accept (e.g., self-signed certificates, Section
8.2) despite not being recognized by their client software’s trust anchors.

‡Exercise (ACME DV certificates). To remove cost and complexity barriers related to
acquiring TLS server certificates, the Let’s Encrypt service provides free automated web
site certificates using ACME, a standardized certificate issuance protocol. a) Describe the
roles of the following ACME components: accounts, orders, authorizations, challenges.
b) Describe three types of challenges suitable to verify control of a domain. (Hint: [34].)

‡CA/BROWSER FORUM AND EV CERTIFICATES. The CA/Browser Forum is a
voluntary industry association of CAs and browser vendors with joint interests in TLS
certificates. It governs operational practices for issuing EV certificates, and also publishes
guidance for issuing and managing non-EV certificates. EV guidelines require that CAs
publish operational policies; conformance is third-party audited. However, without better

8.5. TLS web site certificates and CA/browser trust model 231

Figure 8.9: Intermediate CA EV certificate (Chrome 56.0.2924.87 browser). The URL
bar displays organization details “Paypal, Inc. [US]” of the server site between the lock
icon and “https:”. The grey-highlighted “Symantec Class 3 EV SSL CA - G3” shows this
as the middle of three certificates in a chain; further detail notes this is an “Intermediate
certificate authority”. When imaged, these details were viewed from the pulldown menu
View→Developer→DeveloperTools→[View Certificate→Details].

means in browsers to effectively communicate the differences between EV and (OV, DV)
certificates, it remains unclear what added value EV certificates deliver to users. This is
discussed further in Section 9.8, along with the challenge of conveying to users the pres-
ence of EV certificates. For example (Fig. 8.9) on browser user interfaces, EV certificates
may result in the URL bar/lock icon being colored differently (this varies by browser, and
over time) and the URL bar displaying a certificate Subject’s name and country.

SELF-SIGNED TLS SERVER CERTIFICATES. Self-signed TLS certificates were
once common (before free DV certificates became popular); non-commercial sites often
preferred to avoid third-party CAs and related costs. Over time, browser dialogues were
reworded to discourage or entirely disallow this (recall Fig. 8.3, page 219). Relying on
self-signed certificates (and/or blind TOFU) should be strongly discouraged for non-leaf
certificates, due to trust implications (private keys corresponding to CA certificates can
sign new certificates). However, this method has been used for distributing email client
leaf certificates (incoming email offers a sender’s encryption and signature public keys).

232 Chapter 8. Public-Key Certificate Management and Use Cases

Example (Number of TLS CAs). A March 2013 Internet study observed 1832 browser-
trusted CA signing certificates, including both trust-anchor CA and intermediate-CA cer-
tificates, associated with 683 organizations across 57 countries [14].

Exercise (Self-signed certs). Build your own self-signed certificate using a popular
crypto toolkit (e.g., OpenSSL). Display it using a related certificate display tool.

Exercise (Domain mismatch). Discuss practical challenges related to domain mis-
match errors, i.e., checking that the domain a browser is visiting via TLS matches a suit-
able subfield of a certificate Subject or Subject-Alternate-Name (hint: [51]).

Exercise (CA compromises). Look up and summarize the details related to prominent
compromises of real-world CAs (hint: [3]).

Figure 8.10: General tab, TLS site certificate (Firefox 55.0.1 UI). The UI tool, un-
der Issued To, displays the certificate Subject with subfields CN (giving domain
name www.amazon.com), O and OU; compare to Figure 8.11. Issued By indicates the
certificate-signing CA. Under Fingerprints are the hexadecimal values of the certificate
hashed using algorithms SHA-256 and SHA1, to facilitate a manual security cross-check.

BROWSER INTERFACE DIALOGUES ON CERTIFICATES. Information related to
TLS certificates can be found, e.g., by clicking on the closed-lock icon in a browser URL
bar. Figure 8.3 shows a warning dialogue on encountering an (untrusted) self-signed site
certificate. Figure 8.10 gives high-level information about a site certificate. Figure 8.11
gives detailed information; the interface allows exploration of the certificate chain.

BROWSER TRUST MODEL ISSUES. It is well recognized that the traditional browser
trust model has major vulnerabilities—many due to a base design flaw that allows any CA
to issue a certificate for any domain. This gives all trust anchors equal power to commit

8.5. TLS web site certificates and CA/browser trust model 233

Figure 8.11: Details tab, TLS site certificate (Firefox 55.0.1). The Certificate Hierarchy
segment displays the certificate chain. As the user scrolls through the middle portion to
access additional fields, a selected field (“Issuer” here) is highlighted by the display tool
and its value is displayed in the lower portion. Notations OU (organizational unit), O
(organization), and C (country) are remnants of X.500 naming conventions.

a browser to trust any web site. We define a rogue certificate as one created fraudulently,
not authorized by the named Subject (e.g., created by an untrustworthy CA or using the
private key of a compromised CA). A list of main limitations follows.

1. Rogue certificates are accepted (sometimes called certificate substitution attacks). They
are deemed valid by all browsers housing a corresponding CA public key as a trust an-
chor. The trust model is thus fragile, in that regardless of the strength of other CAs,
the entire system can be undermined by a single rogue CA (weak link) that gains the
endorsement of a trust anchor CA. This violates principle P13 (DEFENSE-IN-DEPTH).

2. TLS-stripping attacks are easily mounted. Here a legitimate server signal to a browser
to upgrade from HTTP to HTTPS, is interfered with such that no upgrade occurs. Data
transfer continues over HTTP, without cryptographic protection. One solution is to
eliminate HTTP entirely, mandating HTTPS with all sites; this suggestion is not popular
with sites that do not support HTTPS. A related option is mechanisms that force use of
HTTPS whenever a browser visits a site that supports it; a browser extension pursuing
this option is aptly called HTTPS Everywhere. Vulnerability to TLS stripping may be
viewed as breaking P2 (SAFE-DEFAULTS), as the current default is (unsecured) HTTP.

3. Revocation remains poorly supported by browsers. When revocation services are un-
available, browsers commonly proceed as if revocation checks succeeded. Such “fail-

234 Chapter 8. Public-Key Certificate Management and Use Cases

ing open” contradicts P2 (above), and also violates P4 (COMPLETE-MEDIATION).

4. Trust agility is poorly supported. This refers to the ability of users to alter trust anchors.
Most users actively rely on few trust anchors; browser and OS vendors commonly
embed hundreds. This violates principle P6 (LEAST-PRIVILEGE) as well as principle
P17 (TRUST-ANCHOR-JUSTIFICATION), and is particularly dangerous as certificate
chaining then transitively extends (false) trust in one trust anchor to many certificates.

5. Intermediate CAs are unaccountable. An intermediate CA issued a certificate by a
rogue CA can also create rogue site certificates. Detecting rogue certificates is com-
plicated by intermediate CAs being largely invisible to users. The resulting lack of
accountability (P14, EVIDENCE-PRODUCTION) enables compelled certificate attacks,
whereby a CA is coerced, by shady organizations governing or regulating them, to
issue intermediate CA certificates to facilitate surveillance via middle-person attacks.

As a case study of flaws in a system in use for 25 years, these issues remain useful to
understand, even should they be resolved by future alterations of the browser trust model.

‡Exercise (Public log of TLS certificates). Certificate Transparency (CT) is among
promising proposals to address limitations of the CA/browser trust model. The idea is to
require that all certificates intended for use in TLS must be published in a publicly ver-
ifiable log. (a) Summarize the technical design and advantages of CT over mainstream
alternatives (hint: [31]). (b) Summarize the abstract technical properties CT aims to de-
liver (hint: [13]). (c) Summarize the findings of a deployment study of CT (hint: [48]).

‡Exercise (DANE certificates). As an alternative to CA-based TLS certificates, cer-
tificates for TLS sites (and other entities) can be distributed by association with DNS
records and the DANE protocol: DNS-based Authentication of Named Entities. Describe
how DANE works, and its relationship to DNSSEC (hint: [22]).

‡Exercise (Heartbleed incident). Standards and software libraries allow concentration
of security expertise on critical components of a software ecosystem. This also, however,
concentrates risks. As a prominent example, the Heartbleed incident arose due to a sim-
ple, but serious, implementation flaw in the OpenSSL crypto library. Give a technical
summary of the OpenSSL flaw and the Heartbleed incident itself (hint: [15]).

‡Exercise (CDNs, web hosting, and TLS). Content delivery networks (CDNs), in-
volving networks of proxy servers, are used to improve performance and scalability in
delivering web site content to users. They can also help mitigate distributed denial of ser-
vice (DDoS) attacks through hardware redundancy, load balancing, and isolating target
sites from attacks. When CDNs are used to deliver content over HTTPS, interesting is-
sues arise, and likewise when web hosting providers contracted by web sites must deliver
content over HTTPS. Explore and report on these issues, including unexpected private-key
sharing and use of cruiseliner certificates (hint: [32, 8]).

‡Exercise (TLS challenges in smartphone and non-browser software). Discuss certifi-
cate validation challenges (and related middle-person attacks) in use of TLS/SSL by: (a)
smartphone application software (hint: [16]); and (b) non-browser software (hint: [20]).

8.6. Secure email overview and public-key distribution 235

8.6 Secure email overview and public-key distribution

In end-to-end secure email, messages are encrypted and digitally signed on the originating
user’s device, with verification and decryption at the recipient’s device. Among long-
standing barriers to its wide deployment are key management of one’s own certificates and
private keys, and acquisition of trustworthy public keys of others. Secure email played a
large role in developing PKI and certificate management technology and standards (even
before TLS existed). Three technologies have stood out:

1. PEM (Privacy-Enhanced Mail). With a one-root PKI hierarchy, PEM is of historic and
technical interest as the first comprehensive secure email effort (circa 1990-1995).

2. PGP (Pretty Good Privacy). With ad hoc trust management for highly technical users,
PGP’s 1991 design suits private individuals and relatively small, static groups.

3. S/MIME. Secure MIME, when used with centralized certificate management, is suit-
able for enterprise users, e.g., government departments and corporations.

Section 8.7 discusses their details further, after a generic overview of secure email here.
EMAIL TRANSPORT. A mail user agent (MUA) transfers mail to the originating

user’s sending mail server or mail submission agent (MSA). The domain from a recipi-
ent’s email address is used to locate, via DNS, the recipient’s mail delivery agent (MDA).
The message is transferred to this MDA via one or more mail transfer agents (MTAs)
using the simple mail transfer protocol (SMTP). The recipient’s MUA (mail client) re-
trieves the message from this MDA by a message retrieval protocol—either a proprietary
or a standard protocol such as IMAP (often used to manage mail from multiple devices)
or POP3 (which supports deleting server-based copies after retrieval). These protocols al-
low mail storage on servers, clients, or both—thus end-to-end secure email designs must
consider whether to store delivered email in plaintext, or encrypted (and if so, whether to
re-encrypt by means independent of mail transport encryption). See Figure 8.12.

Ch.8.		Mail	transfer	model.	The	mail	submission	agent	(MSA)	may	be	combined	with	an	MTA.		

sending	
mail	client	

MUA	

	
MSA	
		

	
MTA	
		

	
MTA	
		

	
MDA	
		

MUA	

outgoing		
mail	server	

receiving	
mail	client	

incoming	
mail	server	

SMTP	

Figure 8.12: Mail transfer model. The MSA may be combined with MTA functionality.

MESSAGE STRUCTURE: REGULAR EMAIL. Mail transport standards define mes-
sage envelope and content sections. How mail clients (MUAs) display mail to users
is a separate matter. The envelope contains fields used during transmission, e.g., mes-
sage transport details, timestamps from MTAs, and path-related information. The content
section—what the user requests be delivered—includes a header section (with fields such
as From, To/CC, Date, Subject) and a message body, separated by a blank line.

MESSAGE STRUCTURE: SECURE EMAIL. A main goal in designing a message
structure supporting end-to-end secure email is backwards compatibility and interoper-
ability with existing transport systems and mail clients. To this end, security-specific
functionality is typically restricted to the content section—inserting, for example, a new

236 Chapter 8. Public-Key Certificate Management and Use Cases

Ch.8.	Schema+c	of	secure	email	message	(conceptual).	Security	headers	allow	decryp+on	

and	signature	verifica+on.	

K1-keyID	iden+fies	the	recipient’s	cer+ficate	or	key	(same	2	op+ons	as	for	signedData).	

Per-recipient	key	packages	may	include	addi+onal	keying	material	from	sender	in	the	case	

of	key	agreement.			%	encrypt-algID	includes	any	encrypt	parameters	(e.g.,	IVs)	

%	source:	pvo	from	scratch,	cross-checked	then	with	Housely	rfc5652	(CMS)	

per-recipient	

key	packages	content	
header	

rou+ng	
envelope	

From:	

Subject:	

plaintext	digitally	signed	

MAIL	FROM:	

content	
body	

insert	
security	headers	

encryp+on	info	

signature	info	

hash-algID,	

signing-algID,		

signing-keyID,		

signer-cer+ficate	

R1	R2	
R3	

EK1
(k),	K1-keyID	

signature	(body	
symmetrically		
encrypted	with		
message	key	k)	

encrypt-algID	

Figure 8.13: Schematic of secure email message (conceptual). Security headers allow
decryption and signature verification. K1-keyID identifies the first recipient’s certificate
or public key, e.g., via the serial number of a certificate issued by a specified CA. The
key transport case is shown; per-recipient key packages may include additional keying
material from the sender, in the case of (e.g., Diffie-Hellman) key agreement.

interior security header section providing meta-data to support signature verification and
mail decryption. If encoded suitably (i.e., using printable characters), legacy (plaintext-
only) clients can then display the interior security header and encrypted body as labeled
fields followed by meaningless, but printable, ASCII characters. Commonly, the sending
client uses a symmetric key k (message key) to encrypt the plaintext body. The plain-
text body (plus content header) is also hashed and digitally signed. The security header
includes fields providing (Fig. 8.13):

• for each recipient Ri, a copy of k encrypted under Ri’s public key Ki, plus data identi-
fying Ki (for Ri’s client to find its package, and identify its decryption private key);

• an identifier for the symmetric encryption algorithm used, plus any parameters;

• the sender’s digital signature, plus an identifier of the signing algorithm; and

• an identifier of the sender’s public key to verify the signature (optionally also, a cer-
tificate containing the public key, and/or a chain of certificates).

It is common to include a copy of k encrypted under the sender’s own Ki, allowing senders
to decrypt stored copies of sent messages. While many key management issues here mir-
ror those in TLS, differences arise due to email’s store-and-forward nature (vs. real-time
TLS); one challenge is acquiring a recipient encryption public key for the first encrypted
mail sent to that party. We next consider two options for public-key distribution, i.e.,
distributing (acquiring) public keys of the intended recipient (encryption public key) and
sender (signature verification public key). Note that a relying party’s trust in such a key
differs from their possession of it, and is enabled by different PKI trust models.

CENTRALIZED PUBLIC-KEY DISTRIBUTION. Whereas Chapter 4 discussed key
distribution using symmetric-key techniques, here we mention two methods for distribu-
tion of public keys (as in Chapter 4, a centralized model avoids the “n2 key distribution”
issue). In typical security applications using public keys, each of n end-parties has at
least one public-private key pair, to facilitate authentication (signatures) and/or key es-
tablishment with other parties, e.g., to set up session keys or, in our present application,

8.6. Secure email overview and public-key distribution 237

Centralized	distribu/on	of	public	keys.		Op/ons	include	a	public	key	server	and	a	cer/ficate	directory.			

In	(a)	data	retrieved	from	the	server	is	secured	by	a	MAC,	using	pairwise	keys.	

In	(b),	CA-signed	cer/ficates	need	not	be	further	secured	when	retrieved	from	a	directory.		

(a)	

(b)	Stage	1:	set	up	cer/ficates.	Stage	2:	put	certs	in	directory.	Stage	3:	look	up	certs	in	directory.	

(b)	Cer/ficate	directory	(a)	Public-key	server	

									

																	retrieve	

									(public	key,	

								owner-ID)	

															pairs	

retrieve	

			(public	key,	

						owner-ID)	

										pairs	

									Retrieve	

		cer/ficates	

msg	

	

Server:		K
AS	

,	K
BS
	
	

	
	

	

Server
	

	
	

	

K
AS	

,	K
BS
	
	

	
	

	

Dir
	

	
	

	

populate	

directory	

Alice:		K
AS
	
	

Alice	
	K

AS
	
	

Bob
	 K

BS
	
	

Alice	
	

CA	public	key	
	

Bob
	

	

CA
	

	
	

CA	public	key	
	built	using	

Bob’s	public	key	

Retrieve	

			cer/ficates	

msg	

built	using	

Bob’s	public	key	

Figure 8.14: Centralized distribution of public keys. (a) Public-key server. Pairs (key,
ownerID) are retrieved in real time from a trusted server, secured by session-key MACs;
see related discussion of Method V on page 223. (b) Certificate directory. Signatures on
certificates replace the need for a trusted channel.

per-message email keys. The first option for acquiring the public key of another party uses
an online trusted public-key server (Fig. 8.14a). End-parties retrieve from it in real time,
immediately before each communication session, <public key, ownerID> pairs integrity-
protected by a session key shared between server and end-party. The server is like a KDC
(Chapter 4), but now distributes public keys.

CERTIFICATE DIRECTORY. The second option involves a repository (certificate di-
rectory) of CA-signed certificates (Fig. 8.14b). Public keys may now be retrieved at any
time; each party acquires from the CA a certificate for its own public key(s) at registra-
tion. Certificates are made available to other end-parties by a subject directly, or via the
directory. Directories themselves need not be trusted, as trust in the public keys delivered
stems from the verification of signatures on certificates; corresponding private keys are
held by end-parties, not the directory or CA. An end-party that is to rely on the public
key in a certificate requires an authentic copy of the public key of the CA that signed the
certificate, or a certificate chain connecting the certificate to a trust anchor. Returning
to our email application, an email sender needs, as initial material to encrypt email for a
recipient, the recipient’s encryption public key. For such store-and-forward protocols, this
public key can be obtained from the directory, or by earlier email or out-of-band means
(for real-time communications protocols, a certificate can be delivered in-protocol). Since
a signature verification public key is not required until a recipient receives email, a certifi-
cate providing this public key can be sent with the email itself.

‡PROS AND CONS OF CERTIFICATES. Use of certificates may facilitate audits of all
public keys ever associated with an end-party, should anyone question server trustworthi-
ness. As a disadvantage, using a certificate some period after creation raises the issue of
whether its public key remains valid when used, thus requiring certificate revocation in-
frastructure (Section 8.3). Certificate validation also requires (Section 8.2) checking that a
certificate’s Subject maps to an intended entity; this can be tested by software if a precise
domain name (e.g., from the URL bar) or email address is known, but, e.g., a mail client

238 Chapter 8. Public-Key Certificate Management and Use Cases

can make no decision given only an asserted ID name@domain.com, if the user is unsure
of the address; an analogous issue exists with key servers (cf. ownerID, Fig. 8.14a).

Exercise (Cleartext header section). A typical end-to-end secure email design (Fig.
8.13) leaves the content header unencrypted. What information does this leave exposed to
eavesdroppers? What are the obstacles to encrypting the content header section?

Exercise (Order of signing and encrypting). Commercial mail products may first
compute a digital signature, and then encrypt both the signature and content body. What
advantage does this offer, over first encrypting the body and signing afterwards?

‡FURTHER CONTEXT. In contrast to end-to-end secure email, common browser-
based mail clients (webmail interfaces) use TLS link encryption between users and mail
servers, but the message body is then available as cleartext at various servers. End-to-end
secure email deployment is complicated by mailing lists and mail forwarding; these are
beyond our scope, as is origin-domain authentication used by mail service providers.

‡END-TO-END ENCRYPTION VS. CONTENT SCANNING. Various measures are
used by mail service providers to combat spam, phishing, malicious attachments (in-
cluding executables that users may invoke by double-clicking), and embedded malicious
scripts (which some MUAs that support HTML email automatically execute). As end-
to-end encryption renders plaintext content inaccessible to mail-processing servers, this
precludes content-based malware- and spam-detection by service providers. While key
escrow architectures can provide plaintext access at gateway servers, e.g., by retrieving an
escrowed copy of the mail originator’s decryption private key, costs include performance,
defeating end-to-end encryption, and risks due to added complexity and attack surface.

8.7 ‡Secure email: specific technologies

We now discuss three end-to-end secure email technologies: S/MIME, PEM, and PGP.
S/MIME. Secure Multipurpose Internet Mail Extensions (S/MIME) is a suite of stan-

dards for end-to-end secure mail compatible with existing mail transport protocols. It uses
X.509v3 certificates and a centralized trust model, with trust in public keys determined by
CA signatures on certificates and the trust anchors configured in (or used by) mail clients.
Enterprise deployments typically rely on certificate directories (Fig. 8.14b), e.g., using
LDAP as the access protocol. Mail clients are relied on, as usual, to map recipient names
to email addresses; LDAP queries then return certificates. CAs are relied on to make re-
vocation information available for certificates they issue. Mail can only be encrypted for
recipients having encryption public keys, and when these are available to senders. Signed-
only email can be read by regular mail clients that support MIME—the S/MIME detached
signatures mode conveys signature data in a separate MIME part of a multipart/signed
message. Most mail products targeting enterprise markets support S/MIME.

SECURE EMAIL IN CLOSED COMMUNITIES. S/MIME has been successfully de-
ployed in closed communities (e.g., large corporations and governments). Internal staff
may dictate the mail clients used (supporting S/MIME and management of user certifi-
cates and private keys), help employees acquire and install certificates, and configure

8.7. ‡Secure email: specific technologies 239

clients with trust anchors matching enterprise policy, and with access to suitable certifi-
cate directories. Enterprise PKI trust models (Section 8.4) facilitate trust with similarly
configured peer organizations. This leaves unaddressed secure communication with users
beyond the closed community. Making public keys available, e.g., by inclusion in earlier
cleartext email, does not resolve whether keys can be trusted—that depends on CA/PKI
models and trust anchors. In contrast, open communities have users with widely varying
requirements, and no small set of CAs is naturally trusted by all; thus a one-size-fits-all
solution is elusive. One option is to continue with plaintext email. A second is to mi-
grate outsiders into the closed community—but by definition, a closed community does
not contain everyone. A third option is ad hoc trust management (PGP, below).

PEM (PRIVACY-ENHANCED MAIL). The first major secure email effort began in
1985. PEM used X.509 certificates and a hierarchy with one root, the Internet PCA Reg-
istration Authority (IPRA), issuing certificates starting all certificate chains. The IPRA
public key was embedded in all PEM mail clients. Below this root CA at hierarchy
level two, Policy CAs (PCAs) operating under designated policies issued certificates to
intermediate CAs or directly to end-users—e.g., high-level assurance PCAs (for enter-
prise users), mid-level assurance PCAs (for educational users), residential PCAs (for pri-
vate individuals), and persona PCAs (for anonymous users). PEM clients were trusted
to retrieve—from local caches or directories—and verify user certificates corresponding
to email addresses. A CRL-typed mail message delivered CRLs, with PCAs responsible
for revocation information being available. Subject distinguished names (DNs) followed
the CA hierarchy (i.e., DNs were subordinate to the issuing CA’s name), restricting the
name space for which each CA was allowed to issue certificates. PEM was superseded by
S/MIME.

PGP: CONTEXT. Released as open-source file encryption software in 1991, PGP’s
primary use is for end-to-end secure email. It was motivated by a desire to empower
individuals in opposition to centralized control, and against the backdrop of (old) U.S.
crypto export controls. Its complicated evolution has included intentional message format
incompatibilities (driven by patent license terms), algorithm changes to avoid patents,
corporate versions, IETF-standardized OpenPGP, and later implementations (e.g., Gnu
Privacy Guard/GPG). Despite confusion on what “PGP” means (e.g., a message format,
format of public keys, trust model, company), and recent PGP implementations pursuing
interoperability with X.509 certificates, its core concepts remain an interesting case study.

PGP: CORE CONCEPTS. Core PGP avoids CAs and X.509 certificates. Instead it
uses a PGP key-packet (bare public key), which, when associated by client software to a
userID (username and email address), is a lightweight certificate (unsigned). A collection
of one or more keys is a keyring. A public keyring holds public keys; a private keyring
holds a user’s own private keys, individually encrypted under a key derived from a user-
chosen passphrase. PGP’s preferred method for one user to trust that a public key belongs
to another is an in-person exchange of keys (originally by floppy disk); the user then has
their client software tag the key-packet as trusted. Publishing a hexadecimal hash string
corresponding to a PGP public key on a business card or web site, or relaying this by
phone, would facilitate cross-checking. As this scales poorly, trusted introducers were

240 Chapter 8. Public-Key Certificate Management and Use Cases

added: if Alice designates Tom as a trusted introducer, and Tom endorses Bob’s key-
packet, Alice’s client will trust Bob’s key-packet also. Users configure their client to
designate trusted introducers as fully or partially trusted; e.g., a key-package, to be client-
trusted, must be endorsed by one fully trusted or two partially trusted introducers. Trusted
introducers thus serve as informal end-user CAs. The PGP web of trust results.

PGP TRANSFERABLE KEYS. To help client software manage PGP key-packets (bare
keys), they are accompanied by further fields creating transferable public keys. The bare
key is followed by one or more userID packets each followed by zero or more signa-
ture packets (endorsements attesting the signer’s belief that the public key belongs to the
userID). Thus transferable public keys reconstruct the basic idea of X.509 certificates, re-
placing the signature of a centralized CA with possibly multiple endorsements of various
end-users. Users are encouraged to upload transferable public keys to PGP keyservers
hosting public keyrings of such keys; the trust placed in such keys by others depends on
how PGP clients of downloading users are locally configured to evaluate endorsements.

PGP ISSUES. PGP’s core architectural design reflects its original objectives, but is
not expected to match secure email requirements in general. Challenges include these:

1. The manual exchange of public keys, and ad hoc web of trust, do not scale to larger
communities. (Ironically, as an initial deployment advantage, a small closed group can
get started with manual key distribution without needing to first set up a heavyweight
infrastructure.)

2. User management of trust requires technical expertise that ordinary users lack, includ-
ing the ability to distinguish between trusting a key for personal use, endorsing keys
for other users, and designating trusted introducers in PGP clients.

3. The non-centralized model leaves revocation of PGP keys unresolved. Users are re-
sponsible for communicating key revocation to all others possibly relying on their key
(including through trusted introducers), yet there appears no reliable means to do so.

4. Poor usability, in part due to lack of seamless integration into popular email clients,
has impeded mainstream acceptance and deployment of PGP functionality.

SECURE EMAIL STATUS IN PRACTICE. Email continues to be a dominant commu-
nication tool, despite ubiquitous use of popular messaging applications, and older text-
messaging technology. End-to-end secure email, however, enjoys comparatively little
public deployment, due to multiple factors. Competing email technologies result in in-
teroperability and deployment problems. Certificate and key management tools fall short
on both usability and availability, particularly in open communities lacking enterprise ex-
pertise and administration. Stalemates appear unresolvable between stakeholders with
incompatible priorities—e.g., those of law enforcement vs. privacy enthusiasts, and tra-
ditional end-to-end encryption at odds with email service providers’ desire for access to
message content for malware and spam filtering. Adoption of webmail services (vs. older
client-based mail) is another complication. While it appears unlikely that all barriers to
wide use of end-to-end secure email will disappear, its history remains among the most
interesting case studies of real-world adoption of secure communication technologies.

8.8. ‡End notes and further reading 241

8.8 ‡End notes and further reading

For authoritative treatments of X.509 certificate-related security, PKI architecture and
trust models, see Housley [24] (including the U.S. Federal Bridge CA project) and Adams
[2]; see also Kaufman [27] and Menezes [35, Chapter 13]. RFC 5280 [10] specifies In-
ternet profiles for X.509v3 certificates and CRL mechanisms. Baseline standards ITU-T
X.509:2000 and ISO/IEC 9594-8:2001 specify that the name constraints extension should
be marked critical; RFC 5280 mandates this. For OCSP, see RFC 6960 [44]. RFC 6066
by Eastlake specifies TLS extensions for OCSP-stapling, and for server name indication
(SNI) to allow clients connecting to an address hosting multiple (virtual) servers to spec-
ify the name of the intended server, and thus be sent the relevant server certificate. For
the PKIX Certificate Management Protocol (CMP), see RFC 4210 [1]. Additional mech-
anisms support certificate revocation: indirect CRLs, redirect CRLs, certificate revocation
trees (CRTs), and others [36, 2].

For EV certificate guidelines, see documents from the CA/Browser forum [5, 6]. Fig-
ure 8.4’s revocation timeline is based on Just [26]. For the efficacy of various textual and
graphical representations for comparing key fingerprints, see Tan [49]. For analysis of
using leap-of-faith trust (TOFU) including in SSH, see Pham [41]. Related to TOFU, for
key continuity management (in S/MIME), see Garfinkel [19].

For TLS/SSL history, see Rescorla [42]. TLS 1.3 [43] was more redesign [40] than
revision of TLS 1.2 [12]. Clark [9] summarizes challenges with HTTPS and its certificate
trust model; Liu [33] measures web PKI support for revoking TLS certificates. Larisch
[30] proposes a method for pushing such revocations to browsers. The TLS Heartbleed
incident revealed an inability to handle massive-scale TLS certificate revocations [52, 15].
Saghoian [47] discusses compelled certificates. Liang [32] and Cangialosi [8] discuss how
content distribution networks (CDNs) and site host providers interact with TLS. Kranch
[29] explores addressing TLS stripping by HTTPS strict transport security (HSTS, RFC
6797) and rogue certificates by public key pinning.

Orman [39] summarizes technical challenges in implementing S/MIME and PGP; see
also Kaufman [27], including for S/MIME-based Lotus Notes and insights on PKI, and
Zurko [55] on usability in Notes. Garfinkel [17] includes suggestions for bootstrapping
key distribution in S/MIME. S/MIME uses the Cryptographic Message Syntax (CMS)
of RFC 5652 [23]; for S/MIME v4.0 see RFCs 8550 and 8551 [45, 46] (cf. RFC 2634
[21]). For PEM, see Kent [28]. For PGP, the original definitive reference is Zimmermann
[53]; see also Garfinkel [18], RFC 4880 [7] for OpenPGP message formats (also https:
//www.openpgp.org/), comments from Vaudenay [50, §12.4], and more recent views of
proponents [54].

https://www.openpgp.org/
https://www.openpgp.org/

References (Chapter 8)

[1] C. Adams, S. Farrell, T. Kause, and T. Mononen. RFC 4210: Internet X.509 Public Key Infrastructure
Certificate Management Protocol (CMP), Sept. 2005. Standards Track; obsoletes RFC 2510; updated
by RFC 6712.

[2] C. Adams and S. Lloyd. Understanding Public-Key Infrastructure (2nd edition). Addison-Wesley,
2002.

[3] A. Arnbak, H. Asghari, M. van Eeten, and N. V. Eijk. Security collapse in the HTTPS market. Comm.
ACM, 57(10):47–55, 2014.

[4] R. Barnes, J. Hoffman-Andrews, D. McCarney, and J. Kasten. RFC 8555: Automatic Certificate Man-
agement Environment (ACME), Mar. 2019. Proposed Standard.

[5] CA/Browser Forum. Baseline requirements for the issuance and management of publicly-trusted cer-
tificates. Version 1.5.6, 5 February 2018. https://cabforum.org.

[6] CA/Browser Forum. Guidelines for the issuance and management of Extended Validation certificates.
Version 1.6.8, 21 December 2017 (effective 9 March 2018). https://cabforum.org.

[7] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer. RFC 4880: OpenPGP Message Format,
Nov. 2007. Proposed Standard; obsoletes RFC 1991, RFC 2440.

[8] F. Cangialosi, T. Chung, D. R. Choffnes, D. Levin, B. M. Maggs, A. Mislove, and C. Wilson. Measure-
ment and analysis of private key sharing in the HTTPS ecosystem. In ACM Comp. & Comm. Security
(CCS), pages 628–640, 2016.

[9] J. Clark and P. C. van Oorschot. SoK: SSL and HTTPS: revisiting past challenges and evaluating
certificate trust model enhancements. In IEEE Symp. Security and Privacy, pages 511–525, 2013.

[10] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk. RFC 5280: Internet X.509
Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile, May 2008. Pro-
posed Standard; obsoletes RFC 3280, 4325, 4630; updated by RFC 6818 (Jan 2013). RFC 6211 explains
why the signature algorithm appears twice in X.509 certificates.

[11] L. F. Cranor and S. Garfinkel, editors. Security and Usability: Designing Secure Systems That People
Can Use. O’Reilly Media, 2005.

[12] T. Dierks and E. Rescorla. RFC 5246: The Transport Layer Security (TLS) Protocol Version 1.2, Aug.
2008. Proposed Standard; obsoletes RFC 3268, 4346, 4366.

[13] B. Dowling, F. Günther, U. Herath, and D. Stebila. Secure logging schemes and Certificate Trans-
parency. In Eur. Symp. Res. in Comp. Security (ESORICS), 2016.

[14] Z. Durumeric, J. Kasten, M. Bailey, and J. A. Halderman. Analysis of the HTTPS certificate ecosystem.
In Internet Measurements Conf. (IMC), pages 291–304, 2013.

[15] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer, N. Weaver, D. Adrian, V. Paxson,
M. Bailey, and J. Halderman. The matter of Heartbleed. In Internet Measurements Conf. (IMC), 2014.

[16] S. Fahl, M. Harbach, T. Muders, M. Smith, L. Baumgärtner, and B. Freisleben. Why Eve and Mallory
love Android: An analysis of Android SSL (in)security. In ACM Comp. & Comm. Security (CCS),
pages 50–61, 2012.

242

https://cabforum.org
https://cabforum.org

References (Chapter 8) 243

[17] S. Garfinkel. Using S/MIME. Pages 563–593 in [25], 2006.

[18] S. Garfinkel. PGP—Pretty Good Privacy. O’Reilly Media, 1995.

[19] S. L. Garfinkel and R. C. Miller. Johnny 2: A user test of key continuity management with S/MIME
and Outlook Express. In ACM Symp. Usable Privacy & Security (SOUPS), pages 13–24, 2005.

[20] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and V. Shmatikov. The most dangerous code
in the world: Validating SSL certificates in non-browser software. In ACM Comp. & Comm. Security
(CCS), pages 38–49, 2012.

[21] P. Hoffman. RFC 2634: Enhanced Security Services for S/MIME, June 1999. Proposed Standard;
updated by RFC 5035 (Aug 2007).

[22] P. Hoffman and J. Schlyter. RFC 6698: The DNS-Based Authentication of Named Entities (DANE)
Transport Layer Security (TLS) Protocol: TLSA, Aug. 2012. Proposed Standard; updated by RFC
7218, 7671.

[23] R. Housley. RFC 5652: Cryptographic Message Syntax (CMS), Sept. 2009. Internet Standard; obsoletes
RFC 3852, which itself obsoletes RFC 3369.

[24] R. Housley and T. Polk. Planning for PKI: Best Practices Guide for Deploying Public Key Infrastruc-
tures. John Wiley, 2001.

[25] M. Jakobsson and S. Myers, editors. Phishing and Countermeasures: Understanding the Increasing
Problem of Electronic Identity Theft. John Wiley, 2006.

[26] M. Just and P. C. van Oorschot. Addressing the problem of undetected signature key compromise. In
Netw. Dist. Sys. Security (NDSS), 1999.

[27] C. Kaufman, R. Perlman, and M. Speciner. Network Security: Private Communications in a Public
World (2nd edition). Prentice Hall, 2003.

[28] S. T. Kent. Internet Privacy Enhanced Mail. Comm. ACM, 36(8):48–60, 1993.

[29] M. Kranch and J. Bonneau. Upgrading HTTPS in mid-air: An empirical study of strict transport security
and key pinning. In Netw. Dist. Sys. Security (NDSS), 2015.

[30] J. Larisch, D. R. Choffnes, D. Levin, B. M. Maggs, A. Mislove, and C. Wilson. CRLite: A scalable
system for pushing all TLS revocations to all browsers. In IEEE Symp. Security and Privacy, pages
539–556, 2017.

[31] B. Laurie. Certificate transparency. Comm. ACM, 57(10):40–46, 2014. See also RFC 6962.

[32] J. Liang, J. Jiang, H. Duan, K. Li, T. Wan, and J. Wu. When HTTPS meets CDN: A case of authentica-
tion in delegated service. In IEEE Symp. Security and Privacy, pages 67–82, 2014.

[33] Y. Liu, W. Tome, L. Zhang, D. R. Choffnes, D. Levin, B. M. Maggs, A. Mislove, A. Schulman, and
C. Wilson. An end-to-end measurement of certificate revocation in the web’s PKI. In Internet Mea-
surements Conf. (IMC), pages 183–196, 2015.

[34] D. McCarney. A tour of the Automatic Certificate Management Environment (ACME). Internet Proto-
col Journal, 20(2):2–14, 2017. See also RFC 8555 [4], and J. Aas et al. (ACM CCS, 2019).

[35] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptography. CRC
Press, 1996. Openly available, http://cacr.uwaterloo.ca/hac/.

[36] M. Naor and K. Nissim. Certificate revocation and certificate update. IEEE J. Selected Areas in
Commns, 18(4):561–570, 2000.

[37] M. Nystrom and B. Kaliski. RFC 2986: PKCS #10—Certification Request Syntax Specification ver1.7,
Nov. 2000. Informational; obsoletes RFC 2314, updated by RFC 5967.

[38] A. Oram and J. Viega, editors. Beautiful Security. O’Reilly Media, 2009.

[39] H. Orman. Encrypted Email: The History and Technology of Message Privacy. Springer Briefs in
Computer Science, 2015.

http://cacr.uwaterloo.ca/hac/

244 References (Chapter 8)

[40] K. G. Paterson and T. van der Merwe. Reactive and proactive standardisation of TLS. In Security
Standardisation Research (SSR), pages 160–186, 2016. Springer LNCS 10074.

[41] V. Pham and T. Aura. Security analysis of leap-of-faith protocols. In SecureComm 2011, pages 337–
355, 2011.

[42] E. Rescorla. SSL and TLS: Designing and Building Secure Systems. Addison-Wesley, 2001.

[43] E. Rescorla. RFC 8446: The Transport Layer Security (TLS) Protocol Version 1.3, Aug. 2018. IETF
Proposed Standard; obsoletes RFC 5077, 5246 (TLS 1.2), 6961.

[44] S. Santesson, M. Meyers, R. Ankney, A. Malpani, S. Galperin, and C. Adams. RFC 6960: X.509
Internet Public Key Infrastructure Online Certificate Status Protocol—OCSP, June 2013. Standards
Track; obsoletes RFC 2560, 6277.

[45] J. Schaad, B. Ramsdell, and S. Turner. RFC 8550: Secure/Multipurpose Internet Mail Extensions
(S/MIME) Version 4.0 Certificate Handling, Apr. 2019. Proposed Standard; obsoletes RFC 5750.

[46] J. Schaad, B. Ramsdell, and S. Turner. RFC 8551: Secure/Multipurpose Internet Mail Extensions
(S/MIME) Version 4.0 Message Specification, Apr. 2019. Proposed Standard; obsoletes RFC 5751.

[47] C. Soghoian and S. Stamm. Certified lies: Detecting and defeating government interception attacks
against SSL (short paper). In Financial Crypto, pages 250–259, 2011.

[48] E. Stark, R. Sleevi, R. Muminovic, D. O’Brien, E. Messeri, A. P. Felt, B. McMillion, and P. Tabriz.
Does Certificate Transparency break the web? Measuring adoption and error rate. In IEEE Symp.
Security and Privacy, 2019.

[49] J. Tan, L. Bauer, J. Bonneau, L. F. Cranor, J. Thomas, and B. Ur. Can unicorns help users compare
crypto key fingerprints? In ACM Conf. on Human Factors in Computing Systems (CHI), pages 3787–
3798, 2017.

[50] S. Vaudenay. A Classical Introduction to Cryptography: Applications for Communications Security.
Springer Science+Business Media, 2006.

[51] N. Vratonjic, J. Freudiger, V. Bindschaedler, and J. Hubaux. The inconvenient truth about web certifi-
cates. In Workshop on Economics of Info. Security (WEIS), 2011.

[52] L. Zhang, D. R. Choffnes, D. Levin, T. Dumitras, A. Mislove, A. Schulman, and C. Wilson. Analysis
of SSL certificate reissues and revocations in the wake of Heartbleed. In Internet Measurements Conf.
(IMC), pages 489–502, 2014.

[53] P. R. Zimmermann. The Official PGP Users Guide. MIT Press, 1995.

[54] P. R. Zimmermann and J. Callos. The evolution of PGP’s web of trust. Pages 107–130 in [38], 2009.

[55] M. E. Zurko. IBM Lotus Notes/Domino: Embedding security in collaborative applications. Pages
607–622 in [11], 2005.

	Public-Key Certificate Management and Use Cases
	Certificates, certification authorities and PKI
	Certificate chain validation and certificate extensions
	*Certificate revocation
	CA/PKI architectures and certificate trust models
	TLS web site certificates and CA/browser trust model
	Secure email overview and public-key distribution
	*Secure email: specific technologies
	*End notes and further reading

